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ABSTRACT — We propose a Schrodinger equation for the non-relativistical
charge-monopole system without using the string and demonstrate that it is a
correct equation for this system.

I. Introduction

It is well known that to guantize a classical system, i.e., to obtain a
guantum mechanical system from a classical system, usually takes the following
steps:

Step

Lagrangian of the classical system
Step III

Classical . equations of motion
Step II yamiltonian of the classical system
(Schrodinger equation).

Quantum mechanical system

Many physically interesting quantum mechanical systems can be obtained from
the corresponding classical system by using the above standard method. In the
first step, there are three possible classes of systems as follows

Class 1: systems with no Lagrangian whose Euler-Lagrange equation is the

classical equation of motion.

Class 2: systems with no singularity-free Lagrangian whose Euler-Lagrange
equation 1is the classical equation of motion. But, if we divide the configu-
ration space into many overlapped regions, then for each region, we can find
a singularity-fre= Lagrangian whose Euler-Lagrange equation is the classical

" equation of motion.

Class 3: systems with Lagrangian whose Euler-Lagrange equation is the cla-
ssical equation of motion.

In this paper, we are interested in considering the guantization of the
classical systems which belong to class (2). It is a very interesting pro-
blem at least theoretically and it is not treated completely enough in the
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124 Cheng: Monopole Theory without String

past. The classical electric charge-magnetic monopole system is a good exam-
ple [1].

We give the proposition to guantize this kind of classical system in sec-
tion II, that is, we propose a Schrodinger eguation with boundary condition
for this kind of classical system. In section III, we use theresults in sec-
tion II to treat the monopole-charge case in detail and in section IV, we give

some remarks.

Il. Quantization

We consider aclassical system whose equation of motion can not be obtained
from a singularity-free Lagrangian. But, if we divide the configuration space
into, say, two overlapped regions R, and R, (we can easily extend the results
to the case of more than two overlapped regions), then we can find singularity
-free Lagrangian Ll in region Rl and I.2 in region Rz' such that the equation
of motion can be obtained from these Lagrangians. In the region RlnRZ' since
the equation of motion obtained from Lagrangian Ll and L2 are the same, Lagran-
gian Ll can differ grom Lagrangian L2 only up to a total time derivative of
some function f(g,t)"~, that is,

1NR, (1)

. df(q,t) A 5
Ll L2+ at in region R
Now if we follow the usual procedure to construct the Hamiltonian, we get Ha-

miltonian H, in region R, and Hamiltonian H, in region R,. In the region Rlﬂ

1l
Rz, we have

- af of
Hztp,q.t)—Hltp—ﬁ, qa.t)- 5% (2)
If we follow the usual procedure, we would get the following Echradinger Egua-

tion for the wave function ¥(g,t)
ih—aﬂ-{%{;—:}— =H,¥(q,t) in region R, (3)

iha‘”t't) =H2‘i‘(q,t) in region R (4)

2

It is incongsistent in the overlapped region RlnR2 due to the fact of Equation
(2), that is, in this region, if we use H, as the Hamiltonian, we get Equation
(3), and if we use H2 as the Hamiltonian, we get Equation (4), or, using Equa-
tion (2), we can convert it into

—£(q, t) if (g.t)
el _if(q
m%{e ¥(q,t))=H, (e 4 ¥(q,t)) (5)

It is interesting to note that the wave function in Equation (5) differs from
the wave function in Equation (2) only up to a phase factor, or agauge trans-
formation of the second kind. Due to this fact, it is very nature to pro-
pose the following Schrodinger equation for this classical system. First we
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choose a surface ¢ in the overlapped region Rﬂij. The surface o divides the
configuration space into region Ri and Ré,wherekﬁ:Rl and RE:RZ. Now the wave
function ¥(g,t) in region R;, called ?l(q,t), satisfies the following equation

ay
- 1 '
lhw —Hl‘l’lfqrt) qﬁRl (6)

and the wave function in region Ré, called Wz(q.t), satisfieg the following
equation
a¥

ik '
ihw —Hz'i’z{q,t) qE‘.Rz (7)

on the surface o, we assign the following boundary conditions

if (g, t)
¥i(@t) | =e i ¥, (q,t) | (8)
ged geg
if (q,t)
3 3 A
Wy (g, t)) | ==(e v, (a,t)) | (9)
an 71 IqEU on 2 geo

These boundary conditions are not the usual "wave function continuity condi-
tions", that is, we "twist" the wave function ?2(q,t] and then connect it to
the wave function "I‘l(q,t).

From the proposed Schrdédinger eqguation for the wave function, i.e., Egs.
(6), (7), (8) and (9), we know that the wave function!?(q,t) surely depends
on the choice of surface ¢. But it must be noted that the operators which re-
present physical observables alsc depend on the choice of surface o [1,2]. For
example, the operator representing the velocity g will be different in region
Ri and RL; even in the overlapped region Rlnnz. The over all effect of the
choice of surface o is that the expectation value of any observable does not

depend on the choice of surface o [2].

We conclude 'that the proposed Schrodinger equations are well defined and
physically sensible.

Ifl. The Monopole-Charge Case

We consider a particle of mass m with electric charge e moving in a mag-
netic field which is generated by a magnetic monopole of magnetic charge g
resting on the coordinate origin [3,4]. The classical equations of motion are

- ‘ 5 :
- o ﬂ - r
mr = T X ;3- (10)

It is easy to see that the Euler-Lagrange equation of the following Lagrangian
L

elni? - 22 . % (11)
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are

nfatd ¥y (Faud) (12)

c

‘Thus if we can find a vector potential X such that
2 T 1

then we can use this vector potential A to construct the Lagrangian in Egua-
tion (11), and in turn we can obtain Equation (10). But it is well known that
we can not have a singularity-free vector potential A which satisfies Equa-
tion (13) over the space with the originremoved . Thus it is impossible to
construct a singularity-free Lagrangian of the form as in Equation (11). As
peint out by Wu and Yang [5], we can divide the space into two overlapped re-
gion Ry and R,. Ineach region we can obtain a singularity-free vector poten-
tial & which satisfies Equation (13). In fact, we choose

_l-cos®

m — i e
:0<r, 0<8<z+8, 0<¢<2m, A, =A 1¢ r sind

Ry £8%5 ol 1r~210

=0, A

5 1 i < _=l-cosf
i i P i e L a1

u<6<21 (14)

Now we can write down the Lagrangian

i 22 222 .2 l-cosf
Ll— 2[:t: +r°8+r°sin e¢ ]——gr s:.ne:btm) (15)
L,= Iin[i2+r262+rzain 0é } r sinﬂ&(;l;cﬁge) (16)
It is easy to see that
- __*1 1 _p -2e9 &
Dy slin x8indé rTap *Lo—a Fe? 25
The Hamiltonians are
2
P
-L[p - (2, +22 (1-cos6)) %] (18)
Hi=om 2' p) _" ¢ 25
r"sin S
2
EP 4—2—4"-2——23{? +—g'( 1-0033}} ] (19)
r sin

Now we choose the surface 0 as 9=% and obtain the proposed Schrédinger equa-

tion from section II.

Region Ri:O‘r. 0<e6 <-i-, 0<¢p=<2m
€9 1- €9 (1- 2
3‘1’1 h2 2 -~ (l-cos8) K B'i‘l {c (1-cos8))
lh-3—=-—? ‘l’l o S R T + 3 5 ‘i’l (20)
mr-sin® 8 2mr sin" @




The Journal of National Chigo Tung University, Vol. 2, December 1976 127

Region Ry:0<r, 3<@<m, 0<¢<2m
o9 1 ed (-1~ g
MB‘Pz _ h2 vzq_- e ( 1 Cose) H 3\‘2 ~ (Ct ¥ cose}} v (21)
ot i 4 mrzsinze T3 Zmrzsir?e 2
The boundary conditions at the surface e=§ are
; 2e
wi &CY
¥,4r,0,6,8)| . =e He ¢'¥2<r,e,¢,t)[ g (22)
== §==

2
3 d -izﬁc ¢
35 L& 00.0)] =55 [ PLLEL LN (23)

] 2

If we assume %g =u, then from the above equations, we can see that (single

valued wave function)
2u=n, n is an integer (24)

which is Dirac's charge quantization condition.

Now let us try to solve Equation (20) and (21) subjecting to the boundary
conditions, Eguations (22) and (23). We set

iElt
¥,(r,8, ¢, t)=exp(-— }fl{r)gl(ﬁ)hl(m (25)
iEzt
¥(r,0,6,t)=exp(-—5 JE,(r)g, (8)h, (4) (26)
where
iml¢ g im2¢»
h1{¢)=e v h2(¢)=e » My and m, are integers (27)
y A S8 o 2 £
ind d_é'(sme'T) m[ (ml+u(1—cose)] g1(9)+11g1(a}—0 (28)
dg, (8)
O TP 2 1 s 2 2 5
Tno s (siné——3z5—) sinzaLmzﬂl l-cos8) ] 92(0)+A292te)-0 (29)
and
daf, (r) A
1. &g 0% 1 1 =
o il G Lidioy £y ix1=0 (30)
daf, (r) X 2mE
i@ otes 45 2 B
;2— T (r Ts ) "r':- f2 (IJ'P—!;T fz.(l‘]‘—o ; (31)

We can write down solutions for Equations (28) and (29). (without lose

of generality, we will assume H>0.) We also set z:l—go_sﬂ and z'ml?';o—se -

Case 1:  0gmy

m m
1 211.I

=
g,(8)=2 (2-1) ZFl[("H'ml)"'%*%' /1““14_4”2 ,
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(n+ml)+%'-—]2'-v'l+4ll+4u2 » m,+1; Z]

1

Case 2: -2u<m.<0

1

m

"1 1
e H
g, (0)=2 2 (xe1) Lt [utded/Aean +42,

Case 3: m1<-2u
]

o = (5 1.1
g, (@)=2 % (2-1) 2rl[-(u+ml)+§+izi+411+4uz :

= (u+m )+%-—§-f1+41 +4u! +1 z]

and for gz(el

Case 1: 2ugm,
-

2
= =U
9,(0)=(2") 2 (2'-1) 2 F, [ (my-y)+p+5/Asar +t0”

Emz—u}+%-%/l+412+4uz ; mytl; 2']

Case Z: 0<my<2y

i m
'f% s "fi TR W e
gz-(e)-(Z') {z'-1) 2:El[|u+§+f +412+4p z
u+—--v‘1+4l +4u z']
. Case 3: m2<o o
m 2
o e 1,1 2
95(0)=(2") % (2'-1) P [u-my) +3+5/1+4) 44y
= 11/ 2. Ve g
(u 1112)+2 3 1+412+4p g by m,; z']

Thus the general solution for the wave functions \Fl and ?2 are
iE .t
1

Y. (r,0,0,t)= L e K £,(E;,Ay; T)
1 Eq /Ay omg El ™y ikl
g, (A;.m,;6)h, (m, :¢) (32)
§ Ayl ) i iE,t
¥, (x,8,¢,t)= z a. e R fZ(EZ'AZ'.' r)
2 . Baedoom, TRAM,
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qztlzrmz;elhz(mzwl (33)

Substituting Equation (32) and (33) into the boundary conditions Equations
(22) and (23), we get

m1=m2—2u=m, El=EZ=E, ?\1=A2==2\ (34)

and the following important relations

Case 1: ml=m2—2u=m >0
[u+m)+%-—%/l+4ll+4u2=—nl b By=0,1,2,...
or A=(utmin, ) (uimn, +1) -y (35)
Case 2: 0>m=m, =m,-2u>-2y
(u+3) -%/5+411+4u2 =n, ,  0,=0,1,2,....
or 1={u+n2) {U+n2+1) -uz (36)
Case 3: mlﬂm2=2w=m<—2u
- (uhm) 43 - A4 an ey =n, , 13=0,1,2,....
or A= (0 =u-m) (n=p-m+1) -2 (37)

To see how we obtain condition (35), we rewrite the solution for case (1)
as follows

m -mz 2y=m>0

m m
L
22 (2-1)2 [ (p+m) +-+-J1+4x+4u

1 2 1
(u+m)+%—%—#1+41+4u2 ; m+l; z)
m m
=+ =
- 2 1132 : £_.1_ B
g,=(2")%  (2'-1)° P, [(u+m)+5 - 5/1+4X+4p° ,
(u+m)+—2]1-%-/1+4}\+4u2 7 m+2u+l; z']

As a function of z, 9y and 9, satisfy the same second order linear differen-
tial equation, in which, g; is analytic at z=0, but g, is analytic at 2z=1 and
from the boundary condition 9q and 9, take the same value and same derivative
at the point z=1/2. Thus, the only possibility is that g, and g, as a func-



130 Cheng: Monopole Theory without String

1
tion of z are polynorminals. So we obtain the condition (35).. The same argu-

ment can be applied for conditions (36) and (37).

We see from Equations (35), (36) and (37) that A can takes only the fol-

lowing values
2
A =(4+y) (L+p+l) -p

where & is positive integer or zero. It is easy to see that for a given &,
we can have ~%-2u<m<? corresponding to the same eigen wvalue &. These solu-
tions were discussed in reference 3 and 4, but using the singular potential

<>

Al.

1V. Concluding Remarks

1. We have been successfully proposed a SchrSdinger equation for a cla-
ssical system, which possesses no singularity-free Lagrangian over the whole
configuration space, but if we divide the configuration space into overlapped
regions, then for each region, the classical system possesses singularity-free
Lagrangian.

2. We have been demonstrated that the proposed Schrodinger equation for
the charge-monopole case gives Dirac's charge quantization conditions 2y=n and
leads to gquantization of the angular-momentum-like guantity A= (&+u) (!.+p+1}-u2.
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