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ABSTRACT — Let {Xy|teT} be a stochastic process defined on a measurable

space (R,F) Let PandQ be two measures induced by {Xt|tt.'!'}. It is known [3]
that if both P and 0 are Gaussian, then P and Q are either perpendicular or
equivalent. It will be shown that under certain conditions, such a dichotomy
can be extended to the case where P and Q are generalized Gaussian.

l. Generalized Gaussian Stochastic Processes and Generalized Gaussian Measures

A random variable X is a generalized Gaussian rancem variable if and only
if there exists a nonnegative real number & such that for each real number t,

2.2
¥ig Ty et 42 (1)

The minimum ot those o's satisfying (1) will be denoted by t (X).

T+ follows from the definition that if X is a generalized Gaussian random
variable, so is aX for all real number a.

If Xyr Xpreens
Cauchy-Bunyakovsky-Schwartz (C.B.S.) inequality, x=x1+...+xn is a generalized
Gaussian random variable with

xn are generalized Gaussian random variables, then by the

E(etx) < exp[2n-1(u§+u§+. . .+a!21)t2/2] (2)

where the ai's satisfy (1).

If X is a generalized Gaussian random variable satisfying (1), then for
each €>0 [1]

§ . ]
p(|x|>€) < 2exp(-€2/20%) (3)

Let (Q,F) be a measurable space, T a closed interval of real numbers. Let
{x(t), teT} be a stochastic process defined on (Q,F). For each finite subset
{tl, £y ...,tn} of T, an n-dimensional probability distribution

Fn{x 1Xgpeees X g t1't2' i ,tn]=Pn[x(tl)ix1,x{tz)ixz, cear
157
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<
X(t)<x_]

may be defined-arbitrarily. If these finite dimensional distribution are sub-
ject to the following consistency conditions:

a. Symmetry: for every permutation (j,,jjse..,J ) of (1,2,+..,n), we have

o b TN - T N . N
n ]lf sz r Jn Jll sz r jn]

=Fn[x1,x2,...,xn; tl,tz,...,#n]
b.. Compatibility: for m<n, we have

Fn[xl,xz,...,xm,w,...,m: tl,tz,...,tn]

=F [xl'x2" verX i Eypeeaat]y
then we may extend the Pn's to a unique probability measure P defined on @,F)
such that

PX(ty) <Xgpowe X(E ) <X =P [ X(t))<Xpene Xt )ex )

for any subset {tl'tz""'tn} of .

Thus given any stochastic process, we may define this process in terms of
its finite dimensional distributions, subject, of course, to the two consis-
tency conditions mentioned above. For example, a Gaussian process is defined
in this manner. Since there is a one-to-one correspondence between a subclass
of probability distribution functions and moment generating functions (real
Laplace Transforms), some stochastic processes can also be defined in terms
of moment generating functions.

Definition 1. An n-dimensional random vector is an n-dimensional genera-
lized Gaussian random vector if given any non-zero vector (al,az,...,an) of
real numbers, alxl+a2x2+...+anxn is a generalized Gaussian random variable.

Definition 2. A stochastic process {X(t),teT} is a generalized Gaussian pro-
cess if and only if each finite subfamily

[x[tll,x(tz},...,x(tn)] of {X(t),teT} is generalized Gaussian random vector.

It is clear from (2) that {X(t),teT} is a generalized Gaussian process if
and only if each X(t) is a generalized Gaussian random variable. Hence

Definition 2'. A stochastic process is generalized Gaussian if andonly if
each X(t) is a generalized Gaussian random variable.

Examples: .

a) Every Gaussian process with zero mean is generalized Gaussian. b) If
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{X(t) ,teT} is a stochastic process such that E[X(t)]=0 and [X(t)] <M(t) < » for
each teT, then {X(t), teT} is generalized Gaussian. '

Deginition 3. The measure extending the finite dimensional distributions of
a generalized Gaussianprocess is called a generalized Gaussian measure.

By what preceeds, any stochastic process defined on a measurable space
(2,F) may induce a generalized Gaussian measureon (Q,F), if each X_ is genera-
lized Gaussian.

t

Il. Continuity in Probability and Separability of Stochastic Processes

Let T be a closed interval and {X(t), teT} be a stochastic process defined
on a measurable space (fI,F). Wemay assume that F is the complete Borel field
generated by {x(t),teT}. Let P and Q be two probability measures defined on
(2,F) with respect to which the stochastic process {X(t), teT}is a Brownian
motion. It is known that P and Q are either equivalent: for Ae¢F, P(A) = 0 if
and only if Q(A)=0; or mutually perpendicular: for some AcF, P(A)=0= Q (A")
(' denotes complement) .

If we look at Brownian motions with zero mean, we find that they possess
the following features:

1. separability,

2. continuity in probability,

3. E[exp(tX(s))] < exp (o2 (s)t%/2).

It will be seen that an extension to generalized Gaussian measure of the
previous results concerning the equivalence of two Gaussian measures is possi-
ble if {X(t),teT} is a stochastic process possessing properties 1, 2, and 3.

Definition 4 (Separability). Let A be the class of all closed intervals (fi-
nite or infinite). A stochastic process {X(t),teT} will be called separable
relative to A if there is a countable subset Tl of T such that for each open

interval I and each Acgd,
{X(t)eh, tEIﬂT}={X(ti)£A, tisIﬂTl}UN (4)

with P(N)=0.

Definition 5 (Continuity in Probability). A stochastic process is said to
be continuous in probability if for every sequence

(.-

{s_1} -1 S T, such that lim s _=t, lim x{sn] =X(t) in probability.
nn=l = e W A
Since Brownian motions have a continuous sample path a.s. sn--t implies

x{sn) + X(t) a.s. . Thus Brownian motions are continuous in probability.

Proposition 1. If there is acountable subset T,CT such that for all open

intervals I,
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g.l.b X(t)=g.l.b. X(t,) a.s.

€ ¢ 1T t e IT,
oo b Xty =1.n.b; X(ty) a.s; (5)
e P t e ITy

then X(t) is separable.

Proof: Let A=[a, B].

(x(t;) e A, £; e IT } ={a<x(t;) <B, t; e IT}

1

={g-1.b. X(t;) > aln{l.u.b: X(t;) < 6}
tig IT1 tie ITl -

=[{g.1l.b. X(t) >alu N.In [{l.u.b. X(t) < B} U N
£t ¢IT A

=[{g.1.b. X(t) > o} n {l.u.b. X(t) < BHuUN
€ g T £t e IT

= {X(t) e A, t € ITIyYN,

where Nl={g.l.b. X(ti]#g.l.b. X(t)n{g.1.b. x(ti) > al
tie I'.'l.‘1 g IV C'E ITl

N,={l.u.b. X(t;)#l.u.b. X(t)}n {i.u.b. X(t;) < 8}:
tis I'I'1 & T tis rrl

the changes regarding null sets Ny, Ny, N are obtained by using the fact that
(AUB) n (CyD)=(ANC) U[(BNC) U(AND) U (BN D) .
By completeness of (Q,F,P), NeF and P(N)=0. Thus {X(t),tet} is separable.

COROLLARY. If {X(t),teT} is a Brownian motion, then it is separable.

Proof: Let Ty be a countable dense subset of T, then

g.l.b. _x(ti)-g.l.b. X(t) a.s.
tis ITl £t £ IT

1.0.b. x[ti)=1.u.b. X(t) a.s. 5
tis ITl gt R 5
since Brownian motions have continuous sample path a.s. .

Proposition 2. Let {X(t),teT} be a continuous in probability,separable sto-
chastic process. If Tlisany countable dense subset T, then Ty satisfies the
‘separability condition (4).

Proof: By Proposition 2, it suffices to show that Tl satisfies (5).
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For each teT, there is a sequence {t, }from T, such that t, itk By conti-

1
nuity in probability, 11.mt x(t )=X(t) in probability. There is a subsequence
B
{sk} such that llm (s )=X(t) a.s. .
g s

For each open interval I and each telT, there is a sequence S={s }from Ty
such that

. x(ti}fg.l.b. X(skjj g.l.b. xtsk}
T, s € I8 |sk—t|<1/n
and

l.u .b X(t;)>1.u.b. X(s, )> 1l.u,b, X(s,)
£.e IT s, e IS |s -t |<l/n

for sufficiently large n. Hence

Gadialys  X(E, i) flim  g.l.b. X(s)
t,e IT n-+e |s -t |<l/n

i 1

l.u .b X(ty)>1im  1l.u.b. X(s,) .
tje IT) n+e |s, -t |<l/n

But lim x(sk)=x(t) a.s., so

sk+t
lim g.l.b. x(sk)=x[t) a.s.
nse |8, =t |<l/n
lim l.u:b. x(sk}=x(t) -

n+= |5, -t|<l/n

Thus g.l.b. x(ti):x(t) a.s, and l.u.b. X[ti}ix(t] aiB3’ &

tie ITl tie IT1

This being true for each teIT, we have

galib. X(ti]ig.l.b. X(g) a.s.
tis ITl t e ITl

P HEE I i x{ti)il.u.b. X(t) BB~ .
tis IT1 £t e ITl

Since the inequalities going in the opposite directions are obvious, the re-
sult follows.

Now, let Tl be a countable dense subset of T. Consider the stochastic
pProcess {x(t.] t:.e'r s Lat E‘l be the complete Borel field generated by {X(t ¥
tisTl}. Deflne the flnlte dimensional distributions Pl of {X(t;),t, €T} by

Pl[x(tl}fxl,...,x(tn)i;n}=9[x(t1]§;1,...,x(tn)gxn] .

Let P1 be the extension of the PM's. We thus obtain a probability space (Q,

1
Fl' Pl].
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THEOREM 1. If {X(t), teT} is separable and continuous in probability,then
{anlfPl]=‘ﬂrFlP] .

Proof:

(i) F1=F: Since Tl is dense inT, for each teT there exists a sequence {tk}
€Ty, such that t,>t. Since X(t) is continuous in probability, x(tk}*x(t} in
probability. Hence, there exists a subsequence tn such that x(tn > X(t) a.s.
since X(t_ ) is F -measurable, X(t) is also F,-measurable. Hence® FcF,, but

ny I 1 1
FfEF' so F1=F.
(ii) P=P, : Since {X(t),teT} is continuous in probability,for {tl,tz,...,
1 k ¥
tk} ¢ T, and sequences {an}, {sg},..., {sn} from T,, converging to Eyreeeaty,
1 2 k
we have [X(sn),x(sn),...,x(sn!]+[x{t1),x(t2],...,X{th] asgé: P; (Take sub-

sequences if necessary.)

This implies convergence in distribution; i.e., for
F_(x.,x X, ) =P [x(sl)<x x(s%) < ]
i i Gl ™ 1 By PR n! ¥
= 1 %
- -P[X(snlixl,...,x(sn)ixk]
Fn(xl,xz,...,xk)+F(x1,x2,...,xk)=P{x(tl)ixl,...,X(tk)ixk].

PpIX(E)) <Xy pene s X () S ] =PIX(£)<X 4o en Xty )2x, ]

- 15 [x(s;} ,...,x(sz}]ﬂx{tll resesX(t)] a.s. P The set of convergence of

1°
[x(si},x(si),...,x{sﬁj] is

c= U n E { max |X(si)—x(s%}[<1/m, 1l<i<k}; say, €=U n G V(m,n,
m=l n=1 n'=n+l n<j<n' J m=1 n=1 n'=n+l

n').
Pl(c)=1im lim Pl[V(m,n,n'}]
M-+ 1+ B
=lim lim P[V(m,n,n"')]=1 .
m=+o 1=+
Hence [x(sl) X(sz) ‘ x{sk)]+[x(t ) SXAEL) X0k Y] aum P Since P=P
n ’ n""f n l r 2 fFree sy k . - 1' l

on the field generating F, P=P1.

I1l. Stochastic Processes of Function Space Type

Let {X(t),teT} be a real stochastic process defined on an arbitrary pro-
bability space (Q,F,P). {X(t), teT} may be considered as a subset of RT, the
set of all real-valued functions defined on T. Let Fo be the family of sub-
sets of RT of the form
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f£6R + TE0ED) 7B (k) /2.l (6] € A}

where tl' tz,..., tnsT, and A is an n-dimensional Borel set. It is easy to ve-
rify that FO is a field. On Fo’ define a probability measure Po-as follows:

PSSRy DRIV R . v B e A=PL(X(£)) /X060, LR (E DTEA

Let F be the smallest Borel field contain%ng Fq. Then there exists a unique
extension of Po to a probability measure P defined on F. On RTxT, let there
be' defined a function X by X(f,t)=f(t). For each teT, X(f,t) is a random va-
riable defined on (R',F,P), since if A is any Borel set, {£:X(£,t)eAl={£:f(t)
aA}eFo. Hence {ﬁ(t},th} is a stochastic process defined on {RT,F,ﬁj. The
stochastic process {X(t),teT} so defined is called a stochastic process of func-
tion space type.

By what precedes, a stochastic process {X(t), teT} defined on an arbitrary
probability space (Q,F,P) induces a probability measure P defined on (RT,f'}
and a stochastic process {X(t),teT}. The induced probability measure P and
stochastic process {X(t),t eT} inherit some characteristics of the measure P
and the stochastic process {X(t), teT}:

1. If {X(t), teT} is a generalized Gaussian process, so is {%(t),ts;T}.

Proog: It suffices to show that for each T, ;{(t] is a generalized Gau-
ssian random variable.

Let Amn=fw:n/2mi}((m.t!i(n+1)/2m}
imn={ £:n/2"<X(£,t)< (n+1) /2™

71 O (PR L Ly S S T

. Woae & oMl = ; . .
Let xm(w,t)sn/.'! if meAmn; --Km(f,t]=n-/2 if fp_-Amn. Then xm(t)-s»x(t) a.g8. P,

X (t)s

X (t)s
= a.s. pande®™

and E(m[t)*'ﬁ(t} a.s. P. Thus for each SER, e - eSX{t)

»eS¥(t) a.8, Pl

n/2"

E[exp[sxm(t)]]=Ze P[ n/2m5_}((t)<(n+l)/2m]

m ~
Efexp [sX_(£)]1=1e™2 B [n/2"<k(t) < (n+1) /27] .
Since  P[n/2"<X(t)<(n+1)/2™1=P [n/2"<X (t) <(n+1)/2"]

E[exp[sX (t)]]=E[exp[sX (£)]] .

sxm{t].‘tesx{t)

For s>0, e . So lim E[exp([sX (t)]]=E[exp[sX(t)]]. Similar-
m-x

larly, lim E[exp[sim(t)}]=E[exp[sk(t)]]. So Efexp[sX(t)]]=E[exp[sX(t)]]< exp
Mo
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s%0%(t) /2].

For s<0. Let X!(t)=(n+1)/2™ if weA i X' (£,t)=(n+1)/2" if feA . Then
exp[sxé(t)] t exp[sX(t)]. By an argument similar to that above

E [exp [sX(£)]] =E[exp[sX(t) 1] < exp[sZa®(t) /2]

2. For each teT, E[x(t)] =E[X(t)] .
The proof of this is similar to that in 1.

3. {X(t), teT} and {X(t), teT} have the same convariance function.

Proof:  First, consider the stochastic process {X(t), teT} such that X(8=

Xp 7 AtsF for each teT. In this case, we have
1

E[X(s)Xx(t)]=P[x(s)=1, X(t)=1]
=P[f: £(s)=1, £(t)=1]
=P [X(s)=1, X(t)=1]

Since for each teT,

1=P [X (£)=1]+P [X (£)=0] =P [X (£) =1]+B [k (t) =0],

P[X(t)=1, X(s)=1]=E[X(s)X(t)]

Thus BIX(s)X(t) ]=E[X(s)X(t) ].
n
If each X(t) is a simpl function, i.e. X(t)'=£i"=-’:|_ai(t))(A . 'Then
£
i
EX()X(t) 2,2, (s)a (£)P[X(s)=a; (s) ,X(t)=a (t)]
uzns I, ot a;(s)a (t)P[x(s}ta (s), x(t)ﬁa (£)?
i=1"j=1 3
=E[X(s) X(t)

For the general case, let {xn(t) }::=1 be a sequence of simple functions such
that xn{t] + X(t) for each teT. To each sequence {xn(t) }:=1 corresponds a se-

quence of simple functions {}En(t) ]:=l such that
E[X, ()X (0)]=E[X () (t)]

To prove the assertion, it remains to show that in{t) + X(t) in probability
P for each teT.

. n ? g
PI|X, (£)=R(t) | <e]=5; 5 P (a;-e<K(t) <a;+e) B (X (t)=a,)

n

1=lp{a.-—s<x(t) <a, +e)P{X (t}=a )

=p[|xn(t}—x(t}|<g] OIS
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Hence E[X(s)X(t) ]=E[X(s)X(t)].
4. If {X(t), teT} is continuous in probability, so is {X(t), teT)}.

Phoog:  Assume tn+t .

since P[f: |X(£,t)-X(f,t )|>el=P[f:

=P[|Xtt?-xltn]|>e]-

X(t)) + X(t) in probability implies X(t_ ) + X(t) in probability.

5. If P and Q are two probability measures induced by the stochastic process
{X(t), teT}, and P and Qare two probability measures induced on the path space
(RT, F) by P and Q, respectively; then the equivalence of P and Q implies the

equivalence of P and a and vice versa.
Proog: Let A={AeF, P(A)=0},
B={AeF, P(A)#0}.

Define a set function Q' on F, by Q'(A)=0 if AecA, Q' (A)=Q(A) if AeB, Q' (A
U B)=Q(B) if AeA, BeB. It is easy to verify that Q' is a probability measure,

Since P and Q are equivalent, P anthave the same null sets in F . Hence
Q and Q' agree on F which generates F. So, Q [t e

The reverse implication is proved by interchanging the role of P, Qandﬁ,

Q.

Remank: Since separability is characterized by the Borel fields, and the Bo-
rel field F is constructed independently of the Borel field F, separability of
(2, F, P) does not carry over to (R", F, P). However (R*, F, B) canbe replaced
by (R " Fl' P ) by enlarging the Borel field tc make {X(t), teT} separable
with respect to the new probability space (R . Fl, P )

To obtain (R ; Fl' Pl) ; let Cbe a subset of RY with outer measure 1 rela-

tive to F, i.e.

B*(C)=a.1.b. {B(a); cc A, ReFl=1

Let F, be the family of subsets of RY of the form:

(A, N C) U (&, n €y Ay, Ay e F.
on 1;1' define a set function §1 by
By(a)=B[(a, n ©) U (&, nC")=P@)

It is easy to verify that Pl is a probability measure on Fl' and agrees with
P on F.

Proposition 3. With (RY, ¥, P) replaced by (RT, BB, (X(0),teT) is se-
parable (with respect to closed sets) depending on a proper choice of C.

Proof: Let I be an open interval, and § the family' of all possible se-
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quences from I N T. Let {ti(IJ} be a countable subset of I N T, such that

1.u.b.f  tan ¥ 1.u.b. X(s;) ‘@p=s - tan"'1.u.b. X(t;) ap
s R E eIT R t EIT
-1 =1
g.l.b./ o tan " g.l.b. X(s;) dp=/ p tan” g.l.b. X(t;) P
S R S eIT R t eIT

Then for all {si}ES,

Lot bie x(sijjl.u.b. x(ti(I))
i i

g.-l.b. X(s4)<g.1.b. X(t;(T))
;1 i

Now let I be the family of all open intervals with rational end-points. Let

{t = U t; (I). Then for each teT,
IEI
lim g. l b. x(t )<X(t) <lim l.u.b. x(t ) (6)
ed0|t,~t|<e Ted0 |t,-t|<e
;b i
a.s. P.

Let C be the set of all functions in RY such that (6) is satisfied si-
multaneously for all teT. Then if X(t)=£f(t)eC,

1l.u.b. X(t)=l.u.b. X{t )
telT t eIT

To complete the proof, it suffices to show that §*(C)=1 Let B be any arbi-
trary 'set in F, which is a finite or countable union of sets from F and con-
tains C. If P(B)= 1, then B*(C)=1. Let

B= 9 {feR™: aicf(ti}<bi}

and assume that CDB. Let Bo be a subset of B such that (6) is satisfied.
Since the set of functions such that

1im g.l.bg f{t }<f(T )<lim 1l.u.b. f(ti)
e¥0 |t -1, |<e Tev0 |t {774 I<e

has probability one, ﬁ(Bo}=1. Hence P (B)=1.

By what preceeds, if a stochastic process {X(t),teT}).defined on an arbi-
trary measurable space (Q,F) .is generalized Gaussian, separable, and continu-
ous in probability with respect to both measure space ((,F,P) and (Q,F,Q) in-
duced by {¥(t), teT}, the equivalence of P and Q is equivalent to the equiva-
lence of P and.d, probability measures induced by P and Q , respectively, on
the path space R'. So from now on we may assume that (q, F, P)=(RT, F, B).
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IV. A Dichotomy Theorem for Generalized Gaussian Measures

THEOREM 2. Let {xk}:=1 be a sequence of independent generalized Gaussian

random variables such that sﬁp (X )=a<=, Let {¢k}:=1 be a sequence of uni-

formly bounded real valued functions defined on a closed interval T, and {ak}
:=1 be a sequence of real numbers such that Eﬂ=la§/n+0, as n+®, Then Yn(t)=
Z;=1ak¢k(t)xk//ﬁ converges a.s. to a.stochastic process {Y(t), teT} asn+»and
{¥(t), teT} is a Gaussian process.

Proog: First, we show that Yntt)+Y(t) a.s. for each teT. For each k, each
n and each t, ak¢k(t)xk//ﬁ is generalized Gaussian with

E[exp(sak¢k[t)xk/15)]i exp{szaiazmz/Zn}

where M is the bound for ¢, . Since the convergence set of the sequence Y_(t)
k q n

oo oo o

is c=N CREEE § {|Yn{t)—Y.{t}]§l/m},it:suffices to ‘show that lim lim B{ | ¥
m=1 n=1 j=n+l J e e n

(t)—Yj(t)Igl/m}=1. Now for j >n,

¥y () =Y, (6) =0 1 (2 /VF ~ @y /Vi) 0, (VK +B) (e VTV K, 0, (8)

and E[exp[s(Yj(t}~Yn(t})]]iexp{szdzMzAnj/Z) where

» =vh .- &) 2413 2 /=1 Z/5410 :
nnj Ek=l [ak/‘fi ak/"n) +Ek=n+1ak/j-zk=lak/j+zk=lak/n

- uP_ &2/ET .

Hence P([Yj(t)—Yn(t)|il/m)igxp{-1/2m232M2Anj) for all j, n. Since lim Anj=0,

Il +co
the assertion follows.

To show that {¥(t), teT} is a Gaussian process, we must show that if S Lo
<eey € are real numbers and tl' t2""'FnET' clY(t1}+c2Y(t2)+...+cnY(tn)ls a

Gaussian random variable.
Let 2 =c.I™ _a ¢ (t,)X +e.In .a ¢, (t, )X +eost CIT a by ()
m-C1lg=12k P (B0 Ky PColp a1 By by (B ) Ky te oot Ol g8y (B0 Xy
m
=Ek=1ak[cl¢k(tl)+c2¢k(t2]+...+cn¢k[tn}]Xk.

Then ;iz Zm/lﬁ = clY(tl)+c2Y(t2)+...+cnY(tn). So, it suffices to show that

the limit distribution of Zm/JE is normal. But this is the case if max |a
1<k<m
()8, (E))+e 0y (E)+..utc ¢ (£ )] X, //m|+ 0 in probability ([2] p. 316).

k

Let  Ap=cydy (t))+c, 0, (Ey)+u.ate ¢ (£)), C=ley |+|ey|+...+]c |. Then |A]<CM for
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all k. Hence, with D=C2M2a2,

E[exp (ta A X, /VF)] <exp (tzaiiaz/zm) <exp (tzainz/‘Zm]

m 2}

S0, B (layh X, //ml>a sexp (- “m/20%ad) cexp (~e?m/20% 0 a2

Now P( max |a, A X /V/m|<e)=P(|a A X /Vm|<e, |a A X./VAE| < €,...,
yzken kPyX/Yml < i Tl 272% 8

m
1amamxm//ﬁ|5eﬂ=k£1P(|akAkxk//E|§§3

m
=1 (1-P(|a /¥Ym|>g))
. k% %k

> (-exp(-c?m/20%0_ a2)™ » 1.

Let {X(t),t eT} be a stochastic process defined on a measurable space (R,F).

We assume that F is generated by {X(t) « teT}. Let P and Q be two probability
measures induced by {X(t), teT}. We make the following assumptions:

(1) P and Q are generalized Gaussian;
(2) sup t_(t)<» and sup t (t)<=, where t_(t) and t.(t) are the minimums of
A t @ P &

those ap(t) and aQ{t) such that Ep [exp{sx(t)}]gexp(a:{t)szfz) and EQ

[exp (sX(£))] <exp (a2 (£)5%/2) .
(3) There exists a countable dense subset S={ti}z=l of T such that {X(ti}}

it is a sequence of independent random variables with respect to bothP

and Q. "
(4) {X(t), teT} is separable and continuous in probability with respect to
both P and Q.

Then by assumption 4 and theorem 16, if 8 is a countable dense subset of T,
the probability spaces (,F,,P;) and (2,F;,Q;) generated by {(X(s),seS} are the

same as (qg,F,P) and (Q,F,Q) respectively. Let S={tk}:=1 and Yk=x(tk). Then

by assumption 3, S may be so chosen that h{k}:wl is a sequence of independent
random variables. From the previous theorem we obtain;:

THEOREM 3. Let {a,}, . be a sequence of real numbers such that IP aﬁ/mo ¥

k k=1 k=1

Let {¢k}:=l be a sequence of uniformly bounded functions defined on T, Then

under the assumptions 1-4, Z(t)=lim Ez‘lakdak(t}l'k//ﬁ is a Gaussian process de-
fined on both probability sPacesn‘E;,F,P} and (Q,F,Q).

Now let B be the set of all sequences of real numbers such E‘;’lai/n-cm. Let

C be the set of all sequences of uniformly bounded real valued functions de-
fined on T. Let A=BxC. Thenby Theorem 3 {X(t),teT} defines amap from A into
the set of all Gaussian process defined on both probability spaces (Q,F,P) and
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(2,F,0). For each ¢eA, let Fu be the Borel field generated by the Gaussian

process Za(t). Let F'= |y F_, and
aer

Np={AEF: P(A)=0}
NQ={AEF: Q(a)=0}
MP='[A£F': P(A)=0}
MQ={AEF': Q(a)y=0} .

In addition to assumptions 1-4, we assume

(5) N =M, and NQ=MQ.
THEOREM 4 (Dichotomy theorem). Under the assumptions 1-5, P and Q are ei-
ther equivalent of perpendicular.

Proof: Let Poe.=P|For.' and Qa=QEFcr.' Then by the dichotomy theorem for Gau-
ssian measures P and Q, are either equivalent or perpendicular. If for some
oEA, Prx and Qa are perpendicular, then P and Q are obviously perpendicular.
Suppose Pa and Qa are equivalent for all aeA, then if P(A)=0, there is an acA
such that Pa{A] =0 and so Qa{A) =0. Assumption 5 implies that Q(A)=0. Hence,
P(A)=0 =Q(A)=0., Similarly Q(A)=0=>P(A)=0.
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