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Abstract

The dynamic behaviors of a dissipative gyroscope mounted on a vibrating base are investigated qualitatively and

numerically. It is shown that the nonlinear system can exhibit regular and chaotic motions. The qualitative behaviors

of the system are studied by the center manifold theorem and the normal form theorem. The co-dimension one bifur-

cation analysis for the Hopf bifurcation is carried out. The pitchfork, Hopf, and saddle connection bifurcations for co-

dimension two bifurcation are also found in this study. Regular and chaotic motions are shown to be possible in the

parameter space. Numerical methods are used to obtain the time histories, the Poincaré maps, the Liapunov exponents,

and the Liapunov dimensions. The effect of the spin speed of the gyroscope on its dynamic behavior is also studied by

numerical simulation in conjunction with the Liapunov exponents, and it has been found that the higher spin speed of

the gyroscope can quench the chaotic motion.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The motion of the gyro is an interesting problem in classical mechanics. Research in the area of gyro dynamics dates

back about 100years, whereas the pioneering paper on the concept of chaotic motion in gyros was already presented in

1981 by Leipnik and Newton [1], showing the existence of two strange attractors. Recently much interest has been fo-

cussed on these types of problems. The chaotic motions of a rate gyro and a symmetric heavy gyroscope with harmonic

excitation have been found by Ge et al. [2–5]. In 2001, the motion of a symmetric gyro which is subjected to a harmonic

vertical base excitation has been studied by Tong et al. [6], with particular emphasis on its nonlinear dynamic behavior

without taking into account the damping effect. Very recently, on studying anti-control of chaos in rigid body motion,

Chen and Lee [7] introduced a new chaotic attractor. Their studies have proved that chaotic motion can be found in

rigid gyro. This paper presents a variety of interesting dynamic phenomena of a dissipative gyroscope excited by a har-

monic force with emphasis on its chaotic motion.
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The concept of chaos has been first introduced by Poincaré [8] to describe orbits in space mechanics. The chaotic

behaviors of fluids and gases have been given by Lorenz [9]. It is well-known that the sensitivity of the system to initial

conditions is necessary for chaotic motion. In other words, it may happen that small differences in the initial conditions

produce very great ones in final phenomena. Therefore prediction becomes impossible. Recently, many excellent books

were given by Moon [10], Thompson and Stewart [11], Chen and Dong [12], and Kapitaniak [13]. Moreover, some out-

standing works were also presented by El Naschie [14] and Kapitaniak [15].

Various interesting dynamic behaviors of a symmetric gyroscope mounted on a vibrating base have been found by

Ge and Chen [4,5]. In the past study, the gyroscope was assumed to be rigid. A single equation of motion is used to

analyze the dynamic behavior of the system; the system is viewed as a single-degree-of-freedom system. The gyroscope

may not always be assumed to be a rigid body. In this paper, a two-degree-of-freedom system of a dissipative gyroscope

mounted on a vibrating base is considered. Qualitative behaviors of the system are studied by center manifold theorem

[16] and normal form theorem [17]. The co-dimension one and co-dimension two bifurcation analyses are presented.

Further, numerical techniques are used to analyze the dynamic of this typical gyro. The time evolutions of the nonlinear

dynamical system responses are described in phase portraits via the Poincaré maps. The occurrence and the nature of

chaotic attractors are verified by evaluating the Liapunov exponents, and the Liapunov dimensions. Besides, the effect

of the spin speed of the gyroscope is studied by numerical simulation in conjunction with Liapunov exponents, and it is

shown that a chaotic motion will become regular as the spin speed of the gyroscope increases.
2. Formulation

The gyroscope contains a mechanical vibration absorber in the interior in the form of a spring-mass-dashpot. The

absorber mass (m) is centered on the z axis and position parallel to z axis. The spring has constant k, and the dashpot

has damping constant C. The geometry of the problem under consideration is depicted in Fig. 1. The motion of a sym-

metric gyroscope mounted on a vibrating base can be described by Euler�s angles h, / and w. It is not difficult to show

that the Lagrangian can be expressed as
L¼ 1

2
ðI1þmz2Þð _/2þ _h

2
sin2hÞþ1

2
I3ð _/coshþ _wÞ2þ1

2
m_z2�Mgð‘þ �‘sinxtÞcosh�mgðzþ �‘sinxtÞcosh� k

2
ðz� ‘0Þ2;

ð1Þ
Fig. 1. A schematic diagram of a gyro.
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where I1, and I3 are the polar and equatorial moments of inertia of the typical gyroscope,Mg is the gravity force, �‘ is the
amplitude of the external excitation disturbance, x the frequency of the external excitation disturbance, m is the mass of

the damper, and k the spring constant. It is clear that coordinates / and w are cyclic, which provides us with two first

integrals of the motion expressing the conjugate momenta. The momentum integrals are
P/ ¼ oL

o _/
¼ ðI1 þ mz2Þ _/sin2hþ I3ð _/ cos hþ _/Þ cos h ¼ b/; ð2Þ

Pw ¼ oL

o _w
¼ I3ð _/ cos hþ _wÞ ¼ I3xz ¼ bw; ð3Þ
where xz is the spin speed of the gyroscope.

Using the Routh�s procedure via Eqs. (2) and (3), the Routhian of the system becomes
R ¼ L� b/
_/� bw

_w

¼ 1

2
ðI1 þ mz2Þ _h2 �

ðb/ � bw cos hÞ
2

2ðI1 þ mz2Þsin2h
þ

b2
/

2I3

" #
þ 1

2
m_z2 �Mgð‘þ �‘ sinxtÞ cos h� mgðzþ �‘ sinxtÞ cos h

� 1

2
kðz� ‘0Þ2: ð4Þ
For the trivial solution, from Eqs. (2) and (3), b/ = bw is automatically satisfied and is assumed to hold afterwards [18].

The dissipation function is given by
F ¼ 1

2
C _z2: ð5Þ
The equations of motion describing the system can be obtained from
d

dt
oR
o _qi

� �
� oR
o _qi

þ oF
o _qi

¼ 0; fqijh; zg; ð6Þ
The system is viewed as a two-degree-of-freedom system. The equations governing the gyroscope are given by
€hþ b2/
ðI1þmz2Þ2

ð1�cos hÞ2

sin3h
� Mgð‘þ�‘Þ sinxt

ðI1þmz2Þ

h i
sin h ¼ 0;

€zþ C
m _zþ kðz� ‘0Þ � zð _h2Þ þ g cos h� zb2/

ðI1þmz2Þ2
ð1�cos hÞ2

sin2h
¼ 0:

8><
>: ð7Þ
The equilibrium point is found to be
h ¼ 0; _h ¼ 0; z ¼ ‘0 �
mg
k

� �
; _z ¼ 0: ð8Þ
For convenient analysis, the fixed point is shifted to the trivial one. The equation in first order form can be rewritten

as
_x1 ¼ x2;

_x2 ¼ � b2/
½I1þmðx3þp2Þ�2

ð1�cos x1Þ
sin3x1

þ ½ðMg‘þmgpÞþmgx3þðMþmÞg�‘� sinxt sin x1
½I1þmðx3þpÞ2 � ;

_x3 ¼ x4;

_x4 ¼
b2/

½I1þmðx3þp2Þ�2
ð1�cos x1Þ2

sin2x1

� �
ðx3 þ pÞ þ gð1� cos x1Þ � k

m x3 þ ðx3 þ pÞx22 � 2cx4;

8>>>>>>><
>>>>>>>:

ð9Þ
where
x1 ¼ h; x2 ¼ _h; x3 ¼ z� p; x4 ¼ _z; p ¼ ‘0 �
mg
k

; 2c ¼ C
m
: ð10Þ
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3. Stability analysis

3.1. The case of a pair of pure imaginary eigenvalues

In this subsection, the qualitative behaviors of the dissipative gyroscope system in the case, where the disturbance is

absent, i.e., �‘ ¼ 0 will be investigated. The study is concentrated on a co-dimension one bifurcation problem of the sys-

tem. By Taylor�s expansion, the equation of motion can be rewritten as
_x1 ¼ x2;

_x2 ¼ � b2/
4ðI1þmp2Þ2 �

Mg‘þmgp
ðI1þmp2Þ

� �
x1 þ a1x1x3 þ a2x31 þ a3x1x23 þOðx4i Þ;

_x3 ¼ x4;

_x4 ¼ k
m x3 � 2cx4 þ a4x21 þ px22 þ px3x

2
2 þ a5x21x3 þOðx4i Þ;

8>>>>><
>>>>>:

ð11Þ
where
a1 ¼
mgp

ðI1 þ mp2Þ �
ðMg‘þ mgpÞð2mpÞ

ðI1 þ mp2Þ2
þ

b2
/

ðI1 þ mp2Þ3
;

a2 ¼
ðMg‘þ mgpÞ
6ðI1 þ mp2Þ �

b2
/

12ðI1 þ mp2Þ3
;

a3 ¼
�2m2gp

ðI1 þ mp2Þ2
þ ðMg‘þ mgpÞð3m2p2 � I1mÞ

ðI1 þ mp2Þ3
� ð5m2p2 � 2mI1Þ

2ðI1 þ mp2Þ4
;

a4 ¼
b2
/p

4ðI1 þ mp2Þ2
� g

2
; a5 ¼

ðI1 � 3mp2Þ
4ðI1 þ mp2Þ :

ð12Þ
Eq. (11) is then rewritten in vector form as follows:
_X ¼ AX þ F ðX Þ þOð4Þ; ð13Þ
where
X ¼ ½x1; x2; x3; x4�T; F ¼ ½0; F 1; 0; F 2�T; A ¼

0 1 0 0

�x2
1 0 0 0

0 0 0 1

0 0 � k
m �2c

2
6664

3
7775; ð14Þ
and
x2
1 ¼

b2
/

4ðI1 þ mp2Þ2
� Mg‘þ mgp

4ðI1 þ mp2Þ2
;

F 1 ¼ a1x1x3 þ a2x31 þ a3x1x23; F 2 ¼ a4x21 þ px22 þ px3x
2
2 þ a5x21x3: ð15Þ
From conventional linear stability analysis, one knows that in a certain parametric range the linearized system can be

stable or unstable. However, the linearized system can only provide qualitative information on this nonlinear system in

some cases, namely, when the eigenvalues of matrix A has no zero or purely imaginary values. A pair of purely imag-

inary eigenvalues is the major focus in the following analysis. The matrix A has complex eigenvalues k1 = x1i and

k2 = �c + x2i (as well as �k1 ¼ �x1i and �k2 ¼ �c� x2i), where
c2 � k
m
¼ �x2

2: ð16Þ
To transform Eq. (13) into the form in which the center manifold theorem can be applied, the following linear trans-

formation matrix:



H.-K. Chen, Z.-M. Ge / Chaos, Solitons and Fractals 24 (2005) 125–136 129
B ¼

0 1 0 0

x1 0 0 0

0 0 0 1

0 0 x2 �c

2
6664

3
7775 ð17Þ
is used. The matrix B is built from the eigenvectors of the matrix A. Let the coordinate transformation
X ¼ Bq; where q ¼ ½q1; q2; q3; q4�
T
: ð18Þ
Then Eq. (13) is transformed as
_q ¼ B�1ABqþ B�1F ðqÞ þOð4Þ: ð19Þ
The detailed expression is
_q1
_q2
_q3
_q4

2
6664

3
7775 ¼

0 �x1 0 0

x1 0 0 0

0 0 �c �x2

0 0 x2 �c

2
6664

3
7775

q1
q2
q3
q4

2
6664

3
7775þ

F 1ðqiÞ
0

F 2ðqiÞ
0

2
6664

3
7775þOð4Þ; ð20Þ
where
F 1 ¼
1

x1

ða1q2q4 þ a2q32 þ a3q2q
2
4Þ;

F 2 ¼
1

x2

ða4q22 þ px2
1q

2
1 þ px2

1q
2
1q4 þ a5q22q4Þ:

ð21Þ
Search for a two-dimensional center manifold:
q3 ¼ h1ðq1; q2Þ ¼ S1q21 þ S2q1q2 þ S3q22 þOð3Þ;
q4 ¼ h2ðq1; q2Þ ¼ T 1q

2
1 þ T 2q1q2 þ T 3q

2
2 þOð3Þ:

ð22Þ
According to the center manifold theorem, the following:
oh1
oq1

½�x1q2 þ F 1ðq1; q2; h1; h2Þ� þ oh1
oq2

ðx1q1Þ � ð�ch1 � x2h2Þ � F 2ðq1; q2; h1; h2Þ ¼ 0;

oh2
oq1

ð�x1q2Þ þ oh2
oq2

ðx1q1Þ � ð�ch2 � x2h1Þ ¼ 0

8<
: ð23Þ
must be satisfied. Equating powers of q21, q1q2, q
2
2, one obtains that
c x1 0 x2 0 0

0 �x1 c 0 0 x2

�2x1 c 2x1 0 x2 0

�x2 0 0 c x1 0

0 �x2 0 �2x1 c 2x1

0 0 �x2 0 �x1 c

2
6666666664

3
7777777775

S1

S2

S3

T 1

T 2

T 3

2
6666666664

3
7777777775
¼

px2
1=x2

a4=x2

0

0

0

0

2
6666666664

3
7777777775
: ð24Þ
By Cramer�s rule, the solution of the non-homogeneous linear set of equations can be obtained. We define
S1 ¼ S�
1; S2 ¼ S�

2; S3 ¼ S�
3; T 1 ¼ T �

1; T 2 ¼ T �
2; T 3 ¼ T �

3; ð25Þ
thus one has
q3 ¼ h1ðq1; q2Þ ¼ S�
1q

2
1 þ S�

2q1q2 þ S�
3q

2
2 þOð3Þ;

q4 ¼ h2ðq1; q2Þ ¼ T �
1q

2
1 þ T �

2q1q2 þ T �
3q

2
2 þOð3Þ:

ð26Þ
Substituting Eq. (26) into (20), the reduced system, which determines stability, is therefore given by
_q1
_q2

� �
¼

0 �x1

x1 0

� �
q1
q2

� �
þ

x�1
1 ½a1T �

1q
2
1q2 þ a1T �

2q
2
2q1 þ ða1T �

3 þ a2Þq32�
0

� �
þOð5Þ: ð27Þ
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The center manifold theorem has been applied to this system. Up to now, the stability of the system is undetermined,

thus the normal form theorem will be adopted to study this problem afterwards. The normal form theorem implies that

many nonlinear terms in Eq. (27) can be removed by a nonlinear transformation and this transformation does not affect

the qualitative behavior of the system. The normal form theorem gives a coordinate transformation which transforms

the system (27) into the following system:
_y1
_y2

� �
¼

0 �x1

x1 0

� �
y1
y2

� �
þ

ðK1y1 þ K2y2Þðy21 þ y22Þ
ðK1y2 � K2y1Þðy21 þ y22Þ

" #
þOð5Þ; ð28Þ
where
K1 ¼
a1T �

2

8x1

; K2 ¼
1

8

a1T �
1

x1

þ 3ða1T �
3 þ a2Þ
x1

� �
: ð29Þ
In the absence of the terms of order O(5), the local family (29) is more tractable in plane polar coordinates (r,H). It is

easily shown that
_r ¼ rðlþ K1Þr2; _H ¼ x1 � K2r2: ð30Þ
Let us assume that K1 < 0. The phase portrait of the system (30) for l < 0 consists of a hyperbolic, stable focus at the

origin. When l ¼ 0, _r ¼ K1r3 and the origin is still asymptotically stable, though it is no longer hyperbolic. For l > 0,

_r ¼ 0 for r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l=jK1j

p
as well as for r = 0. It follows that for l > 0 there is a stable limit cycle, of radius proportional toffiffiffi

l
p

, surrounding a hyperbolic, unstable focus at the origin. This is called a supercritical Hopf bifurcation; the authors

refer the reader to Thompson and Stewart [11]. If K1 > 0, then the limit cycle occurs for l < 0: it is unstable and sur-

rounds a stable fixed point. As l increases, the radius of the limit cycle decreases to zero at l = 0, where the fixed point

at the origin becomes a weakly unstable focus. For l > 0, (y1,y2)
T = 0 is unstable and hyperbolic. This is known as a

subcritical Hopf bifurcation.

3.2. The case of a double zero eigenvalues

When x1 = 0 the matrix A has a double zero eigenvalues, and a pair of complex eigenvalues with negative real parts.

Similarly, the center manifold theorem is used to reduce the original-dimensional equation to a two-dimensional one to

simplify the analysis. The center manifolds are found as follows:
x3 ¼ h1ðx1; x2Þ ¼
a4

c2 þ x2
2

x21 �
4a4c

ðc2 þ x2
2Þ

2
x1x2 þ

1

c2 þ x2
2

p þ 8a4c2

ðc2 þ x2
2Þ

2
� 2a4
c2 þ x2

2

 !
x22;

x4 ¼ h2ðx1; x2Þ ¼
2a4

c2 þ x2
2

x1x2 �
4a4c

ðc2 þ x2
2Þ

2
x22:

ð31Þ
Then, the reduced system is obtained as
_x1 ¼ x2;

_x2 ¼
a1a4

c2 þ x2
2

x31 �
4a1a4c

ðc2 þ x2
2Þ

2
x21x2 þ

a1
c2 þ x2

2

p þ 8a4c2

ðc2 þ x2
2Þ

2
� 2a4
c2 þ x2

2

 !
x1x22;

ð32Þ
Next, the above reduced system will be transformed to the simplest form, known as the normal form. This is given by
_y1 ¼ y2;

_y2 ¼ a1y31 þ a2y21y2;
ð33Þ
where
a1 ¼ a1a4
c2 þ x2

2

; a2 ¼
�4a1a4c

ðc2 þ x2
2Þ

2
: ð34Þ
The unfolding of the normal form is given as
_y1 ¼ y2;

_y2 ¼ l1y1 þ l2y2 þ a1y
3
1 þ a2y

2
1y2:

ð35Þ



H.-K. Chen, Z.-M. Ge / Chaos, Solitons and Fractals 24 (2005) 125–136 131
It is easy to find that Eq. (35) has fixed points at
A : ðy1; y2Þ ¼ ð0; 0Þ; B : ðy1; y2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�l1

a1
; 0

r� �
: ð36Þ
It is not difficult to determine the stabilities of these fixed points. For point A, when l2 > 0 and l2
2 þ 4l1 > 0, the equi-

librium is a saddle. If l2 > 0 and l2
2 þ 4l1 < 0, then the point A is a source. If u2 < 0 and l2

2 þ 4l1 > 0, it is known that

this point is a saddle point. If l2 < 0 and l2
2 þ 4l1 < 0, then this point A is a sink. Further, the supercritical pitchfork

bifurcations occur on the line l1 = 0, the Hopf bifurcations occur when l1 < 0 and l2 = 0. For point B, when

l2 � l1 > 0 and l1 > 0 the equilibrium is a source. When l2 � l1 > 0 and l1 < 0 the equilibrium is a saddle point. If

l2 � l1 < 0 and l1 > 0, then the point B is a sink. If l2 � l1 < 0 and l1 < 0, then the point B is a saddle point. Besides,

the supercritical pitchfork bifurcation occurs on the line l1 = 0. Again it is found that a secondary bifurcation cannot

occur.

Further, the so-called saddle connection bifurcation must be examined by the rescaling and the Melnikov method.

The rescaling transformation is introduced as follows:
y1 ¼ el; y2 ¼ e2m; l1 ¼ e2m1; l2 ¼ e2m2: ð37Þ
This brings the system to the form of
_l ¼ m;

_m ¼ m1M þ a1M3 þ eðm2mþ a2l
2mÞ:

ð38Þ
For e = 0, the Hamiltonian function is
Hðl; mÞ ¼ m2

2
� m1m2

2
� a1l4

4
: ð39Þ
Simply, let m1 = � a2, the system (39) has a pair of saddle points (l,m) = (± 1,0), and the heteroclinic orbits are
l0 ¼ �
ffiffiffi
2

p
sech

ffiffiffiffiffiffi
a1t

p
; m0 ¼ �

ffiffiffiffiffiffiffi
2a1

p
ðsech

ffiffiffiffiffiffi
a1t

p
Þ tanh

ffiffiffiffiffiffi
a1t

p
: ð40Þ
From the Melnikov function, when the saddle connection is preserved, the following condition:
Mðm2Þ ¼
Z 1

�1
m0ðm2m0 þ a2l

2
0m0Þdt ¼ 0: ð41Þ
must be satisfied. From the above condition, one obtains
m2 ¼
�a2
5
ffiffiffiffiffi
a1

p : ð42Þ
Returning the unsealed parameters, the final criterion for the saddle connection is
l1

l2

¼ 5
ffiffiffiffiffi
a21

3
p
a2

: ð43Þ
This completes the local analysis of the system in the neighborhood of the bifurcation.
4. Numerical simulations and discussion

In order to simplify the analysis, most of the parameters are kept constant. The parameter values are: I1 = 1.0,

k = 100, ‘ = 0.1, M = 0.5, m = 0.1, p = 0.1, b2
/ ¼ 100, x = 2.0, 2c = 0.5. The only varied parameter is �‘. Solutions of

Eq. (9) are obtained using a Runge–Kutta integration algorithm, with the time step size of 0.01, and different initial

conditions. From the numerical integration of Eq. (9), phase plane plots and corresponding Poincaré maps, can easily

be constructed and Liapunov exponents calculated. For some different parameter values, the system under considera-

tion can be driven into chaos. In this study, the powerful Liapunov exponent tests are shown in Fig. 2 to confirm the

chaotic motion. As �‘ < 4:68, the system exhibits regular motion; when �‘ > 4:68, it routes to chaotic motion.

The Poincaré map in Fig. 3 is a closed curve, which indicates that the motion is quasi-periodic. Fig. 4 shows the

Poincaré map, which corresponds to a typical chaotic attractor. The Poincaré maps provide an interesting strange

attractor on which the motion is possibly unpredictable. It is found that a quasi-periodic behavior can be changed into

a chaotic motion as the forcing amplitude increases. Fig. 5 also shows the time history of a quasi-periodic oscillation for
�‘ ¼ 2:0. Fig. 6 also displays the time history of a chaotic oscillation of the gyroscope for �‘ ¼ 5:0.



Fig. 2. The largest Liapunov exponent as a function of �‘ for a dissipative gyro.

Fig. 3. (a), (b) The phase trajectory for �‘ ¼ 2:0; (c), (d) The Poincaré maps for �‘ ¼ 2:0.
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The spectral analysis of the Liapunov exponents has proven to be the most useful dynamical diagnostic for chaotic

system. The spectrum of the Liapunov exponents enables one to classify the system attractor, its dimension and the

sensitivity of the system to initial conditions. The numerical calculations have been undertaken by using the method

described in Wolf et al. [19]. Time plays the role of one of the dimensions and in this direction the exponent is always

zero. The Liapunov exponents spectrum for any chaotic oscillation in four-dimensional phase space can be (+, 0, �, �),

(+, +, 0, �) or (+, 0, 0, �). The occurrence of two or more positive Liapunov exponents is called hyperchaos. In this

study, the Liapunov exponents spectrum for chaotic oscillation is the type (+, 0, �, �). Hyperchaos is not found in this

research. The largest Liapunov exponents obtained for the system as a function of �‘ are plotted in Fig. 2. The sum of the



Fig. 4. (a), (b) The phase trajectory for �‘ ¼ 5:0; (c), (d) The Poincaré maps for �‘ ¼ 5:0.

Fig. 5. The time history for �‘ ¼ 2:0.

Fig. 6. The time history for �‘ ¼ 5:0.
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four Liapunov exponents is negative and it approaches to �0.5. For example, at the following parameters: I1 = 1.0,

k = 100, ‘ = 0.1, �‘ ¼ 5:0, M = 0.5, m = 0.1, p = 0.1, b2
/ ¼ 100, x = 2.0, 2c = 0.5, the calculated Liapunov exponents

are k1 = 0.072, k2 = 0, k3 = � 0.277, k4 = � 0.295. The sum of the exponents is
P

k ¼ �0:5. The dimension of an attrac-

tor reflects one of the essential aspects of dissipative dynamics; that is, the contraction of the phase volume. A chaotic

attractor is federated by contraction accompanied by stretching and folding of the state trajectories, it has a non-integer
Fig. 7. The largest Liapunov exponent as a function of b2
/ðb/ ¼ I3xz=I1) for �‘ ¼ 5:0.

Fig. 8. Parametric diagram of �‘ versus forcing frequency x.
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dimension. The Liapunov dimension dL can be obtained, according to the definition given by Kaplan and Yorke [20].

The calculated fractal dimension of the above chaotic attractor is 3.126.

The governing equations contain various different parameters. Obviously, it is not feasible to study the effects of the

all these parameters. A few interesting cases are presented below. The associated parameter values are given in the figure

captions. According to past experience in studying the gyroscope, the effect of the spin speed of the gyroscope on the

system behavior plays an important role. Here the effect of the spin speed of the gyroscope on the dynamic behaviors of

the system is studied by numerical simulation in conjunction with the Liapunov spectrum analysis. Fig. 7 shows that

when the spin speed of the gyroscope increased, the chaotic motion disappears, and regularity returns. Further a para-

meter diagram for x and �‘ showing the regular and chaotic motions is plotted in Fig. 8.
5. Conclusions

The nonlinear motion of a dissipative symmetric gyroscope has been investigated qualitatively and numerically. It

has been shown by computer simulation that, for this two-degree-of-freedom system, quasi-periodic and chaotic behav-

ior exists for certain values of the amplitude and the frequency of the base excitation. Quasi-periodic routes to chaos in

the system have also been observed. The qualitative behaviors of the system have been studied by the center manifold

theorem and the normal form theorem in Section 3. The co-dimension one bifurcation analysis for the Hopf bifurcation

has been carried out. The pitchfork, Hopf, and the saddle connection bifurcation for co-dimension two bifurcation have

been found. The quasi-periodic and chaotic behaviors have been described in the phase plane. In addition to the Poin-

caré maps and the Liapunov exponents have been computed numerically and the related fractal dimensions have been

used to show the presence of chaotic behavior in the system. Besides, the effect of the spin speed of the gyroscope on its

dynamic behavior has also been considered. It has been found that the higher spin speed of the gyroscope can quench

the chaotic motion in this study. It can be effectively used in controlling chaos. Our findings can be quite beneficial to

further understanding and utilization of the complex gyroscope.
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