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ABSTRACT — A New approach is presented to determine whether a completely
specified sequential machine can be realized by a linear machine, if state-
splitting is permitted. A machine is found to be linearly realizable if we
are able to construct a "standard array" from its flow table. The standard
array provides the flow table of the linear machine pursued. The construction
process involves mainly the interchange between rows and columns in an array
and hence is feasible for both hand computation and computer program. This
method can be applied to general sequential machines that do not require to
be strongly-connected, with exactly two inputs, permutation machine, or auto-
nomous machine. &n extended result to deal with incompletely specified case
is also provided.

momorphic image machines, conjugated machine, standard arrays and state-split-
ting technique.

l. Introduction

Linear segquential machines have been widely appllied to various information:--
transmission systems such as error correcting and detecting codes,digital com-
munication systems, computer control circuitry and sequence generation, etc.
So far, the problem of realizing seqguential machines by linear circuits has
been extensively studied [1]-[20].

It has been shown that there exists a machine which can not be realized
by a linear machine [2] and there also exists a non-linear machine which can
be realized by a linear machine [14]. Therefore, whether a non-linear machine
is realizable by a larger linear machine becomes the topic of our interest.

Hartmanis and Davis [14] have shown that a strongly connected machine with
only two input symbols is linearly realizable if and only if its largest homo-
morphic image which has no identical next-state rows is a linearly realizable
permutation machine. This fact reduces the problem to linear realizability of
permutation machines. However, the restrictions of strongly-connectedness and
with only two input symbols is not necessary.

Davis [4] has given a procedure for expanding, by state-splitting, a non-
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28 Wu: Linear Realizability of 5. M.

linear permutation machine, which must satisfy a number of conditions such as
completely specified, strongly-connected, binary inputs, so that the expanded
machine is linear. In this paper, we will propose a new approach for testing
whether a completely specified sequent'ial machine can be realized by a linear
machine and also finding that linear machine if passing the test. The concept
of conjugated machine is created to provide an efficient algorithmwhich invol-
ves mainly array manipulation and hence is programmable. Furthermore, this
approach is-also extended to deal with incompletely specified sequential ma=-
chines. i

I1. Background

Here, we shall 1list some basic definitions and properties which can be
found in most of the previous works and are very important to the development
of the results in this paper.

Definition 1. A sequential machine is a quintuple M=(S,I,0,f,qg), wheresS,I,
O are, respectively, nonvoid finite sets of states, inputs and outputs; and
f :'8.x I into, S; the next state function,
g : 5§ x I intec 0, the output function for Mealy model,

g = S into 0, the output function for Moore medel.

If only the next state behavior_ is considered, then O and g are omitted and
the machine becomes M=(S,I,f).

We will always work with synchronous sequential machines. The Moore model
is considered as a special case of the Mealy model. Unless otherwise mention-
ed, the machines will always be deterministic. GF(g) stands for the finite
field of g elefnents, where g is a prime or a power of a prime,

Definition 2. The state behavior of a sequential machine is 1linear, or,
one-to-one linearly realizable over GF(g), if and only if there exists a one-
to-one mapping CS from the state set S into a vector space S, a one-to-one map-
ping CI from the input set I into a vector space I, and two matrices A and B,
with all matrices and spaces over GF(q), such that for any s, S'eS and uel with

f(s,u)=s',
8" =ASs+Bu (1)

There is no restriction on the dimension of the vector spaces. The set
{CS.CI,A,B} is called a one-to-one linear realization of M; the dimension of
the state space is called the dimension of the realization [3].

Definition 3. A machine M=(S,I,0,f,qg) is linear,or one-to-one linearly re-
alizable over GF(q), if and only if there exists a one-to-one linear realiza-
tion of its state behavior {Cg,C;,A,B} and'a one-to-one mapping C, from the
output set O into a vector space 0 and matrices C, D, with all matrices and
spaces over GF(qg), such that for any s€S, uel, and we0, with g(s,u)=w,
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w=Cs+0D

(2)

1=

There are no restrictions on the dimensions of the state, input and output
spaces. The set {uS,CI,C A, B,C,D} 4a called a one-to-one linear realization

of M.

0

Definition 4. A machine M=(8,I1,0,f,g) is a homomorphic image of a machineM'
=(s',1',0',f',9'), if and only if there exist three onto mappings:

hl:S‘+S, hZ:I'-'-I, h3:O'+O

such that
hl[fl (s’ lu.) 1=£[h1(3'} :hztul)]
hy[g' (s',u')]=g[h, (s') ,h,(u")]

for all s'es' and u'el’'.

If only the next state behavior is considered, then O, 0',g,9', .h3 are o-
mitted; and I=I', h2 is an identity mapping, for the sake of simplicity. A
machine M' is said to realize another machine M, if and only if M is a homo-

morphic image of a submachine of M'.

We are interested in the following class of non-linear (i.e., not one-to-

one linearly realizable) machines:

Definition 5. A machine M is one-to-many linearly realizable over GF{q), if
and only if there exists a machine M' whose state behavior is-one-to-one lin-
early realizable over GF(g) with the same input set, such that M is a homomor-
phic image of M'.

If the output has been linearly coded, a sequential machine is not possi-
ble to have a one-to-many linear realization, hence only the state behavior
will be considered and from now on, we will refer to a sequential machine sim-
ply as a 3-tuple M=(S,I,f). 1If the state behavior of a machine M is one-to-one
(or one-to-many) linearly realizable, it will be abbreviated as "M is one-to
one (or one-to-many) linearly realizable". Throughout this paper, S, is the
state entry in the ith row and jth column in the state transition flow table.
The following theorem can be easily proved by verifying (1) of Definition 2.

.THEOREM 1. A sequential machine M is one-to-one linearly real-izable, if
and only if there exists a one-to-one mapping CS from the state set S into a
vector space S such that,'in its coded flow table, the following two canditions

are satisfied: o
(1) 810%8347814783070 A3
for any i=1l, --- Ngi j=0, === NI-l, where Ng, N, are the number of states and

input symbols respectively; and
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(ii) for a set of aiEGF(q), with i=l,———Nq;

L
NS
L a.s. =0,
i
then
Ng
_E a;8:0 = 0 (4)
i=1

11l. Linear Realizability and Permutation Machines

The technigue of state-splitting has been successfully used to linearly
realize the state behavior of some sequential machines which are not one-to-
one linearly realizable [4],[14]. Also, it has been shown that it is possi-
ble, by state-splitting, to reduce the number of variables needed to linearly
realize the state behavior of some machines [5].

First, we will consider the completely specified machines. It will be seen
that the linear realizability problem can be reduced to those of permutation
‘machines, and from whose flow table of conjugated form, we will try, by state-
splitting if necessary, to form a standard array. If the attempt is success
ful, which can be decided in a finite number of steps, then the given machine
is linearly realizable; otherwise it is not. ! ;

It is noted that in this paper, linear realizability includes both one-to-
one and one-to-many linear realizability.

The reason that linear realizability problemof sequential machines can be
reduced to those of permutation machines is based on Theorem 3 below, which was
shown by Hartmanis and Davis [14] under the assumption that the given machine
is strongly connected and with exactly two input symbols. However, we will see

that this restriction is not necessary.

A sequéntial machine M is a permutation machine, if and only if every input
permutes the set of states, i.e., in its flow table, every next state column
contains all states of M.

For «a sequenti§l machine M=(S,I,f), let f(s,0) denotes the final state of
M, after the input sequence 0 is applied to the initial state s.

A partition 7T on the state set S of a sequential machine M=(S,I,f) is said
to have substitution property (SP), if and only if

T
=85

El_

. : m
, implies that £(s,,u)=f(s,,u),

m
for any uel and Sy 3255: where x=y denotes that x, y belong to the same block

of partition T.
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Pefinifion 6. Let F be the flow table of a deterministic sequential machine M=
{s,1,%) and 1={b1,b2,---,bp} be a partition on S with substitution property.
The merged form of F by m, denoted by F“, is obtained by replacing each pre-
sent and next state entry s by the block of m to which s belongs, and leaving
JuUsSt one among those identical (present and next states) rows; the input sym-
Sols remain unchanged. i F7 represents the flow table of Mﬂ={B,I,f“) ; where B=
{hl,bz,---,bp}.

It is obvious that for a deterministic machine M, mu" is deterministic also
and is a homomorphic image of M. We say that M" is obtained by merging the
states of M according to SP-partition 7; while M,is obtained from M" by state-
splitting.

Now we are interested in the following problem: Given a sequential machine
M=(s,I,f), how to determine whether it is possible to find a machine M'=(S',
I,f') which is one-to-one linearly realizable and an SP-partition 7 on 5' such
that M'" is isomorphic to M?

Before reaching the criterion -- Theorem 3, we need the following lemmas:

LEMMA 1. If M=(S,I,f) is a permutation machine and 7 is an SP-partition
on S, then M" is a permutation machine.

Lemma 2 and Theorem 2 were proved by Hartmanis and Davis [14] under the
restriction that the given machine is strongly connected and with exactly two

inputs. This restriction is found to be redundant as follows:

LEMMA 2. If M'=(S',I,f') is one-to-one linearly realizable and it is not
a permutation machine, then M' has at least two identical next-state rows in
its flow table.

Proof: If M' is not a permutation machine, then there exist s such

1,52ES'
that f{sl,u)=f(52,u) for some uel. Since M' is one-to-one linearly realizable,
by (3), we have f(sl,u'}=f{52,u'1 for all u'#u, u'eIl, which shows that there

exist at least two identical next state rows in the flow table of M'.
- g 5T

THEOREM 2. If M=(5,I,f) is one-to-many linearly realizable and it is not
a permutation machine, then Mhas at least two identical next-state rows in its
flow table.

Proof: If Mis one-to-many linearly realizable, then by Definitions 5 and
6, there exists a one-to-one linearly realizable machine M'=(s',I,£"') and an
SP-partition m on S' such that M'" is isomorphic to M. Since M is not a per-
mutation machine, M'" is not either, which implies that M' is not a permuta-
tion machine, by Lemma 1. It follows from Lemma 2 that M' has at least two
identical next-state rows in its flow tables.

Since M is not a permutation machine,' there exist Biv s.e5 such that f{si,
u) =f(sj,u} , for some ugl. Now let us assume that M has no identical next-state

rows in its flow table, then f(si,u'}#f(sj,u'),for some u'#u, u'el.
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It is easy to see that there is no way, by splitting the states of M to
£find M' such that there exist two identical next-state rows in the flow table
of M', Since it leads to a contradiction, our assumption is impossible and
Theorém 2 is proved. -

Q.E.D.

Deginition 7. Given a sequential machine M=(S,I,f), let 21 be the partition
on 5, which is obtained by identifying those states with identical next-state
rows, that is,

T:i

=08 if and only if

5y 2

f(sl,u}=f(sz,u}, for all usT.

This partition T has substitution prﬁperty with respect to M and defines a
homomorphic image machine M 1, If M 1 still has identical next-state rows,
we can repeat the above process to find the image of image machine, and arrive,
in a finite number of steps, at the largest homomorphic image machine M' which
has no identical next-state rows.

The necessary part of the following theorem follows form Theorem 2 and the
sufficient part can easily be shown without the restrictions of strongly-con-
nectedness and binary input.

THEOREM 3. A seguential machine M is one-to-many linearly realizable if
and only if MT is one-to-many linearly realizable permutation machine.

For a fixed uogl and forall xeG, u;lxua is called the conjugate of x (un-
der conjugation) by ug (see Fig. 1). Let G be the group of all permutations.

Defénition §. The conjugated form M =(s,I',f) of a permutation machine M=
(8,I,f) is obtained by adding a minimum number of x'seG to form a larger in-
put set I' such that, for each uiEI', there -exists 1.13.1-‘.1-I satisfying uj=u;1u.

i
Uy M® is called the conjugated machine., Note that I CI'CcaG.

THEOREM 4.- A permutation machine M is one¢*:0-one linearly realizable if
and only if its conjugated form M® is one-to-one linearly realizable, with the
same state code.and matrix A.

Prood: For M and M° actually represent the same machine.

Observe that in the coded flow table of a conjugated machine MC, when any
one of equation in (4) is applied to one of (3), the result is included in (3).
(see Fig. 2)

Hence in the coded flow table of a conjugated machine Mc, (3) is equivalent
to the combination of (3) and (4). This fact and Theorem 1 lead to the follow-
ing theorem.

THEOREM 5. The conjugated machine MF is one-to-one linearly realizable if
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and only if (3) is satisfied in its coded flow table.

It is evident that an SP-partition 7 with respect td"M is also an SP-par-
tition with respect to Mc, hence the result of merging the states of M accord-
ine to ® and then finding its conjugated form by some input ug is the same as
that of finding the conjugated formofM by u, first, then merging. Note that
the machine M considered is a permutation machine. We conclude as follows:

THEOREM 6. A permutation machine M is one-to-many linearly realizable if

|
1{'"~_\_1

-] '\_.. —_— —
A
u

5’ l“L{C’_ dind _}_’ujb'lx_*s!
| l |7
| l |
| | | |

N T _I_.__|l_|

Pig. 1 u'=u;1u u, is the conjugate of u by u_.

T SR

o

ISI_'__'_"_ fZ‘\
\\ \\

I L} i \

P e B

§ u; \ ug

\

12 uf oy texy? smalt s
1 ﬁl \ ﬁz
) Us

\‘l : . A ! :

53 T S 54

Fig. 2 Conditions (3) and (4) can be merged into (3)
for a conjugated machine to be one-to-one line-rly
arly realizable.

and only if its conjugated form M is one-to-many linearly realizable.
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IV. Standard Array

We are going to see that a conjugated machine can be tested for one-to-one
linear realizability over GF (pm} by array manipulation.

The following algorithm is produced to construct a standard array, if po-
ssible, by interchanging rows and/or columns in the flow table of a conjugated
machine M°;:

Algonithm Al.

(1) Select one row as the fixed first row and select two columns as the

fixed first and the fixed second columns.

(2) Select one row as the second row so that

o W &
For p=2, if Y i b set h=1 and go to Step 4; otherwise M® is not ona-to-one
linearly realizable.

For p>2, fix the ith row so that
L Y W 7% L (5)
for i=3,4,----p
At this setp, 5p2=sll must be satisfied, otherwise M€ is not one-to-one
linearly realizable.

(3) Fix the jth column so that

S,. = (6)

15 ~ %5
for j=3,4,----p
Note that some columns may be empty.

At this step, this pxp subarray must be isomorphic to the modulo p addition
table (ignoring the operands).

Set h=1l.

(4) If all the columns have been fixed, go to Step 7; otherwise select one

~umn as the fixed ph+1 st column.

{5) Fix the ph+l st to the ph+1 st row, so that
s =5 (7)
pii,1l i,piel

for i=1,2,---- ﬁh(P“ll

h 1

(6) Fix the p +2 nd to the ph+ st column, so that
s = s (8)

l,ph+i ph+i,l
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for i=2,3,~--- p®(p-1)

¥l fixed

array A into p subarrays Ai's of phxph, we get p different subarrays Al'Az'"""

It is noted that some columns may be empty. Letus divide this ph+lxp

Ap. all of which are isomorphic to each other. If we consider A as an array
consisting of the elements Al,Az,———,AP, it is obvious that A is also isomor-
phic to the modulo p addition table.

Set h = h+l and go to Step 4.

(7) Set r=ph. M® is one-to-one linearly realizable, if and only if the re-
maining non-fixed rows, if any, can be interchanged to make each of the rxr
subarrays isomorphic to the rxr subarray obtained in Step 6.

The following theorem proves the walidity of algorithm Al.

THEOREM 7. A conjugated machine M® is one-to-one linearly realizable, if
and only if its flow table can be ordered as a standard array (some columns

may be empty).

Proog: It is noted that all the states canbe found in any column, because

M€ is a permutation machine. The proof will be divided into four parts.

(i) All the states in the firstp rows and columns of a standard array can
be expressed as

k 8,,-(k=1)8,, (9)

where k GF(p) and l<k<p.

We will prove this statement by induction:
by (3) and (5),

<

811%8557815785,%

831%8327855783,79

2325453278

=38ygm28y4

Suppose that s =is

=i-1,2 2—(i—l\§
r

i2 1

1=(i—l)glz—'(i—Z}gll and s, 11

hold,

833178343,57 81278471

[=]

then B2, 81578
=2li8, ~ti-1)8, 1-8; 4 o

oadl Tl ST
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Hence,

Bpn™Emy o (k-1) sy, (10)

for k=1,2,===,;p
8p27P8) " (P11 8,78y,
It follows from (5), (10) that all the first p states in the first and the se-
cond columns can be written as (9). These states can never be found in the

remaining entries of the first and the second columns, because M is a permu-
tation machine.

. Let us observe that if the first p entries of the jthaﬂdthefirstcolumns
have one state in common, then they have all the first p states in common: The

assumption is satisfied by (6) in Step 3, and for i=2,--—,p; J=3,-~—/P:

811%854781178570
814781178147

=k B iki-108,4]

+ [Kky8y,=(ky=1)8y,1-8,,

= (kytky) 8 5= Ok +ho=1) 8,
ol Tl 1]

where kl' k2 GF (p) , and k'=kl+k25GF(p}.
Hence (i) is proved and due to permutation columns, we know that for the

first p rows, the first p columns have the same p states as the first column;
and for neither i<p<j nor j<p<i can 8§y be expressed as the form (9)

(ii) All the states in the first pg rows and columns of a standard array
can be expressed as

ko8yo7 (kgm1) 8y ¥R (8) o1 78yy) (AL)

o " : o ; ;. =0
For %,ij, Sij can be written as ({11) , w1th_k1 0; 51'p+1 can also, with koﬂ

k1=l;

for 1<i<p,

By,p417851%8) pe1" 2117

with k,=1;
Epfl,p+l=§p+l,l+§1,p+l-§11
by (7) =285 0¢85
=s..+2(s )

117918 p+17%11
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with kc=0, k1=2;

for 1_51.592—2}_:: 1

So+i,prl op+l, 1735 ,p+17341

by (7) =283 p+17%1)

=288y 178130 784
)

=817 18y 5t B

Hence, for i=1,2,---,p(p-1), can be writtenas (11), and s can

Si,p+l . p+i,1
also, because of (7). Now we can see that all the first p entries of the

first column can be written as (11).

Similar to (i), for j=p+l,--——,p2, the first 92 entries of the jth and the
first columns have one state in common due to (7) and (8), it follows that they
have all the first pz states in common.

Hence .(ii) is proved and it can be similarly concluded that for the first
pz rows, the first p2 columns have the same p2 states as the first column; for
neither i<p2<j nor 'j<p2<i can §; 4 be in the form (11).

(iii) All the states in the first ph rows and columns of a standard array

can be expressed as
h-1 .
k Bya~(k ~1}8,+ 2 k,(8 s R (12) .
o-12 o h £ § fmy l,p1+l 1d

where hzz;»ko,ki eGF (p)

Let us prove it by induction on h: if for h=ho, (12) holds, then we can
show that for h=ho+1, (12) still holds, by arguments similar to those given in
(ii).
Now it is seen that for the first ph rows, the first ph columns have the
same ph states as the first column; for neither i<ph<j nor j<ph<i can g, . be
in the form (12). i

(iv) In Step 7 of the pr.cedures to construct a standard array, let n be
the number of rxr subarrays. If n>l, thenall the remaining states other than
the first rxr subarray can be expressed in terms of the upper left entry of
the local rxr subarray and those entries in the first rxr subarray as the fol-
lowing form:

: h-1
L ks

+k i :
i=l lrpl+l

(85578170 + (13)

S(n-1)r+l,3 >(n-1)r+l,1 11

where ko,kiEGF(P).
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(13) is obtained from the following two egquations:

Sn-1)r+1,3 21178 (n-1) r+1,17 81570

h=1
+ 3 ks -5

i=1 * Tpler,n T

k )

e R
Since each rxr subarray is isomorphic to the first one, all the states can be
written as (13) and there must be exactly nr=nph states and rows, if and only
if M® is one-to-one linearly realizable. The proof for Theorem 7 is now com-
pleted.

Q.E.D.

V. State-Splitting Technique

Consider a permutation machine M=(S,I,f), let y be the smallest SP-parti-
tion on 5, i.e., f{s,ui]xf(s,uj), fort all's B3 ui,u.EI., The corresponding
partition on the rows of its flow table is defined as the partition p, i.e.,

P : ; : X -
row [sl}—row (32}, if and only if f(sl,ui}—f(sz,uj], for some ui,ung, where

row {si) denotes the row with the present state S; .

It is evident that both Mand its conjugated form M® have the same y and p.
Let Mch represent a one-to-one linearly realizable machine obtained by state-
splitting from M™® which is the conjugated form of M'. Let R, Ri stand for
the subarrays of M'°, le
Rg is the subarray obtainedfromlﬁ_after eliminating repeated columns, if any.
We observe the following theorem.

respectively, associated with one block of p; and

THEOREM 8. M'C

each block of , can be ordered as a standard array.

is one-to-many linearly realizable, if and only if Rg, for

The following algorithm is produced for state-splitting M'® to find Mic:
Algonithm AZ.

Case (i): R, has repeated columns but not all R;'s have their repeated
columns in the same position.

(1) Let v denote the largest multiplicity of the state entriestlﬂi and m=
['Iogp V], where [x] stands for the smallest integer larger than x. Split each
state of M © inot p" states in M. '®, and complete the next state flow table

;i
for erc'by the following steps.

(2) Construct the column with input u, under which MT is conjugated into

T
M c:

{f f(si,u°}=aj in MTC,

then f[sik'u°)=sjk in Mch, for k=1,2,--_,pm,

(3) Construct Ri: Let v, denote the multiplicitijle of ;v for each s
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ERg. Substitute each siiJle by the first vy columns of a pmxpm standard sub-
array which consists of S; 0 By g=m=0 By g and leave the remaining pm-vi co-

} ey
lumns empty. The subarray thus formed is Ri.

(4) Construct Ré, whose next states under u, are the present statest:fRiz
From R! and the input conjugate relations which are the same for both M ana

M{c and MIC, Ri can be obtained.

(5) Ré, Ra. —-— Ré can be obtained by repeating the same process as Step
4, where t is the number of blocks of p. The flow table for Ml1x:is completed,
if the rows in each R!, for i=2,---,t, can be interchanged to form a standard

array; otherwise, further state-splitting is needed, see Case (ii).

Case (ii): Ry has no repeated columns, but some columns in M™ must be
splitted in order to forma standard array, such columns are said to be the

conflicting columns.
(1) Split each state S5 of M'® into two states Sy Si in MIC.

(2) For each Ry, i=1,---,t, put all the conflicting columns on one side,
and duplicate this new array below itself to get Ri which consistsqftw? iden-

tical halves.

(3) Let all the entries of both the conflicting columns in the upper half
of R{ and the non-conflicting columns in the lower half of R; be the primed
states si: while all the other-entries remain unprimed states S+

Such a process provides for each Riiaspare block which can be adjusteg by
interchanging its rows according to the conflicting columns,aand thus at least
one conflicting column can be handled. That is the reason why we have less

conflicting columns after this state-splitting process.

(4) If confliction still remains, repeat the process in Step 3 until a

standard array can be formed.

(5) The present-state column for the flow table of MIC can be completed as

follows:
Let uoisl,sz,--—,sk) represent a cycle set under the input u
Y - Y5 Yo Yo
8y > 82 e 2 Sk———-) By
1£f M'C

contains uotsl,sz,---,sk), then either

(1) u_(sy,85,===,8;) and u (s;", 2 r===48.") i or

11 — 1 X ]

(ii) uo(sl,sz, e P r 8y )
can be used, along with the conjugate relation of M'®, to determine the pre-
TcC

sent-state column in the flow table of Ml

The following algorithm summarizes the overall process to determine whether

a given sequential machine M can be linearly realized over GF (g).
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Algornithm A..

(1) Find MT, the largest homomorphic image of M which has no identical
next-state rows in its flow table.

{2), If M' is a permutation machine, go to Step 3; otherwise, M is not 1li-
nearly realizable.

{3) Find Mtc, the conjugated form of M®. If the flow table of M'C can be

ordered as a standard array, M is one-to-one linearly realizable; otherwisé,

determine Y, p, Ri' R? and go to Step 4.
(4) If each R? can be ordered as a standard array, go to Step 5: otherwise,

M is not linearly realizable.

(5) If Ri has repeated columns but not all Ri's have them in the same po-
sition --"Case (i) state-splitting; If Ry has no repeated columns but there
exist conflicting columns, when trying to form a standard array -- Case (ii)
state-splitting. Follow the state-splitting procedure to obtain the flow table
for MIC, which is one-to-one linearly realizable and realizes ¥

Tc % T -
1 1 and then from My find Ml

nearly realizable and realizes M, thus we obtain a one-to-many linear reali-

(6) From M find: M which is one-to-one li=-

zation for M.

Two examples are given in Appendix to demonstrate the above algorithm.

V1. Linear Realizability for Incompletely Specified Machines

We will apply the previous results to the case of incompletely specified
sequential machine M. .The method which we have just discussed can be slight-
ly modified to see whether it is possible to specify all the don't-care entries
so that M is linearly realizable.

Degfinition 9. A sequential machine is incompletely specified, if and only
if some next-state entries in its flow table are unspecified, i.e., some of
its next-state entries are "don't-care".

Deginition 10. For Sy s.eS, s; and sj are said to have A-identical (next-
state) rows, if and only if there exists some uel, such that f(si,u}=f(5 L),
and for all u's#u, u'el, either or both of f{si,u‘] and f(sj,uf) is (are) un-
spedified, or f(si,u')=f(sj.u').

Definition 11. For s,, s4€8, 8 and Sj are said to have B-identical (next-
state) rows, if and only if for all uel, there exists no f(si,u}=f(a su)y ei-
therfor,both of f(si,u) and_f(sj,u) is (are) unspecified, or f(si,u)=f(sj,u).

Among the elements in a set §, a relation ~ is said to be  transitive, if -
and oniy if for a,b,ceS, a~b, b~c implies a-c. It is evidenf that a set S
can not be partitioned by a relation without transitivity and neither A-iden-
tical nor B-identical defined above possesses transitivity.



The Journal of National Chiao Tung University, Vol. 2, December 1976 41

The following algorithm is produced to find linear realizability for in-
completely specified maching M=(S,I,f).

Algonithm B.

(1) Pind 11, MTl:—~-;T, MT, which are similarly defined as those of com-
pletely specified machines (see Definition 7) except that A-identical rows with
transitivity are partitioned instead of identical rows. If there exist A-iden-
tical rows without transitivity, then M is not linearly realizable. Specify
the don't-care entries so that the A-identical rows with transitivity become
identical, whenever a partition T, is obéained.

(2) It is noted that M' has no A-identical rows. For each set Si of B-
identical rows in MT, it can be inspected to see whether a further partition
‘l‘o is needed, by considering some subset of S; asablock of Tor SO that (MT] To
can be a permitation machine, when all the remaining don't-care entries are
properly specified.

T

If it is not possible for M' or M%) © to be a permutation machine, then

M is not linearly realizable (This can be decided in a finite number of steps,
because the number of possible T is finite too); otherwise go to Step 3.

(3) If the flow table of the conjugated formof the permutation machine ob-
tained in Step 2 canbe ordered as a standard array, then go to Step 4; other-
wise M is not linearly realizable,

(4) M is linearly realizable and since all the state entries have been al-
ready specified, go tb Step 3 of algorithm A.

The rule for specification in Step 1 is justified as follows: a machine M
can not have a next-state configuration like

i with b # ¢,

if M is linearly realizable (ref, Lemma 2 and Theorem 2).

VIl. Discussion

The method for linear realization whichwe have discussed here does not re-
guire the given machine to have the following restrictions:

Vi) strongly connected

(ii) with only two input symbols

(iii) being a permutation machine

(iv) being an autonomous machine

(v) its outputs being already linearly coded
(vi) its flow table being completely specified

However, the existency of a linear machine to realize a given machine, if
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it has already been found, does not guarantee a minimum dimension of realiza-
tion. It needs further study to obtain the following techniques:

(i) A systematic way to obtain the most economical linear realization for
M from the one for ML,

(ii) When state-splitting is allowed, an efficient method to find a one-
to-many linear realization of the minimum possible dimension.

Appendix
Exampe 1.

Determine whether there exists a linear realization over GF(2) for the ma-

chine M shown below:

L

Mix ' g, w0y MEC g ouy ou, ug
£ i a i a a a b R
g} o b e b s por g 352
d f f d i £ e £

¥ Rz
£ = i@ E e 2 £ e
b|d ¢ bid ¢ A @&l
a c d a c d c c £

Note that M'=M

i § ={mam:ﬁ}? (S ={ﬁ,m,ﬁ}

o_ra by . o_ £ ey o_d e
Bymly 2l t Bnlp gd aliBenle @

M is one-to-many linearly realizable, because each Rz is a standard array-.

We need state-splitting of Case (i);

3

l—logp v]= rlogz 3)=2

1l

v

I

m

' Splitting:

£f— £, £, £5, £,

After one operation of Case (i) splitting,
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M;c is obtained: Each RJ!_ can be formed as a standard
array:
HTC o @ MIc ]
1 Y4 1 2 1 1 S5 1 Wy 0 By s
T
1
f1 a; a, a, . bl f2 fl a; a, a; . ! b1 sde
f2 a, a; ay - b2 fl f2 a, a, ay - b2
f3 a3 al"_l al 5 b3 f4 f3 a3 a\“_1 al - b3
f‘1 ay a3 a2 b4 f3 f4 ay a3 a.2 ’ 1::4
A e
e, b1 b2 b3 -2y e, ey bl b2 b3 2 E a;
1
e, b2 bl b‘1 - oa, e, e, b2 bl b4 : i a,
I
H .
e3 b3 bd bl - a3 e, e, }::3 bd bl |' a,
I
1
e, b4 b3 b2 - Ay J e, ey b4 b3 b2 : a,
[ e ~ e e ———————
I
dl fl f3 el 3 f2 dl fl f3 e, f2 v
6‘2 f2 fd ez . fl d3 f3 fl e3 = f4
d3 f3 fl ey - f‘1 cy ey 33 fl 5 e,
9 | & f2 €4 - % i T [ e | %
RI __________________________
c e, e, f e r 5 a, |£, £, e T &
1 1 3 1 % & 2 2 4 2 | : 3
<, e, €, f2 . el d4 f4 f2 e f3
I
1
c3 e3 e f3 - ey <, e, €y f2 | e
1
]
C4 e4 62 f‘1 ~ e3 J c4 ey ez f4 : e3
________________________________________ Sl o g i
3 .
bl dl cl dZ ' d3 bl dl cl d2 i d3 n
|
By | 83 © Wy 4y o O B TR TR j ¥
I
|
b3 d3 C, d‘1 aril b2 d2 = dl a : d4
- I
]
b4 d4 c, d3 . d2 a, c, d2 Gyl o i Cy
b Ri “““““““““““““ T
ay cq dl Cy; - C4 b3 d3 Cq ey : dl
|
= | S5 Ay SBp . 9y e e T I e
I
a, Cq d3 €y - G b4 d4 Cy d3 . : d2
I
a‘1 c‘l d4 €3 . ©, J a.4 c4 d4 c3 7 : 02

43
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Example 2.

Determine whether there exists a linear realization over GF(2) for the ma-

chine M shown below:

M uo ul u2 u3
11 1 2 3 4
12 2 1 4 3
13 3 4 1 2
14 4 3 2 1
15 5 6 7 8
16 5 5 8 7
17 7 8 5 6
18 8 7 6 5
1 11 15 16 17
2 121 16 15 18
3 13 17 18 15
4 14 18 17 16
5 15 11 12 13
6 16 12 11 14
7 17 13 14 11
8 18 14 13 12
Note that M*=M
T 1 ] 1
M uo ul u2 113 u1 u2 u3
11 1 2 3 4 5 6 7
12 2 1 A 3 & 5 8
13 3 4 1 2 7 8 5 R
14 b4 3 2 1 8 7 6 1
15 5 6 7 8 1 2 3 S
16 6 5 8 7 2 1 4 =R7;
17 7 8 5 4 3 4 1
18 8 7 6 5 4 3 2
1 11 15 16 17 12 13 14
2 12 16 15 18 11 14 13
3 13 17 18 15 14 11 12 R
4 14 18 17 16 13 12 13 2
5 15 11 12 13 16 17 18 5
6 16 12 11 14 15 18 17 =R",
7 17 13 14 11 18 15 16
8 18 14 13 12 17 16 15

y={1,2,3,4,5,6,7,8 ; I1,12,13,14,15,16,17,18}

The flew table of M'C can not be ordered as a standard array; Wwhile each

o

of Ry and Rg can, hence M is one-to-many linearly realizable.
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Tc 5 ] i ] (]
M uo l_ll u2 u2 u3 u3 ul
13 1 2 T 5 6 siatai 7 ] 5 ]
12 2 1 i ;% 5 B8 3 6
13 3 4 | PR S R 2 7
14 4 3 S Mot T Lhomdr: teuh 1 8 -
16 6 5 O SRR TR R 7 2 1
15 5 6 o8 2 i 5. 3 8 1
18 8 7 Ehnt. 6.3 mgeeRey 5 4
L s - SN R WS~ S L N R
] B R R 1 i i RS N T R U S
] MV, R V- T T T
6 ¥ ~d2— 23— 18 v o ¥| 44 A8
Ze et ggs SpEetiiag R 2 i i | Sl
Folis. am. Y408 1 Jn. 12 s A 2
S G L T S T ) 2
e T e R R R T T
4 13y s 128 3z L. 11t xe ‘= ]

conflicting columns

We need state-splitting of Case (ii):

Ve % 2 3 3 1
1 2 B S L y T L 5T ) )
2 1 4 5 8 3! 6"
3 4 1 8 5 2" 7% by
4 3 3 7 6 1! gl |
6 5 8 1 4 7 2!
5 6 7 2 3 8! 1
8 7 3] 3 2 51 4"
7 8 5 4 1 6! 3! ,
R e e T 0 . 5 T <
L O T 51 8. 3 6
AU 2 TR 8" gve. g 7 .
4 3+ 20 71 au4 Ly 8 1
6%y 1 B o84 1 FLiaaq 2
T I 2" 3 1
8! T 6" 3 2 5 4
e 98 a8t Sliwe AN dey Ale 4G5 vesdi) $
e i e 1 it i et el - i ¢ £
5. At o 17 G e s L X
6 a2 11 18 1750 14 "Easd
I 38 b 14 RN T LR L ¢
13 37 . 18 11 12 15 34t [rT2
T e 15 16 11' 18!
18 13 14 16 15 38 IF
BT S L - S 1O e Sl L R
i B A LT 7 P DO R R L2 2
g gge 3 17" 18' 13 16
16' 12' 11! 18" i 1 15
12' 16' 15! 14" 134018 1L b
130 13T 18t 11" 12' 15 14 |[ T2
17Y e g4 15" D Tl 18
18" 14' 13! 16" 15' 12 17
14" 18' 17! 121 i 36 13 J

The rows in the lower half of Ri are interchanged to have a standard array:
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Tc Rl E

My ¥e Vye Wyto Y - 9w N
R AL . Taal. & . 7% T
e O 1. i % M 5 8 31 6"
13" 13 . & kI 8 5 | 2! 7!
74,0 18 $ s 12 7 6 | 1! 8!
16" 16 5 & 8 1 4 | 7! 2!
15 15" 5 6 7 2 3 g 1!
8¢ 18 BT 3 2 | 51 4
sy spvll MRt gy BM g 8 SX 388 SdY flae €
11 11° $as 2t Repl o geN r ERs e Gpid
12' 12 C T 5 g '3 6
13 13" 30 41 f g 5! 2 7
14" 14 2rs st 23 7 6" 1 8
16 16' IR i U 4| 7 2
15' 15 5' 6" 7! 21 5'| 8 1
18 18" 8' 7' 6 31 2! 5 4
B AV b A Y RS e o o 38w R
1 1 3 e 15T L 138, . 14 ]. o AL I 2
5 5 |35 il 1% 17 18 13" 16"
6 6 T 1 O . 18 17 | 14" 15"
21 2 a1 38 35 14 13 8' 11!
3 3 15 1% 18 11 12 15' 14"
™o o1 1E 14 15 16 | 11 .18
8 8 18 14 13 16 15 | 32y L1
) actlbw 38 apd 42 of W 3 Bt qage |
g1 e Mt RRVAsE Casn. N aEss T W2 AR .
4 4 14* 18 17' 12 11" 16 13
AMINRE U 5 E i 0 7 R € 12! 15 14
7. o7 {317 B3vy4t sy 16'| 11 18
6' 6" | 16" 12' 11*' 18" 17-] 14 15
2 2 12' 16' 15'  14° 13" 18 11
L L R S UK 14| 17 12
5 5 pse agdiize) Cir 18" 13 16
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