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Abstract — The application of the Wigner-Eckart theorem and the first-order rotational representations have been
used to derive the expressions of the energy matrix elements for the first and second-order perturbations and the
relative intensities of the Stark effect with one nuclear quadrupole moment for the weak electric field case. The
numerical values of the exact energy elements with the eigenvectors of the first-order and the second-order energy
elements for j < 4 and I <3 have been calculated, The comparsions of the relative intensities for the ammonia inver-
sion ‘spectrum between the previous method and the treatment presented here have been shown, The relative in-
tensities in terms of 3j symbols for the symmetric rotors have been shown in Appendix, Some calculated values have
been tabulated for illustration.

I. Introduction

The Stark effects on the rotational spectra are useful in detecting molecular absorbed lines, in identifying transi-
tions, and in measuring dipole moments. In the Stark effect on the rotational spectra of the molecules with quadru-
pole nuclei, the effect of the quadrupole hyperfine structure is often large and must be taken into account. If the
electric field is weak, then the interaction between the dipole moment and the electric field is considerably less than
that between the nuclear quadrupole moment and the molecular electric field gradient. Therefore the Stark effect
can be regarded as a perturbation upon the quadrupole hyperfine structure. Each hyperfine line is then split by the
Stark effect into various components, and this splitting is small in comparsion with the hyperfine splitting. The
energy levels of a rigid rotor containing at least one quadrupole nucleus and subject to a space-fixed electric field
have been discussed by a number of authors [1-4]. The energy matrix elements and relative intensities described in
Refs. 1 and 2 only contain the diagonal part. Tn fact, the off-diagonal elements are available, so that the exact energy
elements should be the eigenvalues of the matrix instead of the diagonal elements. The expressions of the relative
intensities shown in Refs. 2 and 3 are not adequate enough, because they do not involve the rotational and spin states
which are very important in spectra, The formulas used in Ref, 4 are only for the symmetric tops. The explicit ex-
pressions of the energy elements for the second order pertubation of the asymmetric rotors have been given in Ref.
3, it is still laborious to calculate them. In order to provide the general expressions which can be used for any case
and can be computed easily, this paper presents an alternate treatment, applying the Wigner-Eckart theorem and
first-order rotational representations, to derive the energy matrix elements and relative intensities of the Stark effect
with hyperfine structure for the weak electric field case. The forms for matrix elements and relative intensities are
in terms of 3j and 6j symbols. The formulas provided in this paper can be used for the symmetric and asymmetric
rotors. The energy matrix elements of the first and second-order perturbations are involved. The relative inten-
sities contzin the sufficient quantum numbers J, K, I, F, and M. Besides, it is easy fo decide the selection rules due
to the symmetry property of 3j symbols. For magnitudes, it is convenient to use either the available tables [5], or
the suitable digital computer programs [6] with high-speed computers to calculate them. For being useful and con-
venient to the researchers interested in, the numerical values of the exact energy elements with line strengths for] < 4
and I < 3 of the symmetric tops and the energy elements of the second-order perturbation for the symmetric and
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asymmetric rotors have been calculated for request.

II. Formulation
1. Energy Matrix Elements and Relative Intensities for Symmetric Tops

We consider one nucleus with a quadrupole moment. When the electric-field is weak, the rotational state J must
be treated as strongly coupled to the nuclear spin state 1. Then the molecular rotation precesses about the total
angular momentum represented by F = J+I, and J, K, I, F, and Mg are good quantum numbers. Here J and K stand
for the rotational energy level and Mg are projection quantum numbers of F. The interaction Hamiltonian is -1 - E,
The symbols 7 and E respectively stand for the dipole moment directed along the symmetry z-axis of the symmetric
top and the external electric field directed along the space-fixed Z axis, This interaction may be written as - ”ZE’

here  u y represents the dipole moment component directed along the space-fixed Z axis. The expressions Hz and

“0{” are equivalent to each other, the latter represents the spherical form. Then the energy matrix elements of

the interaction Hamiltonian are

<J'K'IF'Mpil - v (D E | JKIFMp>.
Using the Wigner-Eckart theorem[7]
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we may express the matrix elements as
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By the use of the Wigner-Eckart theorem for the coupled scheme [8]
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the reduced matrix element in Eq. (2) can be further reduced to

<I'K'IF || oD ) IKIF > =1y d" HHFH
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where the reduced matrix element represents the dipole moment matrix element for the symmetric top. Its explicit
form in terms of 3j symbols has been shown in Eq. (A6) in Appendix, and the square of it indicates the relative in-

tensity of a transition line. By combining Egs. (A6), (2), and (4), we obtain the expression

<I'K'IF'Mg'| - (D E | IKIFME > =¢-1)! WE

LN S
x [(2F+1)2F +1)1 7 [(21+1)(27 '+1)] 72
F J 1) \Mg'0 Mg

DR S
(5)

K 0 K

where t=J+]'+F '+F+I~MF-K+1 .
The square of the dipole moment matrix elements between two states | 7' K "IF'Mp "> and [JKIFMF > is defined

as the relative intensity. The matrix elements are
c= < 1'K'TF' Mg [u (1) | JKIFME > = D! u [F+)@F+))*

= LU it A | LI | F J 1 3!
x [T '+1) (21+1)] /2 _ )( j : (6)
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where t '=J+J '+F' +F+I-Mp-K; the relative intensities will be

~
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where the expression in the bracket represents the relative intensity of a pure rotational transition line as shown in
Eq. (A7). For the identification of the Stark effect, the line strength for each component can be simply given as

»oEr [y®
S (J'K'IF'Mg' + JKIFMg) = (2F '+1) (2F+1) \
F 7 1]

/AL | F
X (8)
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For non-vanishing elements in Eq. (8), we find that the selection rules are AF=0, #, and AMMp=0. Equation (8)
contains, in addition to F and M as shown in Ref. 2, the rotational states J " and J and nuclear state I So that it
scems to be more physically adequate. In accordance with the first-order perturbation, the energy matrix elements
between the states of different J will be neglected. By using Eq. (5), we can construct the energy matrix elements
for a particular J, K and Mp. It slhuuld be noted that Mg can be obtained with more than one value of F. The
matrix for each Mg must be diagonalized to obtain the exact energy elements. The exact energy levels, the multipli-
cations of the exact energy elements and 1 E, must be added to the rotational energy for that J and K. The calcula-

tion of line strength of each component for a given rotational transition should then be modified as
8'(J'KIF '"Mg' + JKIFME)

= IEL qu | €L (Fp) Cy(Fy) €12, ©)

where CL (F L} and CU ( FU) respectively represent the eigenvectors, obtained from the diagonalizing transformation,
for the lower and upper energy states, and C is defined as in Eq. (6). In fact, the pure rotational relative intensity
containing in the explicit form of Eq. (9) may be omitted for a given rotational line.

If the first-order correction is not adequately good enough, the second-order perturbation will be needed. Ac-
cording to the second-order perturbation theory, the energy elements are given as

2
Q) y  |<IKIFMg | - u{DE [1'K' IF' Mg |
JKIFMFH J‘F' EJKIF = EJIKEIFI =

where E represents the quadrupole hyperfine energy levels which have previously been discussed in terms of the
JKIF

irreducible tensor operators [9, 10] . By using Eq. (5), we may rewrite the above equation as
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EykiFmg = vE
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2. Energy Matrix Elements and Relative Intensities for Asymmetric Rotors

Here we consider one nuclear quadrupole moment. For this kind of rotor, the expressions J, 1,1, F, and M F are
good quantum numbers, where J and t stand for the rotational state. By considering the Four—Gfoup [11], we
find that there are not any diagonal matrix elements for the first-order perturbation. For the second-order per-
turbation, the correction energy elements due to the body-fixed g axis are

| < JxIFMg | v B, | 3IF 'My's |2
(Efgz))Jr]FMF 3 J,ZT.F. £t & = : (11)
EjF -~ Epoype

where the term ( u‘,{]) E)g indicates the interaction between the external electric field directed along the space-fixed
z axis and the dipole moment directed along the body-fixed g axis, and Ej, g represents the quadrupole hyperfine
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energy. The theoretical and experimental works for hyperfine structure of the asymmetric rotors have been thor-

y discussed in terms of the irreducible tensor operators [12-17].

By the use of Egs. (1) and (3), the matrix elements of the numerator in Eq. (11) can be expressed in the form
| < JcIFME | ¢ u$DB) | J'<'IF' Mg > | 2= B2 (2F 1+1) (2F+1)

2

5o wepktopie 3 B
x ( <3t || Dy |2, (12)
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where the expression |<J [Ju(}) || '« = |2 is the relative intensity due to the dipole moment component u, di-
rected along the body-fixed g axis. The substitution of Eq. (12) into Eq. (11) gives the energy matrix elements as

JF IL2 F 1 Bv \?
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where ), represents the line strength and pgz A is equivalent to the relative intensity < Jt [MEATH ST |2 The
procedure to calculate the magnitudes of Ag have been presented [ 18], an alternate method in terms of 3j symbols
will be given in another paper. The total interaction energy of the state | J:IFME > will be the summation of Eq.
(13) over g, itis
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The relative intensity defined as the square of the dipole moment matrix element between the two states
J'T'E'Mg'> and |J TIFME > is

S(ITT'IF'MF' -+ JTIFMF)

—— 1 L} 1 L] 1 2

=<3 ME' | u{D) | JHIFME >
Using Eqs. (1) and (3), we have the relative intensity
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The line strength of the Stark effect component for a given rotational transition can be reduced to
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S(J'T'IF Mp' + JTIFME) = (2F '+1) (2F+1)

LU R Lz Bt T o R
X (15)
F J 1) -MFI 0 MF

The selection rulesare AF=0, %1, and aMF =0.

ITI. Results and Discussions
1. Energy Matrix Elements

The energy matrix elements of the symmetric tops have been established by Eq. (5) and diagonalized to obtain
the exact energy elements and eigenvectors for the first-order perturbation. The numerical values, calculated for the
quantum numbers J=4, K=3 and I=1.0 are given in Table 1. The first column represents the exact energy elements,
the second one represents the eigenvectors associating with the biggest value of F, the third represents the eigenvec-
tors associating with the smaller one by step 1, and so on. For example, when Mp=2, the state function for the exact
energy element -0.15 will be that [J=4, K=3, I=1; MF=2 > =0.683130 | 43152 > -0.670820 |43142 > +0.288675
[43132> . From the symmetry property of 3j symbols, we found that when J, 1, and Mp; are fixed, the piases of
matrix elements are not affected by K, but the magnitudes are. That is the energy matrix elements for a certain
value of K are K timies of those for K equal to 1. So that the exact energy elements for the former are K times of
those for the latter, but the eigenvectors for both cases are same. If the value of K shown in example is changed to

1, the exact energy element is that -0.05, but the eigenvectors are still same,
2. Line Strengths

The line strengths for J=3 and I=1 of the symmetric tops obtained by Eq.(9) have been calculated and given in
Table 2. The first two columns represent the rotational quantum numbers and sub-quantum numbers of F for tie
lower energy levels, and the second two columns represent those for the upper energy levels, The fifth one represents
the exact line strengths. The sixth and seventh ones represent the exact energy elements respectively for the lower and
upper rotational energy levels. And the last one represents the difference between two rotational states. It was found
that the sub-quantum number K containing in the power in Eq. (6) does not affect the magnitudes of line strengths,
since it is not involved 3j and 6j symbols. The magnitudes of the exact energy elements given in Table 2 are only for
K=1, but the line strengths can be used for any allowed values of K,

3. Second-Order Perturbation Energy Elements

Table 3 gives the energy elements of the second-order pertubation for J=3 and 4 with I=1 of the symmetric and
asymmetric rotors, The magnitudes for the symmetric tops have been calculated by the numerator in Eq. (10), and
those for the asymmetric rotors have been calculated by the numerator in Eq. (14). The first two colurnns indicate
the allowed values of F, the third one indicates the sub-quantum numbers of the lower value of F. The forth one
indicates the allowed values of K, the fifth and sixth indicate the energy elements for the symmetric and asymme-
tric rotors. The expression for the line strengths of the asymmetric rotors is the same as the numerator in Eq. (14),
so that the magnitude in the last column may be used for the line strengths of the asymmetric rotors.

4. Comparsions of Line Strengths and Energy Elements of the Ammonia Inversion Spectrum

The calculations of the Stark effect with hyperfine structure for the ammonia inversion spectrum have been shown

in Ref. 1. Themagnitudes of the energy matrix elements and relative intensities were computed only by considering
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the diagonal part. But as a matter of fact, the off-diagonal elements are effective. The exact energy levels should be
obtained by diagonalizing the matrix established by Eq. (5) and line strengths should be computed by Eq. (9). The
calculated exact energy elements and line strengths are shown in Tables 4 and 5. We found that the number of lines
allowed in Table 5 is less than that in Table III in Ref, 1. When the energy matrix is diagonalized, any new state
will be mixed by the original ones. The line strength between any two new states will be interferred by the original
ones, some are interferred constructively and some destructively, consequently several transition lines will be for-
bidden. This will not be found by only considering the diagonal part. For comparsions, the line strengths computed
by Eq. (8) and the relative intensities used in Ref. | are shown in Table 6. The ratio of relative intensity to the line
strength for each component is 5.25, which is the pure rotational relative intensity
o R Tl
(21+1) (21 '+1) = (2x3+1) (2x3+1)
X 0 =K 3 0o -3

IV. Conclusions

According to comparsions shown in I1I-4, we realized it is a real fact that we can not only use the formulas pre-
sented in text to express and calculate the energy matrix elements easily, but also obtain the line strengths correctly.
The procedures for the treatment of the Stark effect with hyperfine structure may be further extended to the mul-
tiple quadrupole nuclei cases. The treatment of the relative intensities in' terms of 3j symbols for the symmetric
tops might be extended to that of the asymmetric rotors, then the calculation of the relative intensities in terms of

3j symbols will be much more convenient than the conventional method.

Table 1. The exact energy elements and eigenvectors of Stark effect with hyperfine structure of
symmetric rotor for J=4, K=3, and [=1.0 .

J= 4 K= 3 = 1.0
EIGENVALUE EIGENVECTORS

= 5.0 4.0 3.0
MF= 5.0
-0.600000 1.000000
MF= 4.0
-0.450000 0.894427 0.447214
-0.600000 0.447214 0.894427
MF= 3.0
-0.300000 0.788811 -0.591608 0.166667
-0.450000 0.596285 0.670820 -0.440959
-0.600000 0.149071 0.447214 0.881917
MF= 2.0
-0.150000 0.683130 0.670820 0.288675
-0.300000 0.683130 0.447214 -0.577350
-0.450000 0.258199 0.591608 0.763763
MF= 1.0
0.000000 0.577350 -0.707107 0.408248
-0.150000 -0.730297 -0.223607 0.645497

-0.300000 0.365148 0.670820 0.645497
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MF= 0.0

0.150000 0.471405 -0.707107 0.527045
0.000000 -0.745356 0.000000 0.666667
-0.150000 0.471405 0.707107 0.52704¢
MF= -1.0

0.300000 -0.365148 0.670820 -0.645497
0.150000 -0.730297 0.223607 0.645497
0.000000 0.577350 0.707107 0.408248
MF= -2.0

0.450000 0.258199 -0.591608 0.763763
0.300000 -0.683130 0.447214 0.577350
0.150000 0.683130 0.670820 0.288675
MF= -3.0

0.600000 0.149071 -0.447214 0.881917
0.450000 -0.596285 0.670820 0.440959
0.300000 0.788811 0.591608 0.166667
MF= -4,0

0.600000 -0.447214 0.894427

0.450000 0.894427 0.447214

MF= -5.0

0.600000 1.000000

Table 2. The line strengths of Stark effect with hyperfine structure for J=3 and I=1,

)

JL MFL JU MFU INTENS. EIGENVALUES AJ
3 4.0 - 3 4.0 0.10714 -0.750000 -0.750000 0
3 4.0 » 4 4.0 0.02778 -0.750000 -0.450000 1«
3 3.0 - 3 3.0 0.04762 -0.500000 -0.500000 0
3 3.0 B 3.0 0.04762 -0.500000 -0.300000 1
3 3.0 - 3 3.0 0.10714 -0.750000 -0.750000 0
3 3.0 " 4 3.0 0.02778 -0.750000 -0.450000 1
3 2.0 - 3 2.0 0.01190 -0.250000 -0.250000 0
3 2.0 5 4 2.0 0.05952 -0.250000 -0.150000 1
3 2.0 - 3 2.0 0.04762 -0.500000 -0.500000 0
3 20 - 4 2.0 0.04762 -0.500000 -0.300000 1
3 2.0 C 3 2.0 0.10714 -0.750000 -0.750000 0
3 2.0 - 4 2.0 0.02778 -0.750000 -0.450000 1
3 1.0 . 4 1.0 0.06349 -0.000000 0.000000 |
3 1.0 3 1.0 0.01190 -0.250000 -0.250000 0
3 1.0 - 4 1.0 0.05952 -0.250000 -0.150000 1
3 1.0 - 3 1.0 0.04762 -0.500000 -0.500000 0
3 1.0 - 4 1.0 0.04762 -0.500000 -0.300000 1
8 0.0 - 3 0.0 0.01190 0.250000 0.250000 0
3 0.0 = 4 0.0 0.05952 0.250000 0.150000 1
3 0.0 - 4 0.0 0.06349 0.000000 0.000000 1
3 0.0 - 3 0.0 0.011%90 -0.250000 -0.250000 0
3 0.0 - 4 0.0 0.05952 -0.250000 -0.150000 1
3 -1.0 - 3 -1.0 0.04762 0.500000 0.500000 0
3 -1.0 - 4 -1.0 0.04762 0.500000 0.300000 1
3 1.0 - 3 -1.0 0.01190 0.250000 0.250000 0
3 -1.0 - 4 -1.0 0.05952 0.250000 0.150000 1
3 -1.0 = 4 -1.0 0.06349 0.000000 -0.000000 1
3 -2.0 - 3 2.0 0.10714 0.750000 0.750000 0
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2.0
2.0
2.0
2.0
2.0
3.0
3.0
3.0
3.0
4.0
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-2.0
2.0
-2.0
-2.0
-2.0
-3.0
-3.0
-3.0
-3.0
-4.0
-4.0

0.02778
0.04762
0.04762
0.01190
0.05952
0.10714
0.02778
0.04762
0.04762
0.10714
0.02778

0.750000 0.450000
0.500000 0.500000
0.500000 0.300000
0.250000 0.250000
0.250000 0.150000
0.750000 0.750000
0.750000 0.450000
0.500000 0.500000
0.500000 0.300000
0.750000 0.750000
0.750000 0.450000

Table 3. The energy elements of the second-order perturbation of symmetric and asymmetric
rotors for J=3 and 4 with I=1.

JL=3
FL
4.0

4.0

4.0

4.0

4.0

4.0

4.0

4.0

JU=4
FU
5.0

5.0

5.0

5.0

5.0

4.0

4.0

4.0

MF
4.0

3.0

2.0

1.0

0.0

4.0

3.0

2.0

1.0

L L™ L d — O LTS =] W —= D L b2 = O LVS N 5 i o W — O

Wt o= O

SYM

0.088889
0.083333
0.066667
0.038889

0.158025
0.148148
0.118519
0.069136

0.207407
0.194444
0.155556
0.090741

0.237037
0.222222
0.177778
0.103704

0.246914
0.231481
0.185185
0.108025

0.022222
0.020833
0.016667
0.009722

0.012500
0.011719
0.009375
0.005469

0.005556
0.005208
0.004167
0.002431

ASYM
0.022222

0.039506

0.051852

0.059259

0.061728

0.005556

0.003125

0.001389

O e D o O D e

X235
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4.0

4.0

4.0

4.0

4.0

3.0

3.0

3.0

3.0

3.0

3.0

4.0

3.0

3.0

3.0

3.0

4.0

4.0

4.0

4.0

3.0

3.0

3.0

2.0

1.0

0.0

3.0

2.0

1.0

0.0

3.0

2.0

W = O WK - A SIS W - W — o W= W - o W= o W — o W= o

W -

0.001389
0.001302
0.001042
0.000608

0.000110
0.000103
0.000083
0.000048

0.000189
0.000177
0.000142
0.000083

0.000236
0.000221
0.000177
0.000103

0.000252
0.000236
0.000189
0.000110

0.104167
0.097656
0.078125
0.045573

0.178571
0.167411
0.133929
0.078125

0.223214
0.209263
0.167411
0.097656

0.238095
0.223214
0.178571
0.104167

0.026786
0.025112
0.020089
0.011719

0.011905
0.011161
0.008929
0.005208
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0.000347

0.000028

0.000047

0.000059

0.000063

0.026042

0.044643

0.055804

0.059524

0.006696

0.002976
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2.0 3.0 1.0 0.000744
0.002976
0.002790
0.002232
0.001302
2.0 3.0 2.0 0.034014
0.136054
0.127551
0.102041
0.059524
2.0 3.0 1.0 0.054422
0.217687
0.204082
0.163265
0.095238
2.0 3.0 0.0 0.061224
0.244898
0.229592
0.183673
0.107143

W ok - O [FER S I o G b D

W R — O

Table 4. The exact energy elements and eigenvectors of the Stark effect with hyperfine structure
of ammonia inversion spectrum at J=3 and K=3.

EIGENVALUE EIGENVECTORS

F= 4.0 3.0 2.0
MF= 4.0
-0.750000 1.000000
MF= 3.0
-0.500000 0.866025 -0.500000
-0.750000 0.500000 0.866025
MF= 2.0
-0.250000 0.731925 -0.645497 0.218218
-0.500000 0.654654 0.577350 -0.487950
-0.750000 0.188982 0.500000 0.845154
MF= 1.0
-0.000000 0.597614 -0.707107 0.377964
-0.250000 0.731925 0.288675 0.617213
-0.500000 0327327 0.645497 0.690066
MF= 0.0
0.250000 0.462910 -0.707107 0.534523
0.000000 -0.755929 -0.000000 0.654654
-0.250000 0.462910 0.707107 0.534522
MF= -1.0
0.500000 0.327327 -0.645497 0.690066
0.250000 -0.731925 0.288675 0.617213
0.000000 0.597614 0.707107 0.377964
MF= -2.0
0.750000 0.188982 -0.500000 0.845154
0.500000 -0.654654 0.577350 0.487950

0.250000 0.731925 0.645497 0.218218
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MF= -3.0
0.750000
0.500000

MF= 4.0
0.750000

-0.500000
0.866025

1.000000

0.866025
0.500000

Su: Stark Effect with H S,

Table 5. The line strengths of Stark effect with hyperfine structure of ammonia inversion
spectrum at J=3 and K=3,

JL MFL
3 4
3 3
3 3
3 2
3 2
3 2
3 1
3 1
i 0
3 0

Ju
3
3
3
3
3
3
3
3
3
3

MFU
1
1

4
3
3
2
2
2
0
0

INTENS

0.10714
0.04762
0.10714
0.01190
0.04762
0.10714
0.01190
0.04762
0.01190
0.01190

EIGENVALUES
-0.750000 -0.750000
-0.500000 -0.500000
-0.750000 -0.750000
-0.250000 -0.250000
-0.500000 -0.500000
-0.750000 -0.750000
-0.250000 -0.250000
-0.500000 -0.500000
-0.250000 -0.250000
-0.250000 -0.250000

Table 6. The relative intensities of Stark effect with hyperfine structure of ammonia inversion
spectrum calculated in Ref. 1 and line strengths computed by Eq. (8) shown in this work.

Initial Final Relative

F M K M Intensity Strength
E 4 4 4 0.563 0.10714
-4 3 4 3 0.316 0.06027
4 2 4 2 0.141 0.02679
4 1 4 1 0.035 0.00670
3 3 3 3 0.473 0.09003
3 2 3 2 0.210 0.04001
3 1 3 1 0.053 0.01000
2 2 2 2 0.444 0.08466
2 1 2 1 0.111 0.02116
4 3 3 3 0.0117 0.00223
- 2 3 2 0.0201 0.00383
4 1 3 1 0.0251 0.00478
e 0 3 0 0.0268 0.00510
3 2 2 2 0.0198 0.00378
3 1 2 1 0.0317 0.00605
3 0 2 0 0.0357 0.00680
2 2 3 2 0.0198 0.00378
2 1 3 1 0.0317 0.00605
2 0 3 0 0.0357 0.00680
3 3 L 3 0.0117 0.00223
3 2 -+ 2 0.0201 0.00383
3 1 4 1 0.0251 0.00478
3 0 4 0 0.0268 0.00510
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Appendix

The explicit form in terms of 3j symbols for the relative intensity of the symmetric tops.

For the symmetric rotor, the dipole moment directed along the space-fixed Z axis is given by

(Al)

where u, is the dipole moment directed along the body-fixed symmetry z axis, and $7, the direction cosine be-
tween Z and z-axes. If we use the spherical form, we can rewrite Eq. (Al) as

uél)z Mo D((J})) . (A2)

where the expression D“). the first-order rotational representation, is equivalent to ¢7,[19]. The subscript of 4 may

be dropped to give

ufD = pll) | (A3)
The matrix elements between two symmetric top wave functions will be

<I'K'My" | u{D| JKMy > = e I'K"My' | D)) | IKMy >

Using Eq. (1) and the integration of 3 D's[20],we obtain the matrix elements for both sides of the equation above as

78
< TRM | [TRMy > =) B < gk [u D ||k >
] o A 8
N1
X ; (A4)
—MJ'O M]

and
KMy |w DY | KM > =u (VTN i@

J 1 3 ] 1 I
X (AS)
My 0 My K 0 X'

Using the symmetry property of 3j symbols and equating Egs. (A4) and (AS5), we get the reduced matrix element as

T+1 -K-MJ' M

<I'K'|| ¥ ||k > = u¢D [(23+1)(2T" +1)]

] 1 I
X
K «i0r K
For non-vanishing matrix elements, it is required that My be equal to My " , then the equation above may be reduced
to
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J | ¥
< 1K' utD ik > = w DK (@1 @iy ® ( ) ; (A6)
K 0 K
the same expression has be used in Ref. 10. The square of the matrix elements of Eq. (A6) is the relative intensity

of rotational transition, it is

2
J 1 A i

< K| w D K > |22 ) 200 41) 23+1) ( ; (A7)
K- 0 K

The selection rules are AJ=0, +] and AK=0,
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