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Abstract — A computer-aided method for linear discrete-time system model reduction via step-response matching
is presented in this paper. Golub’s algorithm for solving least squares problem is used to find the optimum coeffi-
cients of the reduced model. The advantage of this method is that both the time response and frequency response
within the bandwidth region of reduced model are very close to that of original model. Several illustrative examples
are provided.,

1. Introduction

Since the exact analysis of most of the systems of higher order is both tedious and costly, model reduction techni-
ques have been the subject of many recent investigations. There are two ways of simplifying the systems: (1) time-
domain approaci,and (2) frequency-domain approach. The purpose of model reduction technique is to use a low
order model to replace the original high order system for easy analysis and design of control systems such that both
the time response and frequency response of the new model is very close to those of the original system. Most of
the methods presented usually satisfy the system specifications in one domain but fail in the other domain. When-
ever time-domain approach is used, the frequency response, specially in the bandwidth region, of the reduced model
should be as close as that of the original system. A number of methods [1, 2, 3, 4, 5, 6] for reduction of discrete-
time transfer functions have been presented in the literature.Shih et al. [1] used bilinear transformation and con-
tinued fraction method to reduce the order of the discrete-time transfer function; the initial output response of
tie reduced model may not be zeto, although that of the original system is zero. The method proposed by Shamasn
[2] may have stability problems. Shih et al. [5] used moments matching and retaining dominant eigenvalues tech-
nique to reduce the order of the discrete-time transfer function, and the result seems to be better than that of the
results of other methods.

In this paper, a new method based on minimization of square errors of step response of the reduced model and
that of the original system is presented, Golub’s algorithm [7, 8] for solving least squares problem is used iteratively
to find the optimum coefficients of the reduced model. The whole procedures can be programmed by using FOR-
TRAN IV or any other high-level language. The time response and frequency response within the bandwidth of the
reduced model are very close to those of the original system.

Il. Review of Golub’s Algorithm for Least Squares Errors Problems

Golub’s algorithm is a numerical algorithm for solving least squares problem in a nighly accurate manner. Breen
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et al. [7] and Kao [8] have applied this algorithm in circuit optimization successfully. The concept of this algorithm
for least squares problems is described briefly as follows.

Consider the system of linear equations
AX=B (1)

where A is a given (n x m) real matrix of rank m, B is a given (n x 1) real column vector, and X is an unknown (m x 1)
real column vector. Equation (1) has unique solution if n = m. If the number of unknows is less than the number of

equation (i. e. m < n), the unknown vector X can be obtained by linear multiregression:
x=@aTalaTs @)

where AT is the transpose of A. Although the rank of A is m, the rank of éT A may be less than m and the solution
of X can not be found from Equation (2) [7]. Golub’s algorithm is another algorithm to find the unknown X of
Equation (1) and avoids the disadvantage of linear multiregression method. This algorithm is to find a vector 5_2 such
that the euclidean norm of B-A X, || B- AX|| , is minimum. Then we will choose on orthogonal matrix Q such that

QA=R= [ (3)

O | (n-m)x m
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Then
[[B-AX | = || QB-QAX 1= l|]C€-RX | ()
where £=QB
Equation (5) can be rewritten as
HB-AX|| =[Cci=y1X]-T19Xn s -T )2
B-AX R s (8 R 1m*m!
¥ - 2
‘9‘((:2 r22x2 ................ rzmxm)
FC ey H 0t +c ] (6)
m+l m+2 n

Thus || B-A X || is minimized when
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rll xl+r12 x2+ .......... +|.'lm xm Cl
ryy X9t iy X = 6 > (7)
'mm *m~ ®m
and the minimized value is
|B-AX [I=©peq * Cpig * e + €07 ®)

The decomposition of Equation (3) can be realized by Householder transformations. The details of decomposition
can be found in the papers of Kao [8],Householder [9], and Wilkinson [10].

From the above analysis, we see that Golub’s algorithm can be applied to least squares errors problems. Assume
that the cost function F is defined as

n
F(d)=1 e (d 1) ©)
=10 3
witere t; € T represents the independent variable sampled in T, d is a dependent variable vector with m elements, & is
the ermror function at 4, and n is the total number of sampled points in T. The purpose is to find the optimum parame-

ter vector d such that the cost function F is minimized, The partial derivative of e; (d) with respect to d is e;d=

3¢ (d)

7 and the Taylor’s series of ¢; (d) is

1 1 (1]
&+ 8d)=e;(d) +e (@) M+ & (@) (8D + ... (10)
If ad is very small, the second-order and higher-order terms can be neglected, and we get
ei(d+ad)=¢ (d)+e’(d) ad (11)

In order to minimize the cost function F (d), the direction'vector Ad should be in a direction so that & (d+ ad)=0.

Hence A d can be determined by the equation
€ (d+ Ag)iei(t_l) +£’i (d)ad=0,i=1,2, ...n (12)
= ¢j(d) Ad=-¢;(d) ,i=1,2,..yn e

which can be rewritten as:

{ aBl Bﬁ[ ae]
Be2 des 3&2 Ad] €1
adl 3d2 3dm ﬁdz -82

= | 3 (14)
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de, e, ﬁ Adm

74, a, 5a

Since n >m, we can apply Golub’s algorithm to the equation (14) and find the values of ad.

But due to the approximation made in Equation (12) and the fact that Ad is only a least square solution, the new
parameter vector d + A d does not, in general, minimize the cost function F (d). The direction of ad only shows
that if d is changed infinitesimally in the direction of A d, the cost function F (d) will be reduced. This means

F(d+ ad)< F(d) (15)

where o in called the step size and 0< « < 1. The cost function F (d +a Ad) vs.a can be plotted as shown in Fig. 1.
The value of a should be chosen properly; otherwise, F (d +a Ad) will be greater than F(d), or the convergence rate
is too slow. There are many algorithms to find the optimum o ; we omit the details here.

Given the initial d as d° , we may evaluate the value of the cost function F (d) as FO, Using abovementioned pro-
cedures to find Ad and &, we get new value of d asc_il which results in F (d°) > F(gl). We repeat the above pro-
cedures until F (d + a Ad), or the difference between F (d + o Ad) and F(d) is within a reasonable range. Then the
optimum parameter vector can be obtained, All the step of the above procedures can be programmed using FOR-
TRAN IV or any other high-level language and we may get the results from the computer rather easily.,

F(d+aad)d

®min

Fig, 1, The cost function F (d +a Ad) vs. the step size a .

IIL. Using Golub’s Algorithm in Model Reduction of Linear Time-Invariant Discrete-Time Systems

Consider a linear time-invariant causal discrete-time system with the following transfer function

M -1 &
G 22 oy P by 22 sz
L N = N®M (16)
Z7 +ay 2™ tayn.oZ '2+.................+aIZ+a0

Equation (16) may also be written in a nonrecursive form as

C@y=rotnZl 4224 ... (17
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where 1, is equivalent to g (iT), the impulse response of tiis discrete-time system at sampling instant iT. Since the z-

transform of unit-step function is

1
R@)=1 =1 s T 22373 ....... (18)

The step-response of G(Z) can be written as
Y (Z)=G(Z)R (2)
=t * 1 Z7 40,22 )1+ T+ 22423+ )
=T hlro rl) 71 +(ry +1q +r2J 7o 5

=8+ B2+ ByZ 2+ (19)

s
where g; = ’ 50 L, and B, is the step-response of discrete system at sampling instant iT.

The transfer function expression in Eqn. (16) is approximated to a low-order transfer function of prespecified

dimension by

Zad_Z™leg 224 +d,Z+d
H(Z):dm dm-l dm;}! 1 Q . No>n >m (20)
Pec 2 sc 7% 4 L +eZ4c,

The problem now is to find the coefficient vectors C = (¢, ¢, €9, «... 1) and D=(d, Gres d,,) so that the
performance of the model H (Z) is very close to that of the original system G (Z).

Suppose both systems G (Z) and H (Z) are stable and the step-responses at sampling instant iT of both systems
are denoted as yl{iT) and yz(iT}. The sum of squares of the errors of these step-responses can be respresented by
cost function Fy (C, D) as

@

2= ; : 2

N1 8

Fi(GD)=.

=5 i
Since G (Z) and H (Z) are stable, the step-responses of these two systems will reach steady states after a finite time
interval. The closeness of these two step-responses can alsobe justified by the cost function F (C, D) as

K K
F(CD)= I e%= 1 [y)(D)-y, (T,C D)7 (22)
where KT is much greater than the settling time of both the systems. Since the order of H (Z) should be as low as
possible, so K is always greater n+m+1, and Golub’s algorithm can be applied in this case also.

Guess the initial values of coefficient vectors C and D of the reduced model as C° and D° which will make the
resulting system stable, We may use Eqn. (19) to find the step-responses of G (Z) and H (Z). Using the proceduces
described in Section II, we may get coefficient correction vectors ACC and A D9, and optimumstep size o®. The

new coefficient vecotors C land D Lare

Cl=c+ o 2
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[_)1320_'_ CI'.O &QO [’23)

snd F (!, D) < F(C% D°). Repeat above procedures iteratively until |F(d, D) |, or| F(d,Dl)-F (],
D_j'l) ] is within a reasonable range, and tie optimum coefficients of the new model are found. All the reduction
procedures can again be programmed in FORTRAN IV or in otaer nigh-level languages and hence tiae optimum

coefficients of the reduced model can be found very easily.

Tie frequency response of G (Z)is written as

by @M OT 4y JOEDOT 20T, by T4

G“Ty=" _ e @4)
gNeT 4 aN_le(N']) wT 4 aN_ze](N‘z)”" e ale-'“’T ta,
or can be evaluated from Eqn. (17) as
G (¢ I"T)=r0+r1t’.'j“’T+r2 ed WG ; (25)
Wien w=o, the value of G (/°T) js
G(ej°]=r0+r1+r2+ ..... =i°£0ri (26)

wilicn is equal to the steady-state value of tne step-response. So matching tne steady state values of step-responses
of the reduced model and of the original system is tiie same as matching the frequency responses at zero frequency of

bota tie systems. Since the sampling frequency W= -;TTE-, Eqn. (25) can be rewritten as

. j 2y L ip 28
G (¢ L"TJ =G (e"zwm@s-l =r trye Ha “s+rye i T o

= [z’o+r1 cos (Q”Ewi}'”Z cos (2 %}%}+ .......... ]

=j [rq sin( 2r m—“;) +ry sin ( 27 az—‘::} S (o @n
At low frequency, cos w T approacies 1, and sin o T approacaeso,sothat the real part of G (ei f T} dominates the
frequency response and tie value is approximately equal to ;;10 T From Eqn. (19), we see that matching of step-
responses of botn tie systems is equivalent to matching of impulse responses of both tie systems. But from experi-
mental study, we see that the frequency response of the reduced model via matching step-response is better than that

via matching impulse response.

IV. Numerical Examples:
Example 1:

Consider tie following eighth-order discrete-time transfer function wiich is used in the paper by Suih et al. [1,5]

280.33327 + 18626 - 3525 +25.33374 - 8673 - 43.66622 + 7.333Z - | _ 28)

G(Z)=
66625 - 280.33327- 18625 + 3527 - 25.3332% + 8673 + 43.66622 - 7.333Z + |
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and the sampling period of this system T = v 0.5. Use the procedures described in Section III and select tihe first
30 points. The optimum coefficients of the second-order and third-order reduced models can be obtained as:

0.460997Z - 0.303206
Hy ()= — 29)
Z2-1.530156Z+0.687127
> 472 4147 + 0.000989
Hy )= 0.42604Z2 - 0.30441 .00 s

23 - 1.72256372 + 0.991368Z - 0.146425

The second-order reduced model obtained by Shin et al. [5] is

S 20.49812-0.34194 a1
Z2 .- 1.50189Z + 0.65805

The step responses of G (Z), Hz(Z)‘ 1-13(2} and H (Z) are listed in Table 1.

The frequency responses of these systems are also plotted in Fig. 3 we see from Fig. 2 taat the frequency response

within the bandwidth region of H2 (Z) or H3(Z) is very close to that of G (Z).
Table 1. The step-responses of G{(Z), HZ(Z'}, H3(Z) and H (Z) of Example 1.

Time instant Original system Second-order Third-order Second-order

model model model of Shih et al.
4 G (Z2) H»(Z) H3(Z) H(Z)
0. 0. 0. 0. 0.
0.707 0.420920 0.460997 0.426040 0.498100
1.414 0.877374 0.863189 0.855506 0.904251
2.121 1.13451 1.16184 1.17392 1.18647
2.828 1.38613 1.34247 1.35902 1.34307
3.535 1.42675 1.41365 1.42510 1.39154
4.242 1.39806 1.39845 1.40204 1.36380
4.949 1.31835 1.32628 1.32391 1.28807
5.656 1.22423 1.22630 1.22187 1.19326
6.363 1.12044 1.12289 1.12017 1.10068
7.070 1.03397 1.03337 1.03471 1.02404
7.777 0.973932 0.967444 0.973383 0.969856
8.484 0.938627 0.928074 0.937568 0.938904
9:191 0.924598 0.913133 0.924162 0.928078
9.898 0.927437 0.917323 0.927594 0.932184
10.605 0.941339 0.934001 0.941553 0.945477
11.312 0.959799 0.956624 0.960233 0.962739
12.019 0.978469 0.979826 0.979073 0.979916
12.726 0.994455 0.999744 0.995053 0.994356

13.433 1.00621 1,01429 1.00664 1.00473
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14.140 1.01326 1.02287 1.01351 1.01083
14.847 1.01614 1.02599 1.01620 1.01315
15.554 1.01584 1.02488 1.01572 1.01262
16.261 1.01349 1.02103 1.01323 1.01030
16.968 1.01014 1.01590 1.00981 1.00716
17.675 1.00667 1.01071 1.00632 1.00398
18.382 1.00366 1.00628 1.00334 1.00126
19.089 1.00141 1.00307 1.00115 0.999283
19.796 1.00003 1.00120 0.999835 0.998088
20.503 0.999425 1.00055 0.999298 0.997600

1.5

1.0

Magnitude of frequency response

05

; 0 04 12 20 28 36 4

Fig. 2. Gain plots of frequency response of G (Z), ily (Z), H3 (Z) and H (Z) of example 1.

Example 2.

Consider a continuous-time system witii seventi-order transfer function [11] as

L (8+0.5)(S+10)(S+14) [(S+4)12 +42]
F(S)- 2 2 9
(S+1) [(S+2)=+2%] [(S+2)% +42] [(S+3)% +3]2

(32)
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Assume tiat a sampling period T is cnosen as .3 sec; the resulting discrete-time system may be evaluated by impulse

invariant transformation as

026954126 - 0.160640Z5 - 0.077199Z% + 0.027885Z3 - 0.0134122?
77 -2 54991420 + 3.127139Z5 - 2.4185287% + 125932023 - 0.44288022

G(2)=

+0.000861Z (33)
+0.097047Z - 0.011109

Use the procedures described in Section III and select the first 24 points, the optimum coefficients of tie third-order

reduced model can now be obtained as

24 ;
H(Z)= (;.2513452 20.‘396102 0.310523 s
Z7-1.721266Z- + 1.134987Z - 0.309154

The time responses and frequency responses of boti the systems are listed and plotted as shown in Table 2 and Fig,

3, respectively.

Table 2. The step-response of original model and reduced model of Example 2.

Time Original model Reduced model
0.3 0.2695 0.2513
0.6 0.7862 0.8236
0.9 1.2191 1.2129
1.2 1.3302 1.3109
1D 1.2120 1.2149
1.8 1.0429 1.0588
2.1 0.9247 0.9292
24 0.8652 0.8537
25T 0.8375 0.8226
3.0 0.8209 0.8147
33 0.8087 0.8130
3.6 0.7996 0.8094
3.9 0.7928 0.8029
4.2 0.7875 0.7950
4.5 0.7831 0.7878
4.8 0.7797 0.7823
5.1 0.7771 0.7787
5.4 0.7753 0.7764
5.7 0.7739 0.7748
6.0 0.7729 0.7736

¢ <

15.0 0.7701 0.7701
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~—— QOriginal model
==== Reduced model|

0 2 4 6 g 92 %

. Gain plots of frequency responses of original model and reduced model of example 2.

Consider another continuous-time system witu ninth-order transfor function [11] as

4 3 2
§*+ 35587 + 2918~ + 10938 + 1700 (35

(SHDISHD2HI2] [(5+1)2422) [(S+1)2432] [(S+1)2+42]

With thesampled procedure as describled in Example 2, and that the sampling period T is chosen as .5 sec; the re-

sulting discrete-time function is

G(Z)=

0.00403828+0.06213727+0.10912026+0.02822225.0. 00074224

79-1.90750028+2.19434127-1.92128476+1.38138825-0.8378552%

+0.00157123—0.00018222+0.00001?Z (36)

+0.40869323-0.180123Z2+0.0576022-0.011109

The optimum coefficients of tie taird-order reduced model can be obtained as

0.00956722+0.0379792+0,199744 a7

© 23.1.3522847240,7904482-0.191039

The step-responses and frequency responses of G (Z) and H (Z) are listed and plotted as snown in Table 3 and Fig. 4,

respectively,
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Table 3. The step-response of original model and reduced model of Example 3.

Time Originl model reduced model

0.5 0.0040 0.0096

1.0 0.0739 0.0605

1S 0.3074 0.3215

2.0 0.6354 0.6361

2.5 0.8768 0.8649

3.0 0.9743 0.9754

35 0.9952 1.0042

4.0 0.9978 0.9995

4,5 0.9983 0.9914

5.0 0.9983 0.9898

5.5 0.9983 0.9930

6.0 0.9983 0.9972

6.5 0.9983 1.0000

7.0 0.9983 1,0001

7.5 0.9986 1.0001

8.0 0.9992 1.0001

8.5 0.9997 1.0001

9.0 1.0000 1.0000

9.5 1.0000 1.0000

10.0 1.0000 1.0000
8

g_ L — Original model

0 ~=== Reduced model
>
&
@
T
4
-
)
@
E
&
3

0 0 W

Fig. 4. Gain plots of frequency responses of original model and reduced model of example x5

V. Conclusions:

A new approach to simplify high-order discrete-time transfer functions to low-order discrete-time transfer func-
tions via step-response matching has been proposed. The advantage of this metiod is that both the time response and
frequency response within the bandwidth region of the new low-order model are very close to those of the orignal
system.
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