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ABSTRACT — An optimal or a sub-optimal control law with integral mode is
developed by the introduction of a multiplier into the Kalman control law and
the proper modification, while not changing the original quadratic performance
index. The resulting control yields an output transient response which is rea-
sonable and satisfactory for bothundisturbed and disturbed cases. The result
is also compared with that obtained by the classical Cohen-Coon method and a
smaller value of the performance index is obtained.

I. Introduction

The optimal control of linear systems with quadratic performance index is
well Known [1]. However, in practice, very few works have been done on the
application of optimal control theory to the design of the control systems of
industrial processes. The gap between optimal control theory and industrial
applications is still wide and open. The restrictions of the practical useful-
ness of optimal control law are that all the state variables can not be mea-

sured and the system disturbances are ignored.

Kalman [2] had shown that the optimization based on a quadratic perform-
ance functional for all initial states of an n-th order , linear regulator
system requires that all n states be avilable for measurement. However , it
is often not possible to measure every state variable in most of the chemical
plants, and hence, the performance of any system with inaccessible state, in
general, will be sub-optimal. The investigations of the problems concerned
with the optimization of linear regulator systems with some inaccessible state
variables are available for elsewhere [3-13].

The optimal control theory gives a control law which is only proportional
feedback of the state, i.e. no integral action is obtained by the theory. This
lack of integral action leads to an offset if an external disturbances occur
or if there is some modelling error. To avoid offset from a permanent change
in the load, Koppel [14] suggested that an amount of integral action in pa-
rallel with the optimal control should be added in the design of a digital
process controller.

69



70 Liou: PID Controller Design

For a linear plant witha single input and an external disturbance, Johnson
[15-16] obtained the optimal feedback control by minimizing not the usual gua-
dratic performance index butone which penalizes the rate of change of control
rather than the control itself. By the introduction of the integral of the
output variable as a new state variable, shih [17] obtained the optimal linear
feedback control law for the second-order system to the conventional propor-
tional-integral-derivative (PID) control by changing the weighting factors of
the quadratic criterion. 1In order to meet the requirement of X(®)=0, Shifi's

solution also had an additional restriction, i.e.
f: c*(t)at =0 ,

Several investigator's considerations are also available in the previous
literatures [18-20]. However, their approaches are all based on the change of
the performance index, which are equivalent to the consideration of the entire
different problems, or they require the complete a prior knowledge of the dis-

turbance.

The author [6] has presented a technique which introduces integral mode
into the optimal control law and does not require the measurement of all of
the state variables during the dynamic period. In this paper, a further re-
sult is presented and a method which incorporates an integral mode without
changing the original quadratic performance index for a single-input linear
system is developed.

I1. Construct the Control Law with an Integral Mode
Consider the controllable linear time-invariant system
x(t)=A x(t)+B u(t) (1)
and the guadratic performance index
J(u}=%J:[xTQx+uTRu]dt ' (2)

where u(t) is not constrained, Q is a positive semidefinite matrix, and R is
a positive definite matrix.

Then an optimal control exists, is unique, and is given by the equation

u{t}=-R_1BTKx(t} (3)

where the optimal gainmatrix, K, is the constant nxn positive definite matrix
which can be obtained from the nonlinear matrix algebraic equation [1].

1

-KA-ATK+KBR 1 BTR-0=0 (4)

For single~input-single~output systems, the control .can be written as
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_l "
I 2. S = a’ e
u(t)= klc kzd—t" "W eae knaFI » (5)

Thus, for a second-order system, the optimal control theory gives a control
law which is equivalent to a proportional-derivative control. No integral
action is obtained by the theory. In order to have controllers with integral
mode, suitable transformations and modifications of Kalman control are inves-
tigated.

A second-order system is chosen for detailed discussions because the phy-
sical realization of the optimal control can be demonstrated easily. However,
the technique cdn be easily extended to more general systems.

Consider the second-order system which has been treated by Shih Bl T
2

dc v (o D Sy
tltz P + {Tl""lfz) E-E-— + ¢ kpu {6)
According to Equation (5), the feedback control law can be written as

dc

u(t}=-k1c-kzag (7)

Now, integrate Equations (6) and (7) with respect to time to obtain

t
de - t de (0) =
11123E+(11+12)C+Io cdTt kpfoudT+[Tng_"EE_'*'(T1+T2)C(0)] (8)
and
15 dem-k. 4% cdr-k.eHk.c(0) (9)
G > 1°o 2 2
Substituting Equation (9) into Equation (8), we obtain
dc ek dc (0)
Tsz 1?4'{1'14‘1'2"']{2]{9) C+(1+k1kp) foCdT—TlTZd—t*—
+(11+12+k2kp)c{0) (10)
Define
- Lo t
fft):aE +azc+a1focd1—ao (11)
where
dc(0)
5.031?—'4'5.2':(0} (11la)
1+k1k
1 ToT
2 s
T FL R
13

then, by Equation (10), we have .
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£(t) =0 (12)

Consider, with further a prior justification,the function termed the aug-
mented control function,

U(t)=u(t)-A£f(t)

where X is an arbitrary parameter, or multiplier. In actuality , since by
Equation (12), £(t)=0, we have

ult)su(t)

and therefore, the control equation can be written as

de

2dt

U(t)=-klc—k arta,

t
l[——+a c+a Iocdr-ao]
or

u(t)=={(A+k ) (a A+k,)e+a A/ cd1}+a A (13)

2 dt

This is a modified conventional proportional-integral-derivative (PID)
control. That is, for'a suitable transformation, an integral mode can be in-
troduced in the Kalman control. However, the control as defined in Equation
(13) is no longer function of output only, it also depends upon the state ini-
tial conditions except the limitting case, say,

_dc(0) =
0 e +a2c(0}-0
or
+
ac(0) , Ity ) g (14)
dt 75 X

Since Equation (13) 4is undesired in the controller design, therefore, a
modification must be made to obtain a control such ‘that the controller is in-
dependent of any state initial conditions, and contains an integral mode , i.e.
assuming ao=0, then, Equation (13) becomes

. de t
alt)= {(A+k2}aE+[a2A+k1}c+a11IOch} (15)
or
“{t)"[K26E+K CHK f cdr} (16)
where
K2=k2+l (16a)

Kl=kl+{11+12+k2KP)k/T112 (16b)
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Ko=(l+k1KP)kaltz (16c)

For the case that the initial conditions are satisfied by Equation (14),
Equation (16) is an optimal control. For the general case, Eguation (16) is
a sub-optimal control. However, since )\ can be assign arbitrarily, we can
make the output trajectory arbitrarily close to the optimal Kalman trajectory
by a suitable choice of }.

THEOREM 1: For the second-order systems, Equation (6), an optimal or a
sub-optimal controller with integral mode, Equation (16),is obtained and the
control coefficients, K2 r K1 and Ko' are determined in terms of kl' k2 and sys-
tem parameters which are given by Equations[16a),(16b)and(lsc} respectively.

Example 1

As an example consider the control system which has been considered by
Liou et. al. [3]

2
d"c 3 de
-+ et th i W 1)
dtz 2 dt

an the performance index
1.m. 2 B
J(u) 5751 (t)+§u (t) Jat
with giver conditions
- dc(0)
c(o)—coir TB

Since the system is controllable, the optimal control law can be obtained
as

Using Theorem 1, the control law is given by
; o8
u(t)=-{(l+1}§—:+(2+2.51}c+3lfo cdr} (E1)

It is noted that the control becomes the Kalman control when A=0. When
A#0, this is only a sub-optimal. For the case that no disturbance has been
introduced, it is clearly that a smaller value of ) is desirable. For the case
that a constant disturbance has been introduced into the system, a best value
of A can be obtained.

Since the value of X can be assigned arbitrarily, the output response also
depends on the choice of A . The transient response without load disturbance
for different values of X is shown in Figure 1. The optimal Kalman transient
response is also shown in the figure. The transient response with a constant
load disturbance for different value of A and the optimal Kalman transient res-
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A=04

Fig. 1. Comparison of output’ transient response to non-zero

; initial state and no disturbance.

ponses with and without disturbance are shown in Figure 2. By the investiga-
tion of these two figures, we can find that the best value of X is 0.4 accord-
ing to Figure 2; however, according to Figure 1, one can see that the best
value of )} is as smaller as possible; therefore, we can choose ) such that the
transient response will be reasonable and satisfactory to both cases of with
and without disturbance. This is discussed in the next section.

Fig. 2. Comparison of output transient response to non-zero
initial state and a step disturbance

I11. Selection of Arbitrary Parameter or Multiplier, A.

An important factor to be considered is the value of objective function
which depends upon the choice of control law, and hence, depends upon the
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choice of ). However, this is equivalent to the non-disturbance case. When
a constant disturbance is introduced, the deviation from the optimal Kalman

trajectory, i.e. an error function, is also to be considered.
1. Effect of multiplier X on the performance index

The control variable u(t) and the output variable c(t) are assumed to be
related by the second-order equation, Equation (6), with initial conditions

0
c(0)=c_, 20 -,

The purpose of the control is to drive the output variable to the final ste-
ady state values, i.e,.

dc (=)

Ac =0.

c(=)=0,

Suppose the control law is given by Equation (16). The objective is to inves-
tigate how the multiplier be effected on the performance index.

J(w=3 1o [ (t)+pu (v) Jat

Take Laplace transform, Equations (6) and (16) yield

[111252+(=l+12}s+l]c(s)=KPu{s}+(Tltzs+rl+r2)co (17)
Ko
u{s}=-{K25+Kl+?;)c{5]+K2co (18)

Combination of Equations (17) and (18), we can obtain

c(s)=(s+b,8) c /B) (19)

u(s}=-{K152+{K1b2+K0—K2b1}s+{KOb2—K2b0]}co/Pl (20)
where

Pl=53+b232+bls+b0

b2=(11+72+K2KP)/TlTZ (20a)

b1=(1+Kle)/-:l-r2 (20b)

b0=KOKP/1112 (20c)

Applying Parseval's theorem [21], one can obtain
= o0 = 2 2
lefo c (t)dt—(bl+b2)boco/P2 (21)

2 2
-2K1do}bo+d0b2}pcofP2 (22)

_ o 2 = 2 2
J,=f_ pu (t)dt—{(Klbl+dl
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where
P2=2b0(b1b2—b0} (22a)
d1=K1b2+Ko_K2b1 (22b)
do=Kob2—K2bo (22c)
then, the value of performance index is given by
2
c
= D 2 2 2_ 2
J—EEE {(bl+h2)b0+p[(K1bl+dl Zkldo)bo+dob2]}
5%
a=1(3.+3,) (23)
ks e

It is noted that the performance index, Equation (23), is function of A,
and there is a minimum wvalue at A=0. Numerical results are illustrated in
Example 2.

2. Effect of multiplier X on the error function

Consider the system, Equation (6), with the control, Equation (16), the
output transient response toa load change at t=0 is the solution of the equa-

tion:
T, T 93§+[1 +1.) % c+K (K. 24K, c4+k ST car}-w=0
i 4 2dt 1 "2 at iy s § e o' o

where w is a constant load disturbance.

Let c* be an optimal transient and define the deviation variable

Aec=c¥*-c,
then
2 == w=a_A
d”Ac dAc t (=]
+ b,~—— + b,Ac+b S bcdTt+(——)=0 (24)
dtz 2 dt 1 o' o 7,
and
ggg%gl =Ac (0)=0

Let w be a unit step function, Laplace transformation of Equation (24),
yields

.ﬁc(s)=(ao)\-l]/'tl'rzP_,L - (25)

It is noted that Equation (25) has shown that Ac(t)+0 as t+», and hence
there will be no offset. Using the stability criterion, it is simple to show
that A>0 always yields a stable system. The output response to a step dis-
turbance for the system considered in Example 1, is illustrated in Figure 3.
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-AC
0.3

=0 (Kalman Control )

0.2

0.1

Fig. 3. Comparison of output response
to a step disturbance.

Define the error fungtion, E,
- g 2
E=S (Ac) "dt
o
then, using Parseval's theorem, one can obtain
= = 2
E—[{aok 1}/11T2] bz/P2 (26)

The E function can be considered as a measure of deviation from the op-
timal Kalman trajectory. It is also noted that E is function of A. If we
choose A such that

X=1/ao (provided ao#O) (27)
then, Ac(t)=0 and E(A)=0, Equation (27) gives the best value of Awhen a unit
step disturbance, w, appears at t=0.

Equations (23) and (26) are the two important rules to determine the best
value of ), and this is illustrated in Example 2.

Example 2

Consider the same system as in Example 1, then

1112=1.0, rl+12=1.5; KP=1.0

p =0.125, C°=l:0

The sub-optimal controller gains are given by Equation (El1),

K. =1+X, Kl=2+2.51, Ko=31,

2

and the constants are given by Equations (20) and (22)

b,=2.5+A, b,=3+2.5X, bozBA,

2 1
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d.=245.75]), do=4.51

p Il
and =151 (A%+2.51+3) .

Substitute these data into Equations (21), (22), (23) and (26), we obtain
2
5 gk +;.5A+9.25 (E2)
5(A"+2.5)+3)

250149772 249902+256 -
8x80 (A242.51+3)

_ 25

J= 153 (A+1.92) (E4)
2

(A+2.5) (2.5x~1)

2 (E5)
I5A (A"+2.5A+3)

Equations (E4) and (E5) show the effect of multiplier on the pefformance
index and error function respectively. The effects of increasing A on the Jl
Jz, J and E are shown in Figure 4,

1.0
0.9
08
0.7
0.6

0.5

0.4
0.375
03

0.2
0.1

0
0 04 1

é —\

(]

Fig. 4. Effects of X on J and E function

It is important to notice that J(A) is a linear increasing function, and
hence the minimum value of J(A) is given by

Min J(A)=3%(0)=0.375

and it is reduced to Kalman optimal control case. The normalized performance
index can be obtained

J(A)=-J*(0)
J*(0)

=0.521)
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It is also noted that the E()) function has a minimum at A=0.4, and E(0.4)
=0. Referring tothe figure, we can get that the preferable wvalue of X is be-
tween 0.2 and 0.4, and most preferably at

0.25<1<0.35

Example 3

The classical method of Cohen-Coon is chosen for the comparison purpose
Consider the same system as shown in the previous examples, Cohen-Coon method
gives the controller as

u(t)=-{1. 10 9.56c+12, 65f cdt} (E6)

dt
The formulation of Equation (E6) is shown in Appendix.
Using the controller obtained by Equation (E6) and following the method

presented above, we obtain

J1=0.587

J2=5.69

o ot
and J-i(Jl'*ng)—:i.l#

It is noted that the minimum value of J is only 0.375. 1In this view point,
Cohen-Coon controller setting only yields a sub-optimal, and the value of the
performance index is about 8.37 times greater than the minimum value of the
performance index. A comparison result is shown in Table 1

Table 1
Control Type Control Law u(t) a, 3, A = -
Kalman —{g%rzc} 0.617 | 0.133| 0.375 0 = 133.3%
This Work (A=0.2) | -{1. 2—¢-2 5c+0.6/ Coar} 0.610| 0.218| 0.414| 0.104| 0.062 | 0
This Work (A=0.4) | -{1. 4d$ 3%%1.21";:;&1} 0.597| ©.309| 0.453|0.208( o |o
This Work (A=0.53) | -{1.6 d: =3, 3zg—+1 59/ toart| o0.587| o0.368| 0.477| 0.276| 0.012( 0
Cohen-Coon -11. 102—?9 56c+12.65f§cd‘r} | 0.587| 5.69 | 3.14 | 7.37 e

IV. Summary and Conclusion

Optimal control theory gives a control lawwhich is only proportional state
feedback. Since the complete feedback of the states is not often possible in
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most of the chemical plants, and there is no integral mode in the controller,
practical application of optimal control theory to the design of the industrial
process control systems is very restricted. Therefore, a sub-optimal control-
ler with an integral mode is requested in the design of controllers.

The method presented here satisfies the above requirements, while not
changing the ordinary quadratic performance index as considered i::y Kalman. -
The method is based on the introduétion of a multiplier into the optimal Kal-
man control law and the proper transformations and modifications, and thus ob-
tains an optimal or a sub-optimal control law which incorporates an integral
mode. The control coefficients are determined in terms of Kalman control gains

and system parameters only, and, are independent of the initial values of the
system.

Since an integral action has been introduced in the controller design , an
offset is eliminated. The resulting control yields anoutput transient respon-
se which is satisfactory for both cases that the disturbance is absent or intro-
duced. For the conventional undisturbed problem, the responses are illustrated
in Figure 2. Referring these two figures, we can find a proper value of A,
for instance, A=0.2 for the illustrated system. -

For compérison purpose, the classical method of Cohen-Coon is investigated.
The output transient response to non-zero initial state and a step disturban-
ce is show in Figure 2. The output transient response to zero state and a step
disturbance is shown in Figure 3. The value of ordinary performance index is
also shown in Table 1.

Referring Table 1, the values of Jl are almost the same,however ,the
values of J, have great differences, and the method presented here yields a
smaller value of the performance index than that obtained by Cohen-Coon method.

Appendix

Controller Setting by using Cohen-Coon Method

Consider the system:

3 dec
d_rt 3 FETC=u . (A1)

Step response (u=M) of the second-order system of Equation (Al) istaken
as the process reaction curve.

e (t)=M[1-e 2 (cosbt+2sinbt) ]
where la=% and b=/T7/4

Now, we can estimate the values of Kp, T and Td from the process reaction
curve. Since
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2 "
aelt) . Ee-at[b cosbt - a sinbt]
at b

Then, the inflection point, ti' is

=1, =Ty 095
ti btan (a) : ik

and the slope, S, at t=ti, is
M -at;, ... Ry L
5= Be : 3 51nbti Me i

Again, the ultimate response, Bu' is given by
B.= lim c(t)=M
oo

Then, we can obtain

Kp=Bu/M=l

B
T=§E=eati=2.27

T =t,-e2ti+2a=0.325
d 1

The Cohen-Coon method recommended the following PID controller setting

and

—

T
N
R, g‘i‘fﬁ

Using the wvalues of Tqr T and Kp determined in above, Kc’ T and Ty ©an

be calculated and are given by

KC=9.56
tI=0.755
TD=O.1152

Therefore, Cohen-Coon method gives the controller as

- de 7 -
ult)= 9.56fD.11526E+c+677g§I0cdt}

or u(t)=—{l.10%%+9.56c+12.Gsfgcdr}
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