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ABSTRACT — Let S be a locally convex topological vector space. The method
of product integration is used to obtain solutions to the time dependent evo-
lution equation u'(t)=A(t)u(t), t20, where A is a function from [0,=) to the
set of nonlinear operators from S to itself, and p is a function from [0,=)
to &,

l. Introduction

Let S be a sequentially complete Hausdorff locally convex topological vec-
tor space, we consider the existence problem for the time dependent nonlinear

evolution egquation:
p' (t)=A(t)ult), £>0. (1)

where A is a mapping from [0, =) to the set of operators on S5, is a con-
tinuous function from [0,«) to S. When A(t) is linear, (1) has been develop-
ed by the following papers of T. Kato I[2]I , K. Yosida [6] and many others.
More recently G. F. Webb [5] and Y. Komura [4] . M. G. Crandoll and A. Pazy

[1] ; and T. Kato [3] have considered the nonlinear form.

We consider (1) in the form p (t)=F(t)A(t)ult), where F 1s an absolutely
continuous function from [0,=) to the - set of bounded linear operators on S,

and the method of product integration is used to obtain the solutions.

1. Notations and Definitions

Throught this paper we let S be a sequentially complete Hausdorff locally
convex topological vector space which possesses the property that there exi-
sts an open bounded neighborhood of 0 and let X be the family consisting of

all convex, symmetric neighborhood containing 0. Furthermore, let V{(p) be the
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140 Lin: Evolution Eq. in L.C.S.

intersection of all VeX such that peV. If F is a linear operator in S, and
for any p, there existz a non-negative number k, such that F(p)e kV(p) ,then we
say F is bounded. When F is a linear bounded operator in S, let ||F||=inf{k |

F(p)ekVip), peS}. It is clear that for any WeX, peW implies F(p)k||F||w.

Let B(S) be the set of all bounded linear operators con S, N(S) be the set
of mappings (possibly nonlinear) froma subset of S to S, D(A) and R(A) be the

domain and range of A, respectively.

Definitien 1. Let F be a function from [0,x) to B(S8). F is said to be

absolutely continuous provided that if O<u<v and ¢>0, there exists d»0 such

- : P n e : . n
zhat if t(si,ti}}i=0 is a sequence of disjoint intervals in[y ,v] and Lico
{ti-si)<d, then Z?zOHF(ti)—F(si)“<c. The greatest such number d is called

the modulus of absolute continuity of F over [u,v] with respect to c. Note

that if F is an absolutely continuous function from [0,=) to B(S), and O<u<v,

then F is of bounded variation on [u,¥] i.e. there exists a number N such
- n . 4 n

that if {si}i=0 is achain from u to v, then I i=1ﬂF(Si)_Ftsi—l)”5—N' The least

such number N is denoted by J‘uv”df‘“.

Definition €. Let AeN(S) and let F be a function from [B,m) to B(S). De-
fine A to be m-dissipative with respect to F provided that for 0<s<t, p,geD

(A), the following hold:
for any WeX and p-ggyW, [I-(F(t)-F(s))A]p-[I-(F(t)-F(s))AjggW. (2)
R[I-(F(t)-F(s))A]=S. (3)

Note that (2) and (3) imply that for 0<s<t, [I-(F(t)-F(s))A]is one-to-one, so

; &

[I-(F(t)-F(s))A] ~ is defined on S, and if p, geS then for any WeX, we have

If p-geW then [I—(F(t)—F(s})A]_lp—{I—(F{t]—F(s)}Alflqew. (4)
We call that [I-(F(t)-F(s))A] = is non-expansive.

Definition 3. Let F be a function from [0,») t& B(S) and let A be a func-

tion from [0,=) to N(S) such that A(t) is m-dissipative with respect to F for

0. If O<ucv and s={s, }" is a chain from y to v, denote [I-(F(s;)-F(s;_y

1 i=0

by [A,F,si] and denote 1%

Blegah) i=1

i
0<u<v and z is a point of S such that if t is a refinement of s,then Z-T,

[a,F,s;] by nS[A,F]. Suppose that peS.,
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[A,F]peW, for any WeX. Define z to be the product integral of A with respect

to F for p from p to v and denote z by 11: [2,Flp 3
2

:
Deginition 4. Let O<u<v, A sequence of chains {s(l)i}ii0 (s(2) 3, _grees

from p to v is said to be admissible provided that if n is a positive integer
then the following hold:
(i) s(n+l) is a refinement of s(n),

.1.-l| 1I'n
teger j in [l,rn], then there is no point s(m)i of {s(m)i}ir:no such that s(n)j_

(i) either max {s(n),-s(n) 1iiirn}<% or if s(n\):j_ >L for some in-
]
<a(m)i<s(n}j for every integer m>n.

Definition 5. Let A be a function from [0,=) to N(S5) let F be a function
from [0,®) to B(S), and let E C S be such that (i) A(t) is m-dissipative with
respect to F for t>0, (ii)E © D (A(t)) for t>0, and (iii) [I-(F(t)-F(s)a(s) *
(E)c E for 0<s<t. We define A tobe product stable with respect to F on E, if

the following are true.

If peE, and 0<v, then there exists an open bounded set in
X, say W(F,p,v), such that if O<p<x<y<v and s is a chain

from u to y, then A(x)w_[A,F]peW(F,p,v). (5)

If peE, 0O<v and any WeX, there exists d>0 such that if
O<y<d, s is a chain from v to v+y and v<x<v+y, then

A(x) L [A,Flp-A(v)peW. . (6)

If peE, O<usv and s(l), s(2),... is an admissible sequence
of chains from y to v such that lin-rrs‘n) [A,Flp exists, then

N0

iig Ts(n) [A,F]peE. (7)

I11. Existence Theorem

THEOREM 1. Let A be a function from [0,») to N(S). Let F be anabsolute-
ly continuous function from [0,») to B(S), and let Ebe a subset of S such t}_lat

1. A(t) is m-dissipative with respect to F for t>0;

2. ECD(A(t)) for t>0;

3. E is invariant under [I-(F{t)—F(s))A(B}]_l for O<s<t;

4. A is product stable with respect to F on E.
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If peE and O<u<v, then n:[A,F]p exists and ﬂvu[A,F]peE.

Theorem 1 1is proved by means of a series of lemmas under the hypotheses of
Theorem 1.

LEMMA 1. Let peE, 0<u<v, {si}z=0 be a chain from y to v and W(F,p,v) be
as in (5). If 1<j<n and z=wi;i [R,F,sﬁ p then

ﬂrf:j[R:F.Si]Z-Z=E?=j[F(si)—F(si_l)] A[si-l)“;':j[ AF,8,] 2 (8)

n
and Ty

31 ,F,si]z—zezfzjansi}—F(si_ln|W(F,plv). (9)

: n A i b |
Proog: Since 1Ti=j[A'F'Bi]z_z_zi=j {Trk=j[A,F,sk] z-—-rrk::.l{A,F,sk]z}

=2 [F(s;)-F(s;_y)] Alsy_))nic_[AF,8, ]2

and (9) follows from (8) and (5).

For u>0, let K be a subset of [0,«) such that yeK, K is bounded, every
nonempty subset of K has a smallest number in K, and if {“iV§=1 is an infinite

increasing sequence in K, then lin{ xi}QK. Let Qu be the family of all such K's.
{40

If KEQIJ and x>y, let er{yaK|y<x}and let K'={x|x is the limit of an in-

creasing sequence in K}.

LEMMA 2. Let u>0, KEQ‘H and let v=Sup K. There exists a sequence Of
m m
chains {s(l)}iia,{stz}}iiﬂ,..., from yu to v such that for each positive integer

n:

s(n+l) is a refinement of s(m). (10)

i€ 1ii§mn, then s{n]ieK 0 Ky if s(n}ieK, then s{n)i is
the point of K which follows immediately s{n}i_lg if

s(n)iEK'r then a{n]i_lsK and Zi,s[n)icK'!S{n)i-S(n}i—;i
< min {bn, %} where bn is the modulus of absolute con-

tinuity of F on [u,v] with respect to —%r. (11)
2

Mcreover, if peE, there exists a unigque point z of E such that if s(l),
s(2),... is any sequence of chains from ¥ to v satisfying (10), (11) then“a{l}

[2,F] p, Tg(2y[A+F1Ps ... converges to z.
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Proof: By the fact that K' is closed and the covering theorem, (10) and
m m
(11) canbe proved. Now suppose {5(1}}110. {3(2)}1-_:0,... is any seqguence of
chains from ¢ to v satisfying (10), (11). Let peE, n be a positive integer and
let {w } =0 be an increasing sequence such that woﬂo'-wmnmn+1'and i€ ¥iE
an integer in [1,m_] ,thens(n).=s(n+l)w,. If i is an integer in [l,m_ ], let Ki=
W. n 5y i n
i L & ; ;

ﬁjﬂwi_lﬂ [A,F,s{n+l)j], J;= jml[A,F,s[n}j]. Noting that if s(n]iEK, then

K.J

i i-—1=Ji' We see that

m
(A, Plp-m, (. [AFlp= z 1[11 Kyd; 1P=T52547 Kol (12)

Ts (n+1) jn:\. j i-

m

= n
KiJi-lp Jipcw implies 'rrj= K.J

m
ity § =3B “]=i+1K T, PEW (By (4)) (13)

Since if s(n}ieK then K,J;_1P=J;p, we only consider that s{n)ieK' . By lemmal,

]_]|F(s(n+1]j)-F(s{n+1)j_l)|1W(F,p,\r) ,and [A,F,s(n),]J,

W,
W i
R T L T L TR i-1

-Ji_lpEHF(S(n}il"F (s(n) i-]l.l W(F,p,v), thus by (12) and (13), we get s (n+1)

[a,Flp-n, , [a,Flpe ‘2:1_1—{' W (B,piv) s dee. 1y gy [AFIDing o) [AFID) .o0y 18 2
Cauchy sequence and so let z be its limit. We observe that s(l), s(2),...is
an admissible sequence of chains from ptov, so zeE by (7). Suppose that each
of s(1), s(2),+.. and (1), t(2),... is a sequence of chains fromu to v sa-
tisfying (10),(11), then there exists a sequence s(nl); t-{an, s{n3l ' t(n4l '
-+. satisfying (10), (11), so that m_,, [a,Flp, Te(2) [a,Flp,... and Trt(l]{h,f‘]

Pr Ty (2 [A,Flp... must converge to the unique z.

We need the following notations. Let the unique z of iemma 2 be denoted
by z(X,p). Suppose that peE,u>0,K eQu, v=Sup K, and for any WeX, by (6) there
exists d>0 such that if O<y<d, s is a chain from v to v+y, and y<xgv+y, then
A(x) [a,Flz(K,p)-A(v)z(K,p)eW. Let such a number d be denoted by d(K,p,W).

If peE, p>0, WeX, define
Alp,u,W) -{Kt-:q_l|if aku, geK then g=Sup Kq+d(Kq',p,W)} (14)

We remark that if KeA(p,p.W) and g¥%u, geK, then qua(p,u,w) . Furthermore, if
K and J are two members of A(p,u,W), then there exists geK such that Kq=J or

there exists geJ such that Jq-I{'.
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LEMMA 3: If peE, 0<u<v, WeX, then there exists KeA(p ,u,W) Such that v<

Sup K.

Proof: Assume there exists no KeA(p,u,W) such that v<Sup K. Let J=UKEA

Gz il K Then J is bounded and JeA(p,y,W). But JU{Sup J+d(J,p,W)} is in
r

Alp,u,W), implies [Sup J+d(J,p,W)] eJ. It is a contradiction.

LEMMA 4. Suppose peE, p>0 and KbQ“. We have the following:
(1) If qeK, geu, veSup K , then [I—(F(q)-—F(v]JA(V)]_lz[Kq,p)=z(KqU{q},p).

(ii) If xeK, x%u, yek', x<y, w=z(KxU{x},p), and let J=Ky_Kx' then. z{Ky,p)zz

. (J,W, .
Proog: (i) Suppose s(1), s(2),... is a sequence of chain from y to v sa-
tisfying (10), (11) of Lemma 2 for-Kq. Then s(1)U{q}, s(2)U{q},... is a se-

quence from y to g satisfying (10), (11) for Kqu{q}. Thus “s(l)U{q}[A'F]p"'
.» converges to z(KqU{q}, p) and "5(1J[A’F]p' ... converges toz(Kq,p). Since

[I-(F(Q)"‘F(Vi }A(V)]_l TFS(H) [AfF]F':TI' [ArF]py by (4),; we have (1)

s(n)U{q}

(ii) Suppose s(l1), &(2),... is a sequence of chains from p to x sa-
tisfying (10), (11) for KxU{x}. Let £(1), t(2), ... be a sequence of chains
from % to y satisfying (10), (11) for J. Define r(n)=s(n)Ut(n) for each po-
sitive integer n. Then a subseguence r[nl}, r(nz) 1s++ Batisfying (10),(11)

for Ky. Thus = )[A,F]p,..., “s(nl)[A'F]p"" and nt(nl)[ A,F]... converge

ri{n
A
to z(Ky,p), w and z(J,w) respectively. Hence z(Ky,p}=z(J,wJ ‘

LEMMA 5. Suppose peE, O<u<v, and WeX. There exists a chain s from pto v
such that if t is a refinement of s, then 'n‘s[h,-F]p"'n't[A,F]pEW.

Prood: By Lemma 3, one of the following two cases must hold:

Cate 1: There exists KeA(p,u,W)’ such that v=Sup K

Case 2: “There exiéts KeA(p,u ,W) such that v<SupK and there doesn't exist
geK such that v<g<Sup K.

First, we consider casel. Let s={ si}T-=0 be a chain from y to v such that
s = 0 ) i.s an integef in [1,m], then s has the properties: (i) if sis;f{ then 8

is the first point of K which follows 854+ (ii7) if sjt K, then s.eK'and s, ;

eK and (iii") zi s. €K' (si—si_lkh, where b is the modulus of absolute con-
r i %
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tinuity of F on [p, v] with respect to c.

. m . : :
Define {qi}i=0 as following: q,=p: if s;ekK, qi=z(KSiU{ai},p); if sieK',

qi=z(KSi,p). We observe that if s ek, i%0, by Lemma 4 (i) and (14), we have:

={1-[F (Supk, +a (K, ,p,W) -F (SupK_ )]A(SupK_ )} 'z(K_ ,p)

1 £ = 1 1

=1
H[I—(F(Si) —F(si_l) JA (s,

i=11 91" (15)

Furthermore, if s.,e K, i%0, r is a chain from §;.1 to y where s, ,<y<s,

and xe[si_l.y], then by (14) and (6) we have:

Ax)w [A,Flg; _,-Als; _;)q; jeW. (16)

I siEK', we have, by Lemma 4 (ii)

q;=z (K, ,p)=z (Ks -K Y (17)

iy
i T

And bv Lemma 1 together with (iii') above, we get

Ei,sizx' {nr(i][A,F}qi_l-qi_l}scw(F,prw. where r(i)
is a chain from s, , to s;, and (18)
zi,siSK' (qi"qi—l’=Zi,si€F'{Z(Ksi_xsi_l'qi—ll -qi_l}ECW(F,p,V). (19)

Suppose now that t={tj}?:g is a refinement of 5={si}2=0. Then there exists

an increasing seguence {wi]?=l such that w0=0, W =n and if l<ic<m, si=t -

0 Wy
W.
Let Ki=njiwi_1+l[A,E,tj] for lci<m. Then by (15), (16) and (8), we have
Ii,0,ek R399 705 g ek (K397 [R/F 850 Q4 ) (20)

By (4) we have that
[I—(Ffsi)—F(si_l])Ajsi_l)]Kiqi_l-qi_lgw implies Kigq; 4
-[A,F,si]qi_law

Since [I—{F(Si} "F{Si_l) )A(Si—ll] Kiqi—l-qi—l
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=xiqi_1-qi_1-gtF(si)—F(si_li)a(si_l}}xiqi_l (21)

W,
=f ¥ 3 J
”Ejuwi_1+l{F{tj] F{tj—l})A{tj—l)“k=wi_l+l[A'F'tk]qi—l

W,

2j=wi_1ffFf%) F(tj_ll}{A(tj_l)nk=wi_l+l[n,9,tk]qi_l

w
i
B T LTS Rl IS UL TS R PR LS L L T

W, s
gzzj;w. +1“F{tj}—F1tﬁ_1)”w=2{jsi laF||)w. (By (16)) (22)
i-1 i-1
Hence, by (20), (21), (22), we have:
v
Ei,siEK(Kiqi_l-qi)sz{fpnarﬂiw. (23)

Moreover, using (17), (18), (19), we have
Ly s ekt (39507930 =2y g exr 10%4959795y)

+lqy_,-z(K  -K +195_4)le2eW (F,p,v) (24)

1%y
. : m
By (23), (24), (4) and the identity: 2i=1(Kiqi-l_qi]=zi,siEK(Kiqi—lhqi]

+zi,si€K‘(kiqi-1-qi} we have:

m m m v
Te LA Fl P =By o [7 50 s B394 1 7 Juy 1 Fy9yle 20, faFlDW

+2CW(F,p,v) « (25)
Since W and c¢ are arbitrary, we have the lemma for case 1.

Suppose case 2 holds and case 1 doesn't hold. Then Sup KekK, KSup KsA(p

u,W) and Sup[KSup 1()cw.r. Let g=z (K K,p) and w=Sup(K ), then w<v, By

(14) , we have Sup K=w+d(K

Sup Sup K

Sup K,p,'W) . Furthermore, let r=[I-(F(v)-F(w))A (w}]~l g.

By (25) there exists a chain {si}T_o from p to v such that if t is a refine-

ment of s, then

ﬂt[A,F]P'QE2{I:lHF|W+cW(F,p,v)] (26)
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Define s'={si}T:é by s}=s, if Oci<m, s/

n -
Ve Let {ti} i=0 be a refinement of

s', and let tk=w. We have

X oLy k n
ng (RVRIR=r=my g (B ]l (APt Py 0 [AVF ty] g

Sy [B/F t, 1a-[I-(F () =F (W) A ()] ~q, (27)

[I- (F(v) =F (W) )A(W)] 7y 1 [AFrts] a=g

=T} epean [AeF 831979 (F (V) =F (W) AMT S\ [AF,t5]Q

n

=Liak+l

{F{ti]-F{ti_l])A(ti_l}n;=k+l[A,F,tj]q~A(w)q+A(w}q

n
= (F(v)-F(w))A(w)n j=k+l[A'F'tj]q

i

(F(ti)-F(ti_lH{[Atti_l)nJ

n
=Ii=k+l k41 [AF E5]a-A (W) q)

+[A(w)q—A(w)w2=k+l[a,F,tj]q}eztfxudru)w. (28,

By (4),(26),(27) and (28), we get 'rrt[A,F'|p—rEZ'[f:ﬂdF”chF,p,w)+f:||dFl|‘W]

Thus, we have the lemma established for case 2.

By Lemma 5 and the fact that S is sequentially complete, we see that if
peE, o<u<v, the product integral Tr:[A,F]pOfA with respect to F for p from yu
to v, exists. It follows from (7) that ﬂﬁ[A,F]PEE- Hence theorem 1 is es-
tablishe. -

By virtue of theorem 1, we get the following:

Definition 6. Let A be a function from [0,») to N(S), let F be an abso-
lutely continuous function from [0,=) to B(S), and E be a subset of S such
that 1, 2, 3 and 4 of theorem hold. If O<u<v, define the mapping U(v,u) from
E to E by U(v,u)p=n§[A,F]p. For each pcE, we say U is the evolution operator
of A with respect to F on E.

It is easy to show that U has the following properties:

(1) U(u,wp=p, for peE, u>0.

(ii) if p,qgeE, O<u<v, and for any WeX, p-geW imply U(v,u)p-U(V.y)geW.

(iii)U(v,w)U(w,p)p=U(v,u)p for peE, O<u<w<v.

(iv) U{v,ulp—ps!:ﬂdFHW('F,p,v} for peE, 0<u<v.
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If we have E=S and p=0, let, T(x)p=U(x,0)p. ThenTis a mapping from [0,=)
x Sinto S, and {T(x)|x>0}is a semi-group generated by A. A is called the in-

finitesimal generator of {T(x)|x>0} with respect to F.

We will use the facts, as in E. Hille and R. S. Phillips [7], that F has
a strong derivative F' almost everywhere and lin% f:+h[iE"]|=[1F' (t)]| for almost
h+0

all t>0.

THEOREM 2. Let Abe a function from [0,=) to N(S), let Fbe an absolutely
continuous function from [0,=») to B(S), and let E ¢ S be such thatl, 2, 3 and
4 of theoreml are satisfied, let U be the evolution operator of A with res-
pect to F on E, and let F have strong derivative almost everywhere on [0,=).

If peE and O<y , then for almost all tg_u,%U{t,u]p=F‘ (E)Aa(t)u(t,p)p.

Proof: Let peE, 0O<p, WeX, t>p be such that F'(t) exists and linl_rt+h]|'F'1|=
b - hrot ©
[|F* (£)||]. There exists d>0 such that if 0<h<d, then
+
= IR <l o |+1 (29)

and if O<h<d, s is a chain from t to t+h, t<x<t+h, by (6), then
A(x)HS[A,F]U(t,p!p—A{t)U(t,u)ng. (30)
Let 0<h<d. There is a chain r={ri}2=0 from t to t+h such that

nr[A,F]u(t,u)p—U(t+h,h)U(t,u)zehw. ' (31)
Then % {U(t+h, ) p-U(t,u)p}l=-F' (£)A(L)U(Lt,p)p
=% {U(t+h,t}U(t,u]p-ﬂr[h,F]U(t,u)p}+%{ nr[A,F]U(t.u)p—utt.u)p

- [F(£+h) =F (£) IA(£) Ut 1) pI+E [F(t+h) =F (£) JA(E)U(, )P

=F'(t)A(t)U(t,u)p

=t (U(t+h, ) U(t, Wp-m,[A,FIU(t,u)p}
Il [F () -F(r; DIIAGr i) [AF, 251006 p=A(E) ULt ) Pl
HE [P (E+0) -F(£)]-F* (£) } A(£)U(Eu)p.

Let A(t)U(t,u)peW'. Since there exists h>0, such that[|%(F(t+h)—F[t)-
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r
1 g0 Iri
i

F'(t)||W'=wW, by (29) and Ekiat

||F'[|=%f§+h1|1"'l| and (30), (31), we have
=X

%[U[t+h,u)p-0(t,u}p]-?'(t}A{t)U[t,U}PEW+d|F'{tﬂ|+l)W+W

Thus Ult,u)p=F' (£)A(£)U(t,u)p.

-
dt
Now we consider an example. Let A be a function from [0,=) to N(S) such
that
D(A(t))=8 for t>0 (32)
A is continuous as a function from [0,«)xS to S, and A
is bounded on bounded subset of [0,=)xS. (33)
A is m-dissipative with respect to F(t)=tIeB(S) for t>0. (34)
Let E=S and we see that the conditions 1, 2 and 3 are satisfied. Now to
show 4, we let peS, 0<u<x<y<v, {Si} T=O be a chain from y to y. For eachi-1,

let A(si_l)pzwi_lex. Then by (4) we have:
m _om m _.m
ﬂi=1[A,F,Si]P—P—Ei=1{ﬁj=i[A,F,sj]p wj:i+l[ApF.sj]P}
m
€Ly _j(8y=8y ;)W

Thus R,F]p—pzz? W

=197 1"
[A,F]p is bounded, i.e. (5) holds.

[si— Hence ns[A,F]p is bounded. By (33)A(x}~ns
Let peS, 0<u<v, {ti}?=ﬂ be a chain from v to v+y'forsomey'>0.IfA(ti_f

peW let W':U?zl{W! }. Then ﬂt[A,F]p—pgy‘W! Thus given any WeX, by (33),

i-17 i-1

there exists VeX such that if nt[A,F]p-pEV and v<x<v+y', then A(x}ﬂt[A,F]pﬁ
A{v)peW, i.e., for sufficient small y' such that y'W'sV, we get (6). (7} in
clear for S is sequentially complete. Therefore 4 is satisfied. Hence A is
product stable with respect to F=tI. If we apply theorems 1, 2 then the evo-
lution operator U of A with respect tolF exists on § for t>u, and-é%—ﬂ(t,u)p

=A(t)U(t,u)p for pES.
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