運算子與向量測度之拓延

Extensions of Operators and Vector Measures

郭滄海 Tsang-Hai Kuo

Department of Applied Mathematics, N. C. T. U.

(Received October 1, 1976)

ABSTRACT — Let X be an $\stackrel{\sim}{\mathcal{L}}^{\infty}$ -space. Then every weakly compact operator on X has a weakly compact extension to any Banach space containing X. As an application, every strongly additive map on a σ -algebra Σ has a strongly additive extension to any σ -algebra containing Σ .

Let X be an \mathcal{L}^{∞} -space in the sense of Lindenstrauss and Pe½czynski [3]. An interesting linear extension property of operators on X is given in Theorem 1. In the light of the relationship between vector—measures and operators on specific \mathcal{L}^{∞} -spaces, which was exploited by Diestel in [1], we derive some applications of Theorem 1 to extensions of vector measures. To be precise, Theorem 2 asserts that every strongly additive map on a σ -algebra has a strongly additive extension to any σ -algebra containing Σ . An analogus extension theorem for bounded additive map is stated in Theorem 3.

THEOREM 1. Let X be an \mathcal{E} -space. Then for every Banach space Z containing X, every Banach space Y, and every weakly compact operator T:X+Y, there exists a weakly compact extension \tilde{T} : Z+Y.

Proof. Let Y be a Banach space and T:X+Y a weakly compact operator. Observe that the second adjoint operator T**:X***Y** is a linear extension of T.

Now since T is weakly compact, T** is weakly compact and T**(X**)CY.

Let Z be a Banach space containing X, then X** can be regarded as a subspace of Z**. Moreover, X is an \mathcal{Z} -space, hence X** is an injective space [3, p.291] and therefore, X** is complemented in Z**. Let P be a projection of Z** onto X**. It follows that T** can be extended to a bounded linear operator \hat{T} on Z** with range in Y. Explicitly, \hat{T} =T**P. The restriction T of \hat{T} to Z is then the desired bounded linear extension of T.

Remark. A slight modification of the proof shows that if X, Y are Banach spaces such that X** is injective and Y is complemented in Y** (e.g., any L-space or any dual space), then a bounded linear operator from X to Y can always be extended to each space containing X.

Let Ω be a set, Σ a σ -algebra of subsets of Ω , and $B(\Omega, \Sigma)$ the Banach space of bounded, scalar-valued, Σ -measurable functions defined on Ω ; it is shown in [2] that $B(\Omega, \Sigma)$ is isometrically isomorphic to a C(S) space with S a σ -Stonian space, i.e., the closure of open F_{σ} -subsets of S are open. Let $\mu: \Sigma + Y$ be a bounded additive set function; then μ defineds via integration, a bounded linear operator $fd\mu: B(\Omega, \Sigma) + Y$. Conversely, every bounded linear operator on $B(\Omega, \Sigma)$ to Y is uniquely represented as an integral with respect to some bounded additive map μ .

We say that μ is strongly additive if, whenever given a sequence of pairwise disjoint sets $A_n \epsilon \Sigma$, we have $\mu\left(A_n\right) + 0$ as $n + \infty$. We mention a result of Diestel [1]: If $\int d\mu$: $B(\Omega, \Sigma) + Y$ is weakly compact then μ is strongly additive. Conversely, if μ is strongly additive then $\int d\mu$ is weakly compact. This together with a result of Rosenthal [4, p.32] implies that if Y contains no subspace isomorphic to ℓ^∞ then μ is strongly additive.

THEOREM 2. Let Σ_0 , Σ be σ -algebras of subsets of a set Ω with $\Sigma_0 \subset \Sigma$. Let $\mu_0: \Sigma_0 + Y$ be strongly additive. Then μ_0 can be extended to a strongly additive map $\mu: \Sigma + Y$.

Phoof. $\mu_{o}: \Sigma_{o} + Y$ is assumed to be strongly additive, hence $\int d\mu_{o}: B(\Omega, \Sigma_{o}) + Y$ is weakly compact. Note that $B(\Omega, \Sigma_{o})$ is an \mathcal{L}^{∞} -space since it is isometrically isomorphic to a C(S) space. Also $\Sigma_{o} \subset \Sigma$, so that $B(\Omega, \Sigma_{o}) \subset B(\Omega, \Sigma)$. By Theorem 1, $\int d\mu_{o}$ can be extended to a weakly compact operator on $B(\Omega, \Sigma)$, which is described as an integration with respect to some bounded additive set function μ . μ is then strongly additive and clearly is an extension of μ_{o} .

On account of remark of Theorem 1, we have

THEOREM 3. Let Σ_0 , Σ be σ -algebras of subsets of a set Ω with $\Sigma \subset \Sigma$. Assume that Y is complemented in Y**. Then every bounded additive map μ_0 : Σ_0 +Y can be extended to a bounded additive μ : Σ +Y.

References

- J. Diestel, "Grothendieck spaces and vector measures", Proc. of the Symp. on Vector Measures, Salt Lake City, to appear.
- J. Diestel, "Applications of weak compactness and bases to vector measures and vectorial integration", Rev. Roumaine Math. Pures Appl., to appear.
- J. Lindenstrauss and A. Pełczyński, "Absolutely summing operators in L^P-spaces and their applications", Studia Math. 29, 275-326, (1968).
- 4. H. P. Rosenthal, "On relatively disjoint families of measures, with some application to Banach space theory", Studia Math., 37, 13-36, (1970).