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Abstract—Fault-tolerance and data fusion have been considered
as two fundamental functions in wireless sensor networks. In this
paper, we propose a novel approach for distributed multiclass clas-
sification using a fault-tolerant fusion rule for wireless sensor net-
works. Binary decisions from local sensors, possibly in the presence
of faults, are forwarded to the fusion center that determines the
final classification result. Classification fusion in our approach is
implemented via error correcting codes to incorporate fault-toler-
ance capability. This new approach not only provides an improved
fault-tolerance capability but also reduces computation time and
memory requirements at the fusion center. Code matrix design is
essential for the design of such systems. Two efficient code matrix
design algorithms are proposed in this paper. The relative merits
of both algorithms are also studied. We also develop sufficient con-
ditions for asymptotic detection of the correct hypothesis by the
proposed approach. Performance evaluation of the proposed ap-
proach in the presence of faults is provided. These results show
significant improvement in fault-tolerance capability as compared
with conventional parallel fusion networks.

Index Terms—Data fusion, decision fusion, distributed classifica-
tion, error correcting codes, fault-tolerance, multisensor systems,
wireless sensor networks (WSNs).

I. INTRODUCTION

CLASSIFICATION based on observations from distributed
sensor nodes is an important application of wireless sensor

networks (WSNs) [1]–[6]. In WSN, the bandwidth of commu-
nication channels is limited, and each node has limited commu-
nication and computation ability. Thus, decision fusion instead
of data fusion is generally preferable due to these constraints
imposed by the network [4], [5]. Hence, in this paper, we only
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consider the decision fusion approach. In a decentralized multi-
class classification problem, each node (local detector) usually
performs multiclass classification and transmits its decision to
the fusion center (manager node or cluster head in WSN) [7],
[8]. This decision is usually represented by information
bits, where is the number of classes to be distinguished. How-
ever, in WSN, sensor nodes are driven by batteries and have very
low-energy resources [1]. Energy consumption is a very impor-
tant factor that determines the lifetime of a WSN. Thus, in order
to conserve energy and increase WSN lifetime, it is necessary
for each local detector to send fewer bits to the fusion center.
This also reduces the bandwidth required. In this paper, we con-
sider the case where the local detectors are only allowed to per-
form binary classification and send out a binary decision to the
fusion center. Theses local decisions are, however, constrained
through a designed code matrix that enables the fusion center to
determine the final decision in favor of one of the classes.

There are several related papers in which binary information
is combined to make final multiclass decisions [9]–[11]. Unlike
the previous approaches, in this paper, the design and perfor-
mance analysis of the fusion rule in the presence of faults is con-
sidered. Fault-tolerance capability is an important issue, while
designing classification systems in WSN. Several researchers
have considered the design of fault-tolerant distributed detec-
tion systems [12]–[15]. However, they only designed the system
based on a known a priori failure probability and considered
the binary detection problem. Using error correcting codes to
provide fault-tolerance capability has not been proposed. The
extension from binary detections to multihypothesis detections
also needs to be considered in WSN. Therefore, in this paper,
we propose a novel fault-tolerant distributed multiclass classifi-
cation fusion approach using error correcting codes (DCFECC)
that provides excellent fault-tolerance capability in WSN. The
DCFECC approach includes employing a fault-tolerant fusion
rule to tolerate deterministic faults and incorporating a priori
failure probabilities for random faults if these a priori failure
probabilities can be obtained in advance. That is, the DCFECC
approach can tolerate both deterministic or random faults. For
deterministic faults such as stuck-at faults, and hardware or
software damage, we employ the fault-tolerant fusion rule to
achieve the fault-tolerance capability. When random faults are
present according to a certain probability distribution function
caused by continually changing environmental characteristics,
such as channel transition errors, we design the fault-tolerant
system by incorporating these a priori failure probabilities.

Since large scale wireless sensor networks often have many
nodes, sensor nodes are usually aggregated into several groups
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Fig. 1. Distributed classification system architecture.

(or clusters) to reduce the amount of power spent on long
distance data transmissions [16]. Hence, the members of each
group (or cluster) are within transmission range of each other
and the number of members of each group (or cluster) is
10–40 [1]. It is possible for each group (or cluster) to run the
distributed detection algorithm separately [16]. Collaborative
detection processing is carried out among nodes within a group
(or cluster) under the control of a manager node (or cluster
head). At a node, the local decision is made according to
the off-line optimized local decision rule based on the given
fault-tolerant fusion rule in a particular cluster. The final
decision is made at the manager node (or cluster head) by em-
ploying the fault-tolerant fusion rule. The general distributed
classification architecture which is suitable for WSN is given
in Fig. 1. A detailed discussion of Fig. 1 will be provided in
Section II.

The proposed scheme is designed as follows. We first design
an error-correcting code matrix. Each codeword forms a row in
the code matrix and corresponds to one of the classes to be dis-
tinguished. Each column represents the binary decision rule em-
ployed at the corresponding local sensor. The local decision rule
is designed off-line in advance by the system-wide optimization
based on the code matrix.1 During the on-line operation, each
local sensor makes its decision by employing the off-line opti-
mized decision rule. The fusion center decides on the class based
on the binary inputs received (the received vector) from the local
detectors. To provide fault-tolerance ability, the fusion center
performs fault-tolerant fusion by minimum distance decoding,
i.e., it decides on the codeword that is closest in Hamming dis-
tance to the received vector, where the Hamming distance be-
tween two binary vectors is defined as the number of distinct
positions between these vectors. This decision on a codeword is
equivalent to making the M-ary decision regarding the classes,
i.e., to making a classification decision. The fault-tolerance or
error correction capability of the system is determined by the
minimum Hamming distance of the code employed.

1In practice, this off-line local decision rule can be optimized at each local
sensor or it can be determined by the base station of the WSN after the cluster
is formed. Note that this optimization is performed only once as long as all
members of the cluster remain the same.

Unlike the Chair–Varshney fusion rule [17], which is the
optimal fusion rule when the local sensor decision rules are
given, the proposed fault-tolerant fusion rule provides enough
distance among all the decision regions corresponding to their
hypotheses. The observed local decision vectors could still fall
into correct decision regions even when several sensors fail. In
addition to having good fault-tolerance ability, the DCFECC
approach also reduces the memory requirement and speeds up
the fusion process at the fusion center. The reduction in memory
requirement is achieved due to the decoding operation based
on Hamming distance operations employed in the fault-tolerant
fusion rule. This fusion rule only needs a binary code matrix to
be stored at the fusion center instead of real valued parameters
required by the Chair–Varshney fusion rules. The speed up of
the fusion process results from the fact that the fault-tolerant
fusion process only requires computation involving integers
while the Chair–Varshney fusion process requires computa-
tion involving real numbers. Thus, fewer bit computations
are required in the DCFECC approach as compared with the
system employing the Chair–Varshney fusion rule. The above
benefits also imply economy in terms of the hardware cost.
These potential advantages make the DCFECC approach quite
suitable for use in WSN [1].

The classification performance of the DCFECC approach is
strongly related to the chosen code matrix. How to design a
good code matrix for use in this approach is clearly an impor-
tant issue. It is quite difficult to obtain a good code matrix using
an analytical approach, since the decision rules, i.e., the binary
rules at the sensors specified by the columns of the code ma-
trix, while keeping sufficient Hamming distance between rows
of the code matrix to provide desired fault-tolerance, interact
with each other in a very complicated manner. Exhaustive search
for an optimal code matrix is computationally intensive and un-
affordable even for a code matrix of small size. Therefore, we
propose more computationally efficient code design algorithms
based on a cyclic column replacement approach and simulated
annealing in this paper. The results show that the cyclic column
replacement approach is faster but may converge to a local op-
timum depending on the chosen initial code matrix. Simulated
annealing is quite robust irrespective of the initial code matrix
chosen, and is able to construct better code matrices.

The asymptotic performance analysis for the DCFECC ap-
proach is also provided. The results show that the probability of
error for the DCFECC approaches zero asymptotically as long
as the minimum Hamming distance of the employed code ma-
trix satisfies the given conditions. The results reveal that the fault
tolerance capability is related to the minimum Hamming dis-
tance of the code matrix employed by the DCFECC.

This paper is organized in the following manner. System de-
scription and a brief introduction to the DCFECC approach are
given in Section II. Section III develops the optimal local de-
cision rules when the fault-tolerant fusion rule is employed. In
Section IV, we present the search algorithms for an optimal code
matrix. Asymptotic performance analysis for the DCFECC is
provided in Section V. Performance comparisons between the
fault tolerance capability of DCFECC and the 1-bit conventional
approach (CA) are provided in Section VI. Concluding remarks
are provided in Section VII.
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II. PRELIMINARIES

The multiclass classification problem is considered in this
paper. System structure of a distributed -ary classification
system is shown in Fig. 1. Let , where
and , denote the hypotheses to be distinguished at
each of the sensors. The a priori probabilities of these
hypotheses are denoted by , respectively. The ob-
servation at each local sensor or detector is represented by ,
where . After processing the observations locally,
possibly in the presence of sensor faults, the local decisions
are transmitted to the fusion center. The fusion center then re-
ceives a word consisting of the binary decisions made by the
local sensors, which can be expressed as ,
where , , is the received local decision of sensor

at the fusion center. Note that, in general, is not equal to
due to possible channel transmission errors. Furthermore, the
following assumptions are made to the system.

Assumption 1: We assume that , since sensor nodes
in most sensor networks are densely deployed, and the number
of sensors is much larger than the number of hypotheses.

Assumption 2: The distribution function of under each
hypothesis is known. Thus, the conditional probability density
functions of these observations, when is given, can be rep-
resented by .

Assumption 3: The observations are condi-
tionally independent given their hypotheses.

Assumption 4: The output from each sensor , , and
, is a binary value (0 or 1). The inputs to the fusion center,

, , are also binary values.
Assumption 5: During the on-line operation, there is no com-

munication among local sensors. Thus, each local sensor makes
its decision by itself based only on its own observation and in-
dependently of the hypothesis present.

Assumption 6: The received local decision at the fusion
center depends only on the output decision of local sensor .

In our DCFECC approach, a code matrix is selected to per-
form both off-line local decision optimization and on-line fault-
tolerant fusion at the fusion center. The code matrix is an
matrix with elements , , and

. Each hypothesis
is associated with a row in the code matrix . Each column of
the matrix stands for a binary classification rule at each cor-
responding sensor. Each local decision rule is off-line
optimized in advance based on the code matrix to achieve a
better system performance. During the on-line operation, each
sensor employs the off-line designed local decision rule to make
a binary decision , where , if is declared, and

, if is declared. and
denote the two sets of classes

with the properties and , which are
determined according to the th column of .

Fusion processing at the fusion center is carried out to obtain
the multiclass final decision which is one of the possible
hypotheses in . Note that is not a binary decision as is
for . In this paper, the fault-tolerant fusion rule is
proposed and is stated as follows:

Fault-tolerant fusion rule (minimum Hamming distance de-
coding rule): The multiclass final decision is if

, where is the Hamming

distance between and , and is the row
of corresponding to the hypothesis . The tie-break rule is
to randomly pick a codeword from those with the same smallest
Hamming distance to the received vector.

Thus, by constraining the local decisions through the code
matrix, binary local decisions suffice for an -ary hypoth-
esis testing problem without losing information regarding the
hypotheses.

Let be the smallest Hamming distance between any pair
of row vectors of the code matrix . In order to have a better
fault-tolerance capability, it is reasonable to choose a code ma-
trix such that its is as large as possible. In the case of binary
hypotheses, there are only two codewords in the code matrix .
Hence, the all zero and all one codewords have the largest Ham-
ming distance and they expect to yield the best fault-tolerant per-
formance. Furthermore, in this case, the proposed fault-tolerant
fusion rule is equivalent to the majority rule. When and
given , according to the Gilbert–Varshamov bound [18], there
exists a code matrix whose minimum Hamming distance is at
least provided

Furthermore, for a given and desired , the largest
number of distinct hypotheses is bounded by the Plotkin
bound [18] as

for

The above two bounds give a possible range of the largest
that can be obtained when and are given. For example, if

and , the largest of matrices that can be
found is between 3 and 6.

III. OPTIMAL LOCAL BINARY DECISION RULES

In the following, we design optimal local decision rules for
the proposed multiclass distributed classification strategy based
on the minimization of misclassification (or decision error)
probability when the fault-tolerant fusion rule is employed.

Let us define , where ,
as the cost that the received word at the fusion center

equals and the true
hypothesis is . These costs can be determined by
the decision regions of codewords. According to the fault-tol-
erant fusion rule at the fusion center, the decision region of
a codeword is given as follows:

where is the set of all codewords,
i.e., all rows of the code matrix. In order to minimize the prob-
ability of misclassification, set if is
in the decision region of that is the row of corresponding
to the hypothesis ; otherwise, set . Whenever
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a received vector simultaneously belongs to deci-
sion regions of , where , for all

, set , i.e., the tie-break rule.
For instance, given the code matrix in

Code Matrix I

we have , ,
, and , since the

Hamming distance between and
codeword is the smallest. Throughout this paper, the referred
code matrices are represented as a vector of bit integers.
Each integer corresponding to column in the code matrix
represents a column vector in the code matrix, and can be
expressed as . For instance, the integer
5 in column 3 of Code Matrix I represents , ,

, and .
For modeling channel transmission errors, we incorporate a

probabilistic fault model similar to that proposed in [14] and
[15] into the DCFECC approach. Let
be the probability that the fusion center receives when
the local decision output in sensor , , is 0. The probability

is similarly defined.
According to the above cost assignment, the probability of

decision error can be written as

(1)

By Assumption 5 and Assumption 6, we can rewrite the previous
equation as

Let us employ the person-by-person optimization (PBPO) pro-
cedure [7]. is minimized if we set the local decision rule at
sensor as

(2)

where

can be further simplified as

(3)

due to Assumption 3.
Thus, represents a weight that depends on the deci-

sion rule at other sensors due to the conditional probabilities
, , , and the coupled costs

. It can be interpreted as the expected cost difference
of sensor making the decision 1 or 0 with respect to the local
decisions of all other sensors. The term appears
due to the possible transmission error.

The above optimal local decisions are determined when the
fault-tolerant fusion rule is given. Whenever the code matrix is
changed, the corresponding optimal local decision rules are also
modified. The system performance of the DCFECC approach is
then related to the given code matrix. Therefore, it is important
to find a good code matrix such that the probability of decision
error is low.

It is easy to see that the statistic at sensor on the left hand
side of (2) depends on the binary decision rules at the other sen-
sors. Even when the code matrix is given, it is very difficult to
find the globally optimal threshold. Instead of finding a globally
optimal threshold, a locally optimal threshold may be sufficient
in many applications. An algorithm that could be used to search
for the optimal threshold is the iterative Gauss–Seidel cyclic co-
ordinate descent algorithm [7] which may converge to a locally
optimal threshold. Usually, convergence depends on the chosen
initial values of .

IV. CODE DESIGN METHODOLOGY

The objective while designing a good code matrix is to have
the fusion system exhibit good performance in both fault-free
and faulty situations. In general, the minimum Hamming dis-
tance in a code matrix should be as large as possible since larger
Hamming distance between codewords provides the system the
ability to tolerate more faults. However, for the code matrix used
in the DCFECC, larger Hamming distance does not always en-
sure good performance in both fault-free and faulty situations.
System performance also depends on the patterns of columns in
the code matrix, which determine the performance of local bi-
nary classifiers (detectors). If a code matrix has larger Hamming
distance but results in poor binary classifiers, then the overall
system performance degrades. Moreover, when some local de-
tectors fail to perform normally, the operation of the system
will rely only on the other functional local detectors. Obviously,
the fault-tolerance ability will also be degraded when poor bi-
nary local classifiers dominate system performance. Therefore,
a good code matrix should have a large minimum Hamming dis-
tance and simultaneously result in good local binary classifiers.

The coupling with local decision rules in distributed classi-
fication makes the code design quite complicated. To achieve
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system-wide optimization, local sensors often use different de-
cision strategies from the case when they are not in collabo-
ration. Thus, the code matrix design can not be viewed as the
independent design of individual column vectors (binary clas-
sifiers). Instead of analytically designing the code matrix with
these interwoven rules, we propose two heuristic algorithms to
efficiently solve the code design problem.

A. Code Design by Cyclic Column Replacement

For the cyclic column replacement approach, we first set a
minimum Hamming distance constraint based on the required
fault-tolerance capability. We then initialize the algorithm
by picking a code matrix ,
where must satisfy the minimum Hamming distance
constraint. represents the th column vector of code
matrix . In the following, the first superscript of each
column in this matrix indicates that this column is the result
after th iteration, while the second superscript indicates the
column index of the code matrix. During the first iteration, the
column vector is first replaced by so as to minimize

and ensure that the code matrix
fulfills the minimum Hamming distance

requirement, while other column vectors re-
main fixed, where denotes the
probability of misclassification when
is the code matrix in (1). Next, the second column is re-
placed by so as to minimize
and at the same time meet the minimum Hamming distance re-
quirement. This procedure is continued for all the columns. The
first iteration is complete after all the column vectors have been
updated. Once the first iteration is complete, the next iterations
are run in a similar way. The iterative algorithm terminates
when the code matrix remains the same after an iteration.

Although the search process for each column in this algorithm
needs to search possible column vectors, only the column
vectors satisfying the minimum Hamming distance requirement
are needed to determine the probability of error. It is surprising
that this algorithm converged very fast in all the simulations we
have conducted. The algorithm took only one or two iterations
to converge. This indicates that there are many local optimal
solutions that this code search procedure converges to. In order
to avoid convergence to a local optimal solution, we propose to
use simulated annealing to search for a global optimal solution.

B. Code Design by Simulated Annealing

Simulated annealing is a stochastic algorithm for obtaining
approximate solutions to combinatorial optimization problems.
It has been successful in many diverse applications. This algo-
rithm is designed to search for the global optimum and is usually
robust. Gamal et al. [19] have constructed good source codes,
error-correcting codes, and spherical codes by using simulated
annealing. For constructing the optimal code matrix here, the
energy function is set to the probability of misclassification as
shown in (1). The minimum Hamming distance is also set to
meet the fault-tolerance requirement.

The annealing schedule is decided as follows. We first gen-
erate some random code matrices and determine their corre-
sponding optimal local decision rules. We then use them to
determine the encountered range of values of

, where and are potential candidates for code ma-
trices. Then, an initial temperature is set sufficiently high so
that the algorithm has a better chance of finding the global op-
timum. We set in our case. The cooling control parameter

is chosen for lowering the temperature using .
This chosen value of ensures slow cooling in the annealing
process for our problem, and is essential for achieving a low-en-
ergy state.

Random changes in the code configuration are achieved by
perturbation of the code matrix. The amount of perturbation
could be done on a case by case basis. In our code design
process, a codeword of the current code matrix is randomly
selected and then one or two randomly selected bits of the code-
word are flipped. Each time a new code matrix is generated,
we have to check whether or not the new code matrix meets
the minimum Hamming distance requirement. If not, a new
code matrix is generated according to the above code matrix
perturbation until the minimum Hamming distance constraint
is satisfied for the new code matrix. Specifically, the algorithm
is given as follows.

Step 1) Set the minimum Hamming distance requirement,
and initialize the algorithm by selecting a random
code matrix satisfying the minimum Hamming
distance constraint. Determine the optimal local de-
cisions according to (2) and (3) based on . Set the
temperature . Compute the energy ac-
cording to (1).

Step 2) (Main iteration.)
a) Obtain by perturbing until the minimum

Hamming distance constraint is satisfied.
b) Based on , the local decision rules are opti-

mized according to (2) and (3).
c) Compute , and replace

by if ; otherwise, replace by
with probability .

d) Repeat Step 2a) to Step 2c) until the number
of times the energy drops exceeds a prescribed
number or too many iterations, whichever
comes first.

e) Lower temperature by , and return to
Step 2a).

Step 3) Terminate the algorithm when a stable code matrix
configuration is observed or a prescribed running
time is expired.

Example 1: A fusion center and ten independent local sen-
sors are considered to identify four equally likely hypotheses

, , , in the example presented here. Furthermore,
we assume that all the sensor measurements are identically
distributed. The observations are statistically independent. The
probability density function for each hypothesis is assumed to
be a Gaussian distribution with the same variance
but with different means 0, , , and , respectively. The
signal-to-noise power ratio (SNR) of observations at each local
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Fig. 2. Performance comparison of 4 � 10 code matrices designed at 0 dB by
the cyclic column replacement approach (both initial strategies) and simulated
annealing.

sensor is since the variance of the noise is equal to
one. We assume that data transmission is over ideal channels
in this example. The algorithms based on the cyclic column
replacement approach and simulated annealing were started
with two different initial code matrices given in Code Matrix I
and

Code Matrix II

respectively. It is easy to see that the minimum Hamming dis-
tance between any pair of the codewords in both matrices is 5.
This value is set as the minimum Hamming distance require-
ment in both algorithms. We then searched the optimal code
matrix when dB. The optimal local decision rules
were computed via the Gauss–Seidel algorithm. Probability of
misclassification as shown in (1) was computed by numerical
integration. The code matrices obtained from the cyclic column
replacement approach with these two initial code matrices are

Code Matrix III

and

Code Matrix IV

respectively. Since the code matrix obtained from simulated an-
nealing with both initial code matrices is the same, we only
present one result, namely

Code Matrix V

The probability of misclassification for each matrix is com-
puted and plotted in Fig. 2. One can observe that the perfor-
mance of the cyclic column replacement approach is depen-
dent on its initial code matrix. The performance of the code
matrix obtained by simulated annealing is better than that ob-
tained by the cyclic column replacement approach at all SNR
values considered even though the code matrices are obtained
at dB.

V. PERFORMANCE ANALYSIS

In this section, we give the asymptotic performance analysis
for the proposed DCFECC approach. We provide the results for
both fault-free and faulty situations.

A. Decision Error Under Fault-Free Situation

In the following derivations, we assume that an identical local
decision rule is employed at each sensor. Under this assump-
tion, the probability of making the decision given that
is the true hypothesis is denoted by for each
sensor. Assume independence across sensor observations. Also,
let . Let ,

and . The probability of correct detection can be
expressed as

decision

At most sensors

assume wrong hypothesis

where follows from the fact that is the minimum
Hamming distance between any pair of codewords in the
code matrix, follows from the fact that the sensor could
decide on wrong hypothesis but the output (1 or 0) from the
sensor may still be correct, follows since we assume2

, and is the binary Kull-
back–Leibler divergence of and . Thus, the probability of
decision error can be expressed as

which implies that given that

2For binary independent identically distributed (i.i.d.) variables fX g
with Pr(X = 1) = 1� Pr(X = 0) = � < �,

PrfX +X + � � �+X � N�g

= Pr e � e ; where s > 0

�
E [e ]

e

� (exp f� [s� � log(1� � + �e )]g) :

Taking s = log(�(1� �)=�(1� �)) > 0 yields

PrfX + � � �+X � N�g � exp f�ND(�k�)g :
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Now, suppose . We can conclude that under the con-
dition of

Hence, as long as satisfies , the probability

of decision error for DCFECC approaches zero as goes to
infinity.

B. Decision Error With Possible Faulty Sensors

Assume that there are mis-behaved sensors that might be
due to damaged sensors. Then the resultant new will satisfy

Thus, using the same notations

where . By assuming that , we have

Consequently, if

the probability of decision error for DCFECC goes to zero as
goes to infinity. An operational implication of the above in-

equality is as follows. As long as the largest minimum pair-
wise Hamming distance (i.e., ) asymptotically beats the
number of misbehaved sensors (i.e., ) plus twice of the ex-
pected number of sensors that give wrong local classifications
(i.e., decision ), the DCFECC
approach can provide vanishing global decision error.

VI. PERFORMANCE EVALUATION IN THE PRESENCE OF FAULTS

In this section, we evaluate the performance of the DCFECC
approach in the presence of deterministic faults such as stuck-at
faults and random faults such as channel transmission errors.
Unlike the stuck-at faults in logic circuits, we assume that the
sensors with stack-at faults always send 1 or 0 decisions to the
fusion center. We also give an example to show the effect of
the minimum Hamming distance on the fault-tolerance capa-
bility. Note that all the performance evaluations in this paper are
based on analytical results. Performance in terms of probability
of misclassification is computed using (1). Numerical methods
are used to obtain integration values. The problem considered
in the following examples is defined as follows.

• Four equally likely hypotheses , , , are to be
identified.

• All the sensor measurements are identically distributed.
• The probability density function for each hypothesis is the

same as that given in Example 1.
• For each SNR value, the Gauss–Seidel algorithm is

used to compute the optimal local decision rules of the
DCFECC approach, as well as the optimal local decision
rules and the Chair–Varshney fusion rule of both CA and
FCA approaches. CA and FCA will be defined later.

Example 2: In this example, stuck-at faults at local sensors
are considered and data transmission is assumed to be over ideal

channels. When a stuck-at fault occurs at sensor , the local de-
cision of sensor is either always 1 or always 0. Conse-
quently, if sensor always sends 1 to the local fusion center, the
conditional probabilities , , 1, 2, 3, become
1 regardless of the hypothesis present. Similarly, the conditional
probabilities become 1 when the faulty sensor
always sends 0 to the local fusion center. Since we assume an
ideal channel, is equivalent to in
this example.

A system with a fusion center and seven local sensors is con-
sidered in this example. In the following, the performance of
the DCFECC approach is evaluated and it is compared with that
of the 1-bit CA in both the fault-free and faulty situations. By
the 1-bit CA, we mean distributed -ary detection based on bi-
nary local decisions received at the fusion center that employs
the Chair–Varshney fusion rule [17]. That is, the local sensors
send their one bit information to the fusion center, and the fusion
center fuses the binary decision vector into a multiclass decision
by

assigning to if (4)

From (4), we can see that the Chair–Varshney fusion rule is the
MAP fusion rule and is optimal when the local decision rules
are given. It can be obtained by extending the binary hypotheses
version given in [7]. Note that the CA is different from the ap-
proaches used in [20] and [21], where an identical local decision
rule is used for each sensor. For the parallel fusion network, the
use of identical local decision rules is optimal based on error ex-
ponent only in an asymptotical sense when the number of sen-
sors becomes arbitrarily large, i.e., the error exponents of the
identical local decision rules and the nonidentical local decision
rules obtained by system-wide optimization are equal. In gen-
eral, however, system-wide optimization will result in noniden-
tical local decision rules for which readers may refer to [22] for
more details. An example that demonstrates that identical local
classification rule is only suboptimal in the sense of global deci-
sion error can be found in [22, Appendix B]. In [20], the authors
show that identical local decision rules are also asymptotically
optimal in the sense of error exponent when the system is sub-
ject to a power constraint.

In this example, the code matrix designed by simulated an-
nealing is chosen for the DCFECC approach and is given by

Code Matrix VI

It is easy to see that the minimum Hamming distance between
any two codewords in this code matrix is 3.

In this example, we also let SNR range from 0 to 12 dB with
step size equal to 0.5 dB. Since the Gauss–Seidel algorithm may
converge to a local minimum, depending on the initial values
of , where and , 1, 2, 3, two
initialization strategies are considered. In the first strategy, we
initialize the algorithm with identical decision rules at all the
local sensors. The identical decision rule was found by con-
sidering only an isolated sensor where the isolated optimum
decision rule is for the classification of and

. In the second strategy, we initialize the algo-
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Fig. 3. Performance comparison of DCFECC and the CA when one fault is
present and the first initialization strategy is employed.

Fig. 4. Performance comparison of DCFECC and the CA when two faults are
present and the first initialization strategy is employed.

rithm with the probabilities when all the local sen-
sors operate independently with their optimum decision rule for
classification corresponding to the columns of the code matrix
designed for DCFECC.

We assume that the faulty sensors always send the decision
1 to the fusion center. The performance with one faulty
sensor and two faulty sensors ( , 3) are shown
in Figs. 3 and 4, respectively, when the first initialization
strategy is employed. The performance of fault-free situation
is also included for comparison. Performance results with
one faulty sensor and two faulty sensors ( , 3)
are presented in Figs. 5 and 6 when the second initialization
strategy is employed. Again, the performance with no faults
is also included.

There are several observations that can be made from these
figures. First, from Fig. 3, the performance of DCFECC in the

Fig. 5. Performance comparison of DCFECC and the CA when one fault is
present and the second initialization strategy is employed.

Fig. 6. Performance comparison of DCFECC and the CA when two faults are
present and the second initialization strategy is employed.

presence of one fault is better than that of the CA at all SNR
ranges except when SNR is less than 0.5 dB. However, as
shown in Fig. 4, the performance of DCFECC in the presence
of two faults is better than that of the CA at all SNR ranges
considered. A possible reason for this unusual situation is that
the error resulting from one faulty sensor is smaller than the
error resulting from the overall decision error of the network
at very low SNRs. That is, the error resulting from the overall
decision error of the network dominates the system perfor-
mance at very low SNRs when there is only one faulty sensor.
Second, from Figs. 3 and 4, the performance of DCFECC
without any fault, when the first initialization strategy is em-
ployed, is worse than the CA, when SNR is less than 6.0 dB.
This is obvious because the CA employs the Chair–Varshney
fusion rule. However, the performance of DCFECC is slightly
better than that of the CA when SNR is larger than 6.0 dB.
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This situation is caused by two facts. One is that the thresholds
of the local decision rules and fusion rules determined by the
Gauss–Seidel algorithm are not the global optimum and de-
pend on the initial conditions given to the algorithm. The other
reason is that when the cardinality of the local decisions is
less than the number of hypotheses and all local decision rules
are identical, the system performance starts to become worse
when the SNR grows over a critical point. This surprising
phenomenon was also observed in [10]. We can see as SNR
becomes very large, certain local decision probabilities, e.g.,

and , , become
closer in value. Therefore, it becomes harder to distinguish
between hypotheses and at all local sensors. One
can see from Figs. 5 and 6 that this phenomenon does not
happen with the second initialization strategy, since, under
nonidentical local decision rules, some sensors can have good
performance in distinguishing particular hypotheses sets, even
when other sensors have poor performance. As for the third
observation, the performance of the CA in the presence of one
fault is improved when the second initialization strategy is
employed. This is evident in Figs. 3 and 5. However, it is still
worse than that of the proposed DCFECC approach at most of
the SNR values. Finally, the misclassification probability of the
proposed DCFECC approach decreases when SNR increases
for both fault-free and faulty situations. On the other hand, the
performance of the CA becomes unpredictable when any fault
occurs in the system. Thus, the performance of the DCFECC
approach is more predictable and graceful in the presence of
faults.

For the implementation of the Chair–Varshney fusion rule, as
expressed in (4), real parameters, namely, ,

, must be stored at the fu-
sion center to perform the decision. This needs more space as
compared with the proposed fault-tolerant fusion rule, which
only requires integers (binary code matrix) to be stored.
Moreover, performing the Chair–Varshney fusion rule requires
real number operations. This results in more bit computations
as compared with the fault-tolerant fusion rule, whose compu-
tations involve only integer (fewer bits) computations.

Example 3: In this example, we evaluate the performance of
the DCFECC approach in the presence of channel errors. Ten
local sensors and one fusion center are used. Code Matrix V is
again used in this example. For performance comparison pur-
poses, we design the fault-tolerant system with binary local de-
cisions and employ the Chair–Varshney fusion rule obtained by
extending the design of binary detection systems with channel
errors [15]. We call this the one bit fault-tolerant conventional
approach (FCA).

In this example, we assume that , and design
both the DCFECC and FCA at 5 dB SNR, while assuming
that the probabilities of channel transmission errors, , are
0.01, 0.05, 0.1, and 0.25 for . In order to inves-
tigate the robustness of the two approaches, we evaluate their
performances when the channel transmission error probability,

, is varied from 0 to 0.3. For the FCA, we only provide
the results for the second initialization strategy mentioned in
Example 2. The FCA with the first initialization strategy per-
forms much worse than the DCFECC, and the result is omitted

Fig. 7. Performance comparison of DCFECC and FCA when channel
transmission errors are present and the second initialization strategy is
employed. Both approaches are designed at 5 dB SNR and p = 0:01, 0.05,
0.1, and 0.25.

here due to the space limitation. The performance comparison
of DCFECC and FCA is provided in Fig. 7. Since we found
that the performances for the DCFECC approach under these
four channel transmission error probabilities are very close, we
only plot one result in Fig. 7. This phenomenon indicates that
employing the fault-tolerant fusion rule has already captured
most of the effect of channel errors. As illustrated in Fig. 7,
the performance of DCFECC is better than those of the FCA
designed at and 0.05, when . However,
when the FCA is designed for a higher probability of channel
error, the robustness is close to the DCFECC approach. We see
the performance of the FCA designed at is almost the
same as the performance of DCFECC. When FCA is designed
at , the performance is better than that of DCFECC
when and is slightly worse than that of DCFECC
when .

From the results of the previous examples, we see the
DCFECC can tolerate many types of faults.

Example 4: In this example, we investigate the effect of the
minimum Hamming distance on the fault-tolerance capability
of the DCFECC approach. Ten local sensors and one fusion
center are used. Three code matrices, with different minimum
Hamming distance are designed in this example for comparison
purposes, and Code Matrix V and the two other matrices are
given by

Code Matrix VII

and

Code Matrix VIII

One can see that the minimum Hamming distance in these code
matrices are 5, 4, and 3, respectively.

The performance comparison of systems employing these
three code matrices is provided in Fig. 8. As the results in this
figure show, the performances of the system employing the
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Fig. 8. Performance comparison of DCFECC employing three code matrices
with different minimum Hamming distances.

three different code matrices in the fault-free case are only
slightly different. However, when one fault occurs at sensor
4, the performance of the system employing the code matrix
with minimum Hamming distance 5 becomes better than those
employing code matrices with minimum Hamming distances
3 and 4. When three faults occur at sensors 3, 4, and 5, these
performance differences become much more apparent. The
system employing the code matrix with the largest minimum
Hamming distance performs much better than the others, while
the system employing the code matrix with the smallest min-
imum Hamming distance performs the worst. Therefore, the
system employing a code matrix with larger minimum Ham-
ming distance is able to improve the fault-tolerance capability
against more faults.

VII. SUMMARY AND CONCLUSION

In this paper, the problem of fault-tolerant distributed
classification in wireless sensor networks was considered.
The proposed DCFECC approach is based on the theory of
error-correcting codes and is applicable to harsh environments.
Based on the fault-tolerant fusion rule, the local decision
rules for each sensor were derived. Taking advantage of the
characteristics of the error correcting fusion rule, the system
provides fault-tolerance capability. Computational complexity
and memory requirements are also reduced due to the simplifi-
cation of the decoding rules required for fusion processing.

In order to achieve good performance, we have developed
two efficient algorithms to search for good code matrices for
implementing the DCFECC approach. The cyclic column re-
placement approach is usually fast but may converge to a local
optimum depending on the chosen initial code matrix. On the
other hand, the simulated annealing approach is robust to the
selection of the initial code matrix, and has better performance
even though it takes more time to converge.

The conditions for asymptotic detection of the correct hy-
pothesis by the DCFECC were also developed to show the re-
lationship between the minimum Hamming distance of the em-
ployed code matrix and the fault-tolerance capability.

Finally, performance comparisons of the DCFECC and con-
ventional approaches were provided by numerical examples.
The results showed that the former outperforms the latter in the
presence of faults.
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