The Journal of National Chiao Tung University
Vol 2, December 1976

pp. 133-138
FREMEEL T2 B Fm b
Weak Compactness of Operators on Grothendieck Spaces
3R/ % Tsang-Hai Kuo
Department of Applied Mathematics, N. C. T. U.
(Received October 1, 1976)
ABSTRACT — Weak compactness of operators on Grothenaieck spaces is inves-

tigated. If Y is a Banach space satisfying one of the following properties:
(a) the unit ball of Y* is weak* sequentially compact; (b) ¥=C(K) with K a
countably compact scattered space; (c) Y is an {"-space; then every bounded
linear operator from a Grothendieck space into ¥ is weakly compact.

!. Notation and Introduction

For a Banach space X, denote by X* its conjugate space and By its unit
ball. A subspace of X shall refer toaclosed infinite-dimensional linear sub-
manifold.

S denotes a compact Hausdorff space unless otharwise specified. S is said
to be Stonian (resp. 0-Stonian) if every open set (resp. open Fa—set} has open
closure. S is an FP-space if disjoint open F, subsets of S have disjoint clo-
sures. If Kisa completely regular space, C(K) denotes the space of all bound-
ed (real or complex valued) continuous functionsonK endowed with the supre-
mum norm. K is scattered whenever it contains no non-empty perfect subset.

A Banach space X is called aGrothendieck space if every weak* convergent
sequence in X* is weakly convergent. The first examples of non-reflexive Gro-
thendieck spaces were exhibited in [5, p.168], where it was proved that if § is
stonian, then C(S) is a Grothendieck space. Later these results were improved
by Andé [2], Semadeni [11] for o-Stonian spaces and Seever [12] for F-spaces.
Tt seems to be difficult to establish an internal characterization of Grothen-
dieck spaces; even for Grothendieck space of C(8) type, a topological charac-
terzation of S is still left open. However, a simple necessary and sufficient
condition was given in terms of weak compactness of operators [5]+« In the se-
quel, we shall investigate weak compactness of operators on Grothendieck spaces.
If a Banach space Y satisfies one of the following properties: (a) By, is weak*
sequentially compact; (b) ¥Y=C(K) with K a countably compact scattered space;
(c) ¥ is an ¥ -space in the sense of [7]; then every bounded linear operator
from a Grothendieck space into Y is weakly compact.
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Il. Weak Compactness of Operators on Grothendieck Spaces

Let X, Y, be Banach spaces. We shall denote by B(X,Y)the Banach space of
bounded linear operators from X to Y, and W(X,Y) the subspace of weakly com-
pactly operators.

THEOREM 1. Let X be a Banach space; then the following statements are
equivalent: :
(i) X is a Grothendieck space;
(ii) B(X,Y)=W(X,Y) whenever Y is a Banach space such that
the unit ball of Y* is weak* sequentially compact;
(iid) B(X,co)=wlx,co).
Proog:

(i) => (ii): Let X be a Grothendieck space and Y be a Banach
space such that the unit ball BY* of Y* is weak* se-
quentially compact. For each TeB(X,Y), consider its
adjoint operator T*eB(Y*,X*). Since BY* is weak*
sequentially compact and T* is weak* continuous,
T*(BY*}isalso weak* sequentially compact. ButX is
a Grothepdieck space; T*(BY*) is then weakly sequen-
tially compact; hence it is conditionally weakly
compact by Eberlein's Theorem. Therefore TEW(X,Y).

{ii) =>(diidi) is trivial.

(iii)=>(i): Suppose (xﬁ] is a sequence in X* which converges
to zero in the weak* topology. Define TEB(x,co) by
T(x)={x;(x))€c° for éach xeX. Let PhFBc* be the
canonical projection of c_ defined by P;ﬂ£)=£n for
EECO, then T*(Pn)=x*n. Thus (x;) is in the set

T*(Bc*): but T isweakly compact, hence soisT*, and
o
T*(Bc*] is weakly sequentially compact by Eberlein's

©

Theorem. Since {x;) was weak* convergent, it is

weakly convergent.
Remark. The proof of (i) => (ii) is a modification of Grothendieck's proof in
[5] for separable Banach spaces Y. (iii) =>(i) is due to Grothendieck; as we
shall see, it also follows immediately from the representation theorem quoted
in the proof of Theorem 5,

COROLLARY 2. Every Banach space that is a continuous linear image of a

Grothendieck space isa Grothendieck space. In particular, every complemented
subspace and every guotient space of a Grothendieck space is a Grothendieck

space.

Proof: Follows from the equivalence of (i) and (iii) in Theorem 1.

A Banach space Y is said to be weakly compactly generated (briefly, WCG)
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if it contains a weakly compact set whose linear span is dense in¥. Obvious-
ly, separable and reflexive spaces are WCG.

PROPOSITION 3. If Y is a WCG Banach space, then the unit ball of ¥* in the
weak* topology is homeomorphic to a weakly compact set of some Banach space[l].

COROLLARY 4. TLet X be a Grothendieck space, and Y be a WCG space. Then
B(X,Y)=W(X,Y).

Proof: By Proposition 3, the unit ball of Y* in the weak* topology is ho-
meomorphic to a weakly compact set of some Banach space, hence weakly sequen-—
tially compact by Eberlein's Theorem. The result then follows from Theorem 1.

In the next theorem and its corcllaries, we assume that K is a completely

regular Hausdorff space.

THEOREM 5. Let X be a Grothendieck space, and let K be seguentially com-
pact. Then B(X,C(K))=W(X,C(K)).

Prood: By the representation theorem in [13],abounded linear operator T: X +
C(K) is weakly compact if and only if the function 1 :K+X* defined by 1(k) (x)=
Tx(k) (T is then continuous:as a map into X* with the weak* topology) maps K
onto a conditionally compact subset in the weak topology of X*. Now suppose
TeB(X,C(K)) is given and T is defined as above; then t(K) is weak* sequentiz’ -
ly compact, for K is assumed to be sequentially compact. Hence, by Eberlein's
Theorem and the assumption that X is a Grothendieck space, we conclude that
T(K) is weakly conditionally compact. It then follows from the representation

theorem that T is weakly compact.

The following proposition was proved by Baker [3], while our proof here is
considerably simpler.

PROPOSITION 6. Let Kbe countably compact and scattered; then K is sequen-
tially compact.

Proof: Suppose (kn):: K has no convergent subsequence; since K is countably
compact, the set of cluster pointsof (kn} is nonempty and perfect, which con-
tradicts the assumption that K is scattered. Therefore, K must be sequential-
ly compact.

COROLLARY 7. Let X be a Grothendieck space, and let K be countably com-
pact and scattered; then B(X,C(K))=W(X,C(K)).

COROLLARY 8. If K is sequentially compact (which is in particular the
case when S is countably compact and scattered) then C(K) contains no subspace
isomorphic to .

Proof: Otherwise there would exist an operator from ¢* into C(K) that is

not weakly compact, which contradicts Theorem 5.

LEMMA 9., Let S be a compact Hausdorff space and Y a weakly complete Eanach
space; then B(C(S),¥Y)=W(C(S),Y) [4, p.494].
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THEOREM 10. Every bounded linear operator from a Grothendieck space into
an ‘;ﬂl-space is weakly compact.

Proof: Suppose X is a Grothendieck space and Y is an il—space. Let TeB(X,
¥) be given; consider its adjoint T*eB(Y*,X*). Since weak* and weak sequential
convergences are equivalent in X*, it is easily verified that X* is weakly com-
plete. Furthermo_re, Y*, being the dual space of an il—space, is an injective
space [7 , p. 308]lhence it can be embedded as a complemented subspace in a suit-
able C(S) space.

Now T* can be extended to a linear operator on C(S), which must be weakly
compact by Lemma 9. It follows that T is weakly compact.

Remank 1. If S is a compact Hausdorff space, then C(S) is WCG if and only if s
is homeomcrphic to a weakly compact set in some Banach space [1]. For the space
Ll(u) to be WCG, it is necessary an sufficient that M be o-finite [8, p.240].
Hence Theorems 5 and 9 are not consequences of Corollary 4. 1Inparticular,let
A be an uncountable ordinal and T, be the scattered space {a:aﬁl}inthe order
topology. Then since the topological closure and sequential closure are not

equivalent in t_, C{TA) cannot be WCG.

A
Remank 2. By Corollary 4, a non-reflexive WCG space can never be a Grothen-
dieck space, nor can it contain a subspace that is a non-reflexive Grothen-
dieck space.

The following theorem is listed for the sake of completeness, We refer to
[6, p. 108] for its terminologies and proof.

THEOREM 11. 1If X is a Grothendieck space and Y is isomorphic to a conju-
gate Banach space with RNP, then B(X,Y)=W(X,Y).

It is desirable to characterize the Banach space Y such that every bounded
linear operator from a Grothendieck space to Y is weakly compact. We remark
here that most of the known Grothendieck spaces are continuous linear images
of C(8) with S an F-space; for such spaces X, the above problem has been com-
pletely settled by the following result of Perczynski and Rosenthal [9, p. 32]
[10], which asserts that if Y contains no subspace isomorphic to &” then B(X,
¥)=W(X, Y). This arises a question that whether Banach spaces contain no sub-
space isomorphic to 2® will achieve the same purpose for the weak compactness
of operators on general Grothendieck spaces.

THEOREM 12. (a) Let S be a compact Hausdorff space, Y a Banach :space and
T: C(S8) + Y a bounded linear operator which is not weakly compact. Then there
exists a subspace z, of c(s), isometric to €yr Such that T|z is an isomor-
phism. (b) If in addition, S is a og-Stonian space, then therfe exists a sub-
space Z of C(S) isometric to I such that le is an isomorphism. (c¢) IF S is
a compact F-space, and X is a non-reflexive continuous linear image of C(S),
then L~ is a continuous linear image of X. (d) Assuming the Continuum Hypo-
thesis, the dssertion (b) holds when 5 is merely a compact F-space.
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