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SUMMARY 
The efficiency of object-oriented programs has become a point of great interest. One necessary factor 
for program efficiency is the optimization techniques involved. This paper presents the performance 
of several variations of a given C t t  program and compares them with a version that uses no object- 
oriented features. Our result indicates that some object-oriented features in C t t  are not well optim- 
ized in current C t t  compilers. We thus discuss some code optimization techniques that can improve 
the efficiency based on the given C t t  program. 
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INTRODUCTION 
The Ci-t language’ is one of the most efficient object-oriented programming languages. 
A recent comparison2 using a simple ‘database’ program showed that the C t t  version 
is faster than those in the other four modem languages: Oberon-2, Modula-3, Sather, 
and Self. The designers of Ci-t have carefully considered the efficiency issue. For 
example, dynamic dispatch is not by default for the invocation of a member function 
in C t t .  In addition, C++ is strongly typed: it is easier to provide efficient (constant 
time) dynamic dispatch when the type information is available. The C3 programs are 
thought to be efficient and compact. Do C t t  programs inherit this property? Can we 
write C t t  programs without concern for the underlying implementation of object-ori- 
ented constructs, even when the efficiency of programs is concerned? 

Answering the above questions depends on the applications and compiler techno- 
logies of Ci-t. It may be very difficult. This paper presents a case study to show several 
efficiency and optimization problems specific to C t t .  It measures the efficiency of 
some variations of a given C t t  example program (quick sort) and compares them with 
a version using no object-oriented features. These variations include a class without 
inheritance, a class whose base class is empty, and a class whose base class is abstract. 
The experiment uses four compilers on PC and workstation platforms. Our results indi- 
cate that many current C-H compilers still do not produce well optimized codes for 
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given C t t  programs. The class and inheritance features are straightforwardly supported 
and few optimization techniques are applied. We then discuss the following code optim- 
ization techniques: allocating a small object in registers, eliminating the space overhead 
in pure abstract classes, statically binding object values and arrays of object values, 
and removing offset adjustment in the dynamic dispatch of multiple inheritance. These 
techniques are easy to apply but are virtually ignored in the literature. 

BACKGROUND 
Object-oriented programming tries to bridge the gap between the real world and the 
information world. Class and inheritance are the important constructs in modeling real 
world objects. Some object-oriented languages, e.g., Smalltalk4 and Self,' provide flex- 
ible dynamic binding and also bring in the efficiency problem. One major difficulty for 
code optimizations in object-oriented languages is that the type information is not avail- 
able to compilers. For example, adding two integers in Smalltalk is represented by 
sending a '+' message with an integer parameter to an integer 'receiver'. In a Smalltalk 
interpreter, the corresponding procedure (Integer + Integer - Integer) is called with 
the object pointers (memory addresses) of the two integers as parameters, even if the 
operation to be invoked is a primitive method. On the other hand, most optimizing 
compilers translate this operation into one machine instruction and the operands are 
usually allocated in registers. 

Some research work has been devoted to optimizing object-oriented programs. Typed 
Smalltalk6 is a compiler for Smalltalk programs annotated with type declarations. It 
compiled a set of small examples and obtained a speed-up of 5 to 10 over a Smalltalk 
interpreter. The Self ~ o m p i l e r ~ , ~  developed several optimization techniques. The first is 
customization,' which compiles several copies of a procedure, and makes the receiver 
type in each copy bound statically. The Self compiler allows functions inline, so many 
message passing and run-time type checking operations can be removed. Another tech- 
nique is polymorphic inline  cache^.^ It is a direct extension of the inline cache* used 
in Smalltalk. A polymorphic inline cache is a sequence of if-then-else statements to 
match the receiver type and then jump to the corresponding routine for a sending mess- 
age. The code of a simple method can also be inlined in the cache. On the other hand, 
because determining exact type information is important in doing optimizations, some 
other work has been devoted to collecting type information from program profiles'*'" 
or data flow analyses for object-oriented programs."*'* 

The efficiency of a program (disregarding algorithmic issues) depends on (1 )  how 
much fine-tuning is applied by the programmers, and (2) how many and what optimiza- 
tions are applied (by the compilers). The efficiency of a C program mainly depends on 
the former since most language features of C are close to the instructions of underlying 
machines. However, a recent work'3 on behavioral differences between C and Ctt-  
programs shows that C t t  programs pose several challenges for compiler designers and 
computer architects. C t t  not only inherits most of C's features but introduces some 
features that cannot be directly supported by underlying machines. The features such 
as virtual functions take several machine instructions and have more overhead than 
direct procedure calls. Reducing such overheads requires compiler's supports, so the 
efficiency of a C-H program depends more on optimization techniques than does that 
of a C program. 

Some work has been devoted to optimizing Ctt (and its compiler). Leal4 proposed 
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an extension to C-H for applying customization. The keyword ‘template’ (originally 
used for ‘generic’ declarations in C t t )  was also used to declare a customized program. 
Calder and Grunwald9 measured the effects of various optimization techniques on sev- 
eral large Ctt- programs. They minimized the cost of virtual functions by using the 
brunch-prediction mechanism in modern computers, especially those of deeply pipe- 
lined architectures. In addition, there are two simple techniques, unique name and if- 
conversion, used in combination with branch prediction. The if-conversion technique 
is similar to inline cache. However, an if-statement may be slower than an indirect call 
in computers that have a branch penalty less than a deeply pipelined architecture does. 
The unique name technique replaces indirect function calls with direct calls when the 
linker detects that the virtual function has only one copy. The problem is that this 
optimization can only be done by using a ‘smart’ linker. 

AN EXPERIMENT 
Besides the features inherited from C, C++ introduces the following object-oriented 
constructs: class, inheritance, template, etc. Here we consider only class and inherit- 
ance, since templates do not cause (execution time) efficiency problems. The experiment 
is designed to compare the efficiency of the programs that use the class and inheritance 
constructs in C t t .  

The experiment tests a quick sort function template qsort (Figure 1). The first 
parameter of the qsort function is the array of data to be sorted, where the data type 
T is determined at instantiation. The experiment measures the sorting time for arrays 
of the following data types: i n t ,  I n t ,  v In t ,  and w I n t .  Type int is the built-in 

te rnpla te<class  T> 
void qsort ( T  a [ I  , i n t  m, i n t  n )  
I 

register i n t  i = m ;  
r e g i s t e r  i n t  j=n+ l ;  
register T k = a [m] ;  
wh i l e  (i  < j )  { 

i++; 
w h i l e  ( a [ i ]  < k) i++; 

w h i l e  ( a [ j ]  > k) I--; 
i f  (i < j )  { 

j--; 

/ *  interchange a [ i l ,  a [ j l  * /  
r e g i s t e r  T tmp = a [ i l ;  
a [ i ]  = a [ j l ;  
a [ j l  = tmp; 

I 
1 
/ *  i n t e rchange  aim],  a [ j l  * /  
a[ml = a [ j l ;  
a [ ] ]  = k; 
i f  (m < j-1) qsort  (a, m, j-1); / *  m.. j-1 * /  
if (jtl < n) q s o r t  ( a ,  j+ l ,  n); / *  j + l .  .n-1 * /  

I 

Figure 1. The function ternplate qsort (quick sort) 
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class Int 
t 
int v; 

public : 
Into I 1 
Int(int i) { v=i; } 
operator int ( )  { return v; J 
inline int operator<(const I n t &  b)  const I return v < b.v; 
inline int operator>(const Int& b) const [ return v > b . v ;  

1 ;  

Figure 2. Class Int (a  class with no inheritance) 

class Object t 1 ;  
class vInt : public Object 
{ 
public : 

i n t  v; 
vInt 0 ( 1 
vInt(int i) { v=i; ) 
operator into 1 return v; 1 
inline int operator<(const vInt& b) const { return v < b.v; I 
inline int opeiator>(const vInt& b) const { return v > b.v; ) 

1 ;  

Figure 3. Class vInt (inheriting an empty class) 

integer type of C/C++. Class Int (Figure 2) is a user-defined class without inheritance. 
Class vInt (Figure 3) inherits an empty class Object. In some C++ libraries, e.g., 
NIHCL,I5 all classes inherit a base Object class. Class w I n t  (Figure 4) inherits an 
abstract class called Comparison, which declares the comparison operators '(' and ')' 
used in a sorting routine. All these classes encapsulate a data member of i n t  type and 

template<class NumberT> 
class Comparison 
I 
public: 
virtual int operator<(const NumberT&) const =0: 
virtual int operator>(const NumberT&) const =O; 

1;  

class wInt : public Cornparison<wInt> 
( 
public : 
int v; 
wInt 0 ( 1 
wInt(int i) { v=i; } 
operator into { r e t u r n  v; 1 
inline int operator<(const vvInt& b) const { return v < b.v; 1 
inline int operator>(const wInt& b) const { return v > b.v; 1 

I ;  
Figure 4. Class wInt (inheriting an abstract class) 
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template<class T> 
void test(T& max, int size) 
( 
int i; 
l o n g  to, tl; 
T *data = new T[sizetl]; 
srandom (19930909) ; 
for (i=O; i<size; i+t) 

data [size]= max; 
t O=clock ( ) ; 
qsort (data, 0, size-1); / *  index 0.  .size-l * /  
tl=clock 0 ; 
printf ("time (in u-sec) : %d\n", tl-to) ; 
delete data; 

data[il= T(random0 ) ;  

1 
Figure 5. Function template test 
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provide comparison operations. They are designed using C t t ' s  object-oriented pro- 
gramming features, including class, inheritance, abstract class, and template. 

Figure 5 shows the function template t e s t ,  which contains the test loop. The first 
parameter of t e s t  (T& max) is necessary because the type parameter (class T) must 
be used in the parameter list (Reference 1, p. 346). The array of data is generated by 
a random number generator. Figure 6 shows the main program. Each variation is 
executed with the same data. 

These tests were performed on four Ci-t compilers: AT&T cfront (CC),I6 GNU C t t  
(Gtt)," Borland C t t  (BCC)," and Microsoft Visual C t t  (MSC).19 They were 
executed on a workstation (SPARC station ELC) and a PC (i486, real mode). Since 

#include <stdio.h> 
#include <limits.h> 
#include <sys/types.h> 
#include <sys/tirne .h> 
extern "C" t 

long clock ( )  ; 
long random ( )  ; 
void srandom(int seed) ; 

1 
main (int argc, char *args [ I  I 

int size; 
if (argc ! =  2) ( 

printf ("usage: %s size\n", args[OI) ; 
return 0; 

1 
sscanf (args [ll , "%d", &size) ; 
t e s t  tint (INT-MAX) , s i z e )  ; 
test (Int (INT-MAX), size) ; 
test (vInt (INT-MAX), s i z e )  ; 
test (wInt (INT-MAX), size) ; 

Figure 6. Main program and included header 
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CC and MSC compilers do not support templates, we replaced the templates with simple 
macros of C preprocessor. The tests on G t t  and CC compilers used an array of 200,000 
elements, and the tests on BCC and MSC were reduced to 10,000 elements due to 
space limitations. Table I shows the execution time measured in seconds. The programs 
were run five times to calculate the average execution time. The optimization flag for 
CC and C t t  was ‘-0’. We did not use ‘-02’, because applying ‘-02’ in GCC some- 
times gets a less efficient code than ‘-0’. In the test on CC, a C t t  program was trans- 
lated into a C program (by the ‘+i’ option) and then compiled by GNU CC (GCC)*’ 
with the option ‘-0’. To simplify the measurement, the clock rate of the PC was set 
low. The optimization flags were set both to generate i386 instructions and to optimize 
the speed. Since the generated random numbers in BCC and MSC are not the same, a 
random number generator was also provided during the test on a PC. 

A DISCUSSION OF EFFICIENCY 

The qsort program used in our test may not be general, neither can the arguments 
be applied in other programs. Thus, the conclusion drawn from thc above performance 
result may not be applied to other C++ programs. However, our result does show the 
potential efficiency problem of C++ programs: More object-orientution, more 
execution pains. 

Programming with class but no inheritance (i.e. object-bused) can result in programs 
that run nearly as fast as equivalent C programs (e.g. class Int, 83 per cent speed in 
G++ and 93 per cent in CC). The use of inheritance takes 1/4 to 1/3 the speed (e.g. 
class wInt, 26 per cent speed in G++ and 32 per cent in CC). Our result is comparable 
to some experiences in Reference 21. Replacing built-in data types such as integers 
and floats by user-defined classes may cause efficiency problems due to the lack of 
advanced optimization techniques. 

In the following paragraphs, we discuss the result in more detail, mainly as concerns 
CC and G t t .  The time difference between vesions of int and Int is due to ‘regis- 
ter T k’ in the qsort function template (Figure 1). G t t  does not allocate a (small) 
object in registers. CC removes the optimization hint ‘register’ from the translated 
C file (Figure 7), although GCC can allocate a small C structure (e.g. one word) in 
registers. GCC automatically allocates the variable tmp in a register but not for ‘regis- 
ter Tk’. When a hint ‘register’ is put in the translated C file, GCC can also allocate 
variable k in a register. 

The time difference between the Int and vInt versions comes from the inheritance 
of an empty class. A traditional C compiler treats an empty structure as a structure of 
at least one byte (and aligned on a word boundary in the SPARC architecture). 

Table I .  The execution times under four compilers of four versions of gsort 

Program G t t  -0 CC + GCC -0 BCC -02 -3 MSC -0 -G3 

i n t  
I n t  
v In t  
w I n t  

1.81 s 1.79 s 
2.17 s 1.93 s 
3.04 s 3.04 s 
6.85 s 5.69 s 

0.59 s 0.39 s 
0.51 s 0.39 s 
0.72 s 0.39 s 
1.65 s 1.27 s 
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c h a r  qsortInt-FP3Int iT2 (-Oa I -Om , -On ) 
s t r u c t  I n t  -0a 11; 
int -Om ; 
i n t  -On ; 
( register i n t  -1i ; 

register i n t  -1j ; 
s t r u c t  I n t  -1k ; 
- li = -Om ; 
. . .  
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i f  (-li 
s t r u c t  
- 3tmp 
(-0a 
(-0a 

I ... 
I 

Figure 7. The ‘ r eg i s t e r ’  hint for - lk has been removed by CC in the translated C$le for I n t  

s t r u c t  Object 1 / *  s i z e o f  Object  == 1 * /  

1; 
s t r u c t  v I n t  { / *  s i z e o f  v I n t  == 0 * /  

cha r  _Wl-SObject ; 

cha r  -Wl-SObject ; 
i n t  v-4vInt ; 

I ;  
Figure 8. The translated C structures for the classes Object and vIn t  by CC 

Inheriting an empty class then introduces an additional data member of one byte 
(char - w1 - 50bject) in the vInt class (Figure 8). All the swap operations in 
vInt operate on two words instead of one. All these objects are allocated in memory. 
In addition, the temporary object tmp is short-lived, and allocating tmp in memory 
causes many memory accesses (Figure 9). 

sll %04,2, %02 
Id [%iO+%021 , %03 
sll %10/2, %ol 
Id [%iOt%ol] ,%oo 
s t  %oO, [%iOt%021 
s t  %03 ,  [ % i o + % O l ]  

// tmp is allocated in 803 

Sll %03,3,  %02 
Id [%iO+%o2] , %OD 

add %iO, %02,  %02 
Id [ %02+4]  , %oO 

sll %lo, 3, % o l  
Id [ %iOt%ol] , %oO 

add %iO, %ol ,  % o l  
Id [ %01+4], %OO 
st %oO, [%02+41 
Id [%fp-32] ,  %oO 
s t  %oO, [%Oil 
Id [ %fp-281 %00 

st  %OO, [%fp-321 

st %00, [%fp-28]  

s t  %OO, [%021 

st %oO, [%01+41 
// tmp  is allocated in 
// l%fp-321 and f%fp-281 

Figure 9. The comparison on the swap operations for I n t  (left) and vIn t  (right) of CC 
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The time difference between the vrnt and w I n t  versions comes from the dynamic 
dispatch in class w I n t .  The class w I n t  has one additional data field (one word) for 
storing a pointer to its virtual function table. All comparison operations in w I n t  are 
dynamically dispatched (indirect procedure calls). These dispatches double the 
execution time since the comparison operations are critical (inside the inner loop, Figure 
10) in qsort. 

The comparisons between G t t  and CC are also interesting: the combination of CC 
and GCC produces a more efficient qsort program than G t t .  CC is a translator, and 
we used CC with GCC in the experiment. G-H and GCC share the same back-end and 
have the same capability in code optimization. G t t  is a native C t t  compiler and may 
do more work in optimizing C++ programs. Our result indicates that Gi+ does not. It 
shows that much of the translation work for object-oriented features in G t t  is done 
straightforwardly: translating C++ constructs to some C constructs and then calling the 
code generation routines for C. Our result reflects that a translator is not substantially 
different from a native compiler in terms of the output object code, but a translator 
may run much slower than a native compiler. 

The above discussion has focused on the results from CC and G* tests. The results 
from BCC and MSC are slightly different. First, BCC and MSC are both able to allocate 
a register for 'register T k' in the while-loops for comparisons, but fail to allocate 
'register T tmg' in a register for the versions of int  and Int. The execution times 
for the in t  and Int versions are thus almost equal on BCC and MSC. Secondly, for 
the layout of vInt, MSC does not introduce the additional field, so the speeds for the 
vInt and Int versions are the same. BCC does not align vInt with a word boundary, 
so an additional byte copy, instead of a word copy, is needed for swapping two vInt 
objects. Thirdly, for w I n t ,  both BCC and MSC are able to generate dynamic dispatch 
code of single inheritance. 

SOME C t t  CODE OPTIMIZATION TECHNIQUES 
Current C t t  compilers have used many optimization techniques, e.g. function inline, 
statically binding member functions, and virtual function tables for dynamic dispatch. 

L30 : 
Sll %04,2, %OO 
l d  [ %iO+%oO] I %oO 
cmp %oO, %02 
bl,a L30 
add %04,1, % 0 4  

/ *  
8.10 is address  of a [ ] .  
go4 is i. 
%oO is a d d r e s s  of a [ i ] .  
%02 is v a l u e  o f  k. 
*/ 

add $10, 1, $10 
L69 : 

sll %lo, 3,  $01 ! %.lo  is i. 
add %iO, % o l ,  % o l  ! B i O  is a l l .  
Id [%011,%02 

* l d s h  [%02+81,%00 
* add %ol,%oO,%oO 

Id [%02 t121 , 'bo2 
c a l l  %02,0  
add % f p ,  -24,801 
cmp %oO,O 
bne,a L69 
add %lo, 1, %10 

801 is a l i l .  
go2 is the 
p o i n t e r  t o  vtable.  

ca 1 1 opera to r<  

t h e  result in %oO 

/ *  [%02+8] is the  "delta" field i n  vtable. I [%02t12] is t h e  f u n c t i o n  p o i n t e r  t o  
1 o p e r a t o r  <. */ 

Figure 10. The inner loop 'while (a [ i ]  (k) itt;' for  vInt (left) and w I n t  of CC 
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Our result indicates that there is still a need for more optimization techniques. Here 
we enumerate some code optimization techniques for further improvement of efficiency. 
All these techniques can be applied in the ‘separate’ compiling tradition of C/C+t. 

Allocating a small object in registers 
Most modern computers have many registers. How these resources are used may 

affect the program efficiency. Many basic data structures, e.g. a node of a linked list, 
are very small. A temporary object of such data structures can be allocated in registers. 
However, it is not so easy in practice. First, the semantics of Ctt- constructors are 
defined as ‘a constructor turns raw memory into an object . . .’ (Reference I ,  p. 262). 
Is an address of raw memory necessary when constructing an object? As addressed in 
the previous section, GCC allocates a small object (a C structure) in a register. Com- 
pilers may have more choices when using a constructor. Secondly, objects are usually 
passed by references, i.e. memory addresses. It is impossible to give a ‘memory address’ 
for a set of registers. Directly adding a ‘register’ hint to object variables does not 
work. Figure 11 shows the warning messages when adding ‘ r e g i s t e r ’  to the variables 
k and t m p  in the class w I n t  on the ouput C file. The hint is ignored since the 
addresses of k and tmp are needed to call the comparison function. 

For a function with parameters of object references, two separate versions of the 
function code are needed for passing objects, one by registers and the other by memory 
addresses. For example, C t t  compilers may need to provide two copies of a default 
constructor and a copy constructor, which are automatically generated. This optimiz- 
ation may thus increase code size. However, allocating an object in registers works fine 
for an inline function. It does not increase the code size, because the inline function is 
already expanded in callers. In addition, an inline function may be more efficient if the 
objects involved are allocated in registers. 

Eliminating space overhead in pure abstract classes 
Abstract classes are useful in object modeling. A pure abstract class is an abstract 

class with no real implementation. The inheritance of a pure abstract class is not for 
implementation but for interfiuce. A pure abstract class may be mapped to an empty 
structure of C. Unfortunately, the size of a structure in C must be greater than zero, so 
an empty structure contains at least one field of char. Inheriting a pure abstract class 
may thus inherit a useless field and cause overhead in object copying. This space over- 
head can be easily removed by compilers, if pure abstract classes are handled directly 
by using specific code generation routines. 

Removing offset adjustment in dynamic dispatch of multiple inheritance 
Although dynamic dispatch sometimes causes inefficiency, dynamic dispatch is use- 

ful and flexible in programming. The type of an object may not be statically determined, 

qSOrt..c: I n  function ‘qsortvvInt-FP5wIntiT2~: 
qsort..c:295: warning: address of register variable ‘-0k’ requested 
qsort..c:323: warning:  address of register variable ’-2tmp‘ requested 

Figure 11. The messages in adding ‘register’ to the variables k and t m g  for the class wInt  
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so it is impossible to completely eliminate function calls of dynamic dispatch. Such a 
kind of inefficiency can be overcome with more optimization techniques. 

The designers of the C t t  language carefully considered the implementation of virtual 
functions. The solution is a virtual function table (vtuble) (Reference 1, Section 10.8.1~). 
For single inheritance, support of dynamic dispatching requires an indirect procedure 
call. For multiple inheritance, in addition to an indirect call, two operations, a load of 
offset, and an add operation are needed in most implementations. 

Because the program qsort uses only single inheritance, we can simply remove the 
code for offset adjustment. Table I1 shows the speed-up by removing offset adjustment 
in dynamic dispatch of multiple inheritance in G t t  and CC. The asterisked instructions 
in Figure 10 are removed, and the register ‘%ol’ is changed to ‘%oO’. The execution 
time reduction is nearly the same for G t t  and CC. The speed-up is 6.9 per cent for 
G++ and 10.5 per cent for CC. The code generated by CC is more compact than that 
generated by G t t ,  so the execution time reduced with CC thus looks more significant. 
Note that BCC and MSC have already applied this optimization. 

There are three means of applying this optimization. Stroustrup (Reference 22, p. 
265) presented an alternative implementation for dynamic dispatch of multiple inherit- 
ance. In his approach, a small piece of code is used to adjust the this pointer and 
jump to the corresponding member function. There is no need to store the offset in a 
virtual function table, no code duplication, and no execution overhead for dynamic 
dispatch of single inheritance. This implementation technique looks good, but is less 
portable. 

Borland C t t  version 3.P3 (BCC3 in short, the older version of BCC) restricts the 
use of multiple inheritance and provides more efficient dynamic dispatching. BCC3 
disallows an inheritance with interactions of sibling classes (e.g., the inheritance con- 
sidered in Reference 1, p. 234). Some code rewriting is needed when the inheritance 
violates the restriction. Figure 12 shows an example of interactions between sibling 
classes. Class C defines the function g ( ) by calling the function f ( ) , which is defined 
in class B. The example works in G t t ,  CC, MSC, and BCC (the newer version), but 
not in BCC3. 

Another approach is to duplicate the code inherited from base classes when the inter- 
actions of sibling classes happen in an inheritance hierarchy. Considering the above 
example, Figure 13 shows an equivalent class hierarchy without interactions. The func- 
tion f ( ) is defined once again in class D. There is an additional copy of f specific for 
objects of D, so the offset adjustment for converting an object of D to that of B is not 
needed when calling B : : f .  The equivalent class hierarchy can be automatically gener- 
ated by compilers. The code duplicated (e.g., function f ( ) ) may be small, if the inherit- 
ance hierarchy is very simple. 

Table 11. The speed-up in replacing multiple inheritance by single inheritance 

Program G u  cc 
Multiple inheritance (1) 6.85 s 5.69 s 
Single inheritance (2) 6.41 s 5.15 s 
Speed-up (1)/(2) - 100% 6.9% 10.5% 
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c l a s s  A [ 
public  : 

v i r t u a l  void f ( )  ; 
v i r t u a l  void g() ; 
v i r t u a l  void h 0  ; 

1 ;  
c l a s s  B : public  v i r t u a l  A { 
public  : 

A ( f , g , h  I void f ( )  ( 1  / \  1 ;  

\ /  
c ~ g )  B ( f 1  publ ic  : 

c l a s s  C : public  v i r t u a l  A { 

void g 0  I f 0 ;  1 
1 ;  
c l a s s  D : public v i r t u a l  B, publ ic  v i r t u a l  C 
I 

D I h )  

publ ic :  

1 ;  
void h ( )  ( )  

Figure 12. The class hierarchy and an example showing interaction between sibling classes B and C 

c l a s s  A ( ... ) ;  
c l a s s  B : public  v i r t u a l  A ( . . .  } ;  
c l a s s  C : public  v i r t u a l  A ( . . .  ) ;  
c l a s s  D : public  v i r t u a l  B, publ ic  v i r t u a l  C 

publ ic  : 

A ( f , g , h  I 
/ \  

C ( g 1  B ( f )  
void h 0  ( I  
void f() ( 1  

\ /  
D ( f , h )  

); 

Figure 13. Equivalent class hierarchy without interactions in sibling classes 

Binding object values and arrays of object values statically 
C++ supports polymorphism on object references but not on object values. Object 

values and array of object values have exact types. They are in wide use, e.g. ‘T a [ I ’ 
in qsort. Let T be a class. A declaration of ‘T t;’ declares an object (value) t of 
type T. A declaration ‘T a[ 1;’ declares a as an array of object values of class T. In 
contrast, the declaration ‘T &b;’ (or ‘T * C ; ’ )  declares b ( c )  as a reference (pointer) 
to any derived class of T. 

For an object value or an array of object values, no dynamic dispatch is needed when 
executing their member functions. Although ‘objects of a derived class can be assigned 
to objects of a public base class’ (Reference 1, p. 297), the copy operations do not 
change the structure (the type) of either object (Reference 1, p. 298). Binding such 
objects statically is very simple and can greatly improve the efficiency. This is true 
since no dynamic dispatch is needed and function inline is applicable. In addition, the 
vtable pointers of an array of object values are the same. This may be the invariant in 
a loop that processes an array of object values. Table I11 shows the speed-up that results 
from using static binding for the array of integers a 1 in qsort (compared with the 
version of single inheritance). Note that the single inheritance versions of BCC and 
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Table 111. The speed-up in using static binding for an array of objects 

Program G u  cc BCC MSC 

Single inheritance (1) 
Static binding (2) 
Speed-up (1)/(2) - 100% 

6.41 s 5.15 s 1.65 s 1.27 s 
5.75 s 4.54 s 1.44 s 1.13 s 

1 1.5% 13.4% 14.6% 12.4% 

Table IV. The availability of the optimization techniques in the four compilers 

Optimization G++ CC BCC MSC 

Allocating a small object in registers 
Eliminating pure abstract classes 
Replacing multiple inheritance by single inheritance 
Binding arrays of object values statically 

MSC are the versions of wInt .  The speed-ups in the four compilers are all more than 
10 per cent. 

The means of treating arrays in C may forbid this optimization. For example, ‘char 
[ 3 ’ in C is defined to be equivalent to ‘char*’. However, the declaration ‘T d 1 ;’ 
is not equivalent to ‘T *e;’, since d has an exact type T, and the type of e is a pointer 
to any derived class of T. The type information is lost when translating an array to a 
pointer. It may not be easily recovered by optimizations in the back-end of a compiler. 

Table IV summarizes the availability of these optimization techniques in the four 
compilers tested. None of these compilers fully support the allocation of an object in 
registers, and none of them apply static binding of arrays of object values. The table 
indicates the needs for more optimizations. 

CONCLUSIONS 
Our experiment shows some potential inefficiency of object-oriented programs using 
C t t  language. One major factor is the lack of code optimizations for the object-oriented 
features of the C t t  language. We have presented several C t t  code optimization tech- 
niques. Although the improvements have only been measured in the qaort example, 
these techniques may work well for small programs that intensively use object-oriented 
features. The speed-up may be less significant when they are applied to real C t t  appli- 
cations, which usually involve bulks of C codes. 

Most C t t  compilers are extended from existing C compilers. Many of their develop- 
ment efforts have been devoted to correctly implementing new features, especially mul- 
tiple inheritance and templates. In the future, more research will be needed to improve 
these features too. 
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