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ARTICLE INFO ABSTRACT

Passenger flow is a fundamental element in a transportation system. It is important to explore the time
variants of short-term passenger flow for transportation planning and operation. When the data are suf-
ficiently analyzed, transportation planners not only can make better decisions, but also enhance the per-
formance of transportation systems. The data of short-term passenger flow may be difficult to analyze
due to its exotic oscillation. Hilbert-Huang transform (HHT) has recently been developed for analyzing
non-linear and non-stationary data. In this paper, the proposed time variants exploration method
includes two stages: empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). A real
passenger flow dataset is collected from Taipei rapid transit corporation (TRTC) to investigate the viabil-
ity of the proposed time variants exploration approach. The intrinsic mode functions (IMFs) extracted by
EMD can represent the local characteristics of passenger flow and imply its meaningful time variants
such as peak period pattern, semi-service period pattern, semi-daily pattern and daily pattern. By com-
paring the results of HHT with that of fast Fourier transform (FFT), it indicates that HHT can obtain the
narrower frequency band, accurately capture time-frequency-energy distribution, and help to enhance
the performance of transportation systems. The results show that HHT is an effective approach for explor-
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ing the time variants of short-term passenger flow in a metro system.
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1. Introduction

Passenger flow is one of the essential elements in transportation
systems. It is also an essential input for transportation manage-
ment, including transportation planning, transportation infrastruc-
ture construction, facility improvement, operation planning,
revenue management, and so on. When the data are sufficiently
analyzed, transportation planners are able to make better decisions
with more useful information.

During the past two decades, a number of researchers have
developed various travel demand forecasting models to predict
passenger flow and trends, such as conventional travel demand
modeling, and multiple regression (e.g., Alfa, 1986; Wirasinghe
and Kumarage, 1998; Kulshreshtha and Nag, 2000; Golias, 2002;
Jovicic and Hansen, 2003; Bar-Gera and Boyce, 2003; Varagouli
et al., 2005; Wardman, 2006; Tsekeris and Stathopoulos, 2006;
Zhou and Kockelman, 2009). The conventional travel demand fore-
casting model is a sequential demand modeling method consider-
ing trip generation, trip distribution, mode choice, and assignment
modules. Such an approach has been widely applied in the travel
forecasting phase of the urban transportation planning process
(Alfa, 1986; Wirasinghe and Kumarage, 1998; Jovicic and Hansen,
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2003). Most previous studies have focused on building models that
consist of a large set of explanatory variables to predict the long-
term demand and modal split. However, the travel demand model
needs to aggregate the abovementioned modules, in which each
module may include various methods. In addition, Bar-Gera and
Boyce (2003) pointed out that the sequential demand modeling
method suffers from the inconsistent consideration of travel times
and congestion effects of route choice in the modeling procedure.
The inconsistent consideration of congestion effects was argued
as the shortcoming of sequential demand modeling methods
(Bar-Gera and Boyce, 2003). Furthermore, some studies have re-
vealed that the conventional forecasting model of travel demand
lacks volume variation when it faces the variants of economic
activity (Kulshreshtha and Nag, 2000; Varagouli et al., 2005).

In recent years, the multiple regression method and multivari-
ate dynamic econometric time series have been applied to con-
struct transportation demand models of passenger flow
(Kulshreshtha and Nag, 2000; Kuby et al., 2004; Varagouli et al.,
2005; Wardman, 2006). These methods considered some external
factors such as economic variables to predict passenger flow. In
the literature, demand forecasting models have commonly been
constructed under the assumption of linear and stationary passen-
ger flow time series, which may not be realistic. In addition, a train
traffic model incorporated a dynamic equation based on the evolu-
tion of train headways and train passenger loads to estimate the
variants of passenger flow on railways (Assis and Milani, 2004).
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Nomenclature

T a mathematical constant which is the ratio of the cir-
cumference of a circle to its diameter

P the Cauchy principal value of the singular integral

a(t) the amplitude function of time t

G(t the jth IMF component

h(w) the marginal spectrum

H(w,t) the Hilbert spectrum

Tn(t) the final residue

X(t) the original time series

Y(¢) the Hilbert transform of IMF

Z(t) a complex conjugate pair combination of X(t) and Y(t)
0(t) the phase function of time t

(t) the instantaneous frequency of Hilbert transform

Recently, Chen et al. (2009) have studied the diurnal pattern of
subway ridership in New York with the socio-demographics of
population.

In the last decade, several methods have been developed for the
short-term analysis of passenger traffic flow in transportation sys-
tems and networks. These methods include principal component
analysis (Abdel-Aty and Pemmanaboina, 2006; Paris and Van den
Broucke, 2008), wavelet analysis (Huang, 2003; Jiang and Hon,
2005; Xie and Zhang, 2006), neural networks (Vlahogianni et al.,
2004; Lee et al., 2006), and support vector regression (Wu et al.,
2004; Vanajaksi and Rilett, 2007), etc. Other methods circumvent-
ing the assumptions of linearity and stationarity include the vector
autoregressive method (Chandra and Al-Deek, 2009) and error
components analysis (Frejinger and Bierlaire, 2007), which can ad-
dress the problem of spurious regression.

Although several forecasting models have been developed to
predict passenger flow to date, analysis of the time variants of pas-
senger flow without the assumptions of linearity and stationarity is
still needed. Without this assumption, the obtained results will be
more realistic for transportation system management and plan-
ning. Furthermore, the data collection cost can be extensively re-
duced, provided that transportation planners only collect the
passenger flow for analysis.

A methodology for analyzing non-linear and non-stationary
data named Hilbert-Huang transform (HHT) has recently been
introduced by Huang et al. (1998). HHT primarily consists of two
stages: empirical mode decomposition (EMD) and Hilbert spectra
analysis (HSA) (Huang et al., 1998, 2003a). EMD is an empirical,
intuitive, direct and adaptive data processing method developed
especially for dealing with non-linear and non-stationary data.
Basically, EMD applies a sifting process to decompose data into a
small number of independent and nearly periodic intrinsic modes
based on the local characteristic time scale. Therefore, according
to the scale, the physical implications of each mode can be identi-
fied. In the second stage, the instantaneous frequency, determined
by Hilbert transform, can provide a much sharper identification of
imbedded structures in data (Huang et al., 1998, 2003a, 2004).

HHT has been successfully applied in several fields such as ocean
waves (Hwang et al., 2003), biomedical engineering (Balocchi et al.,
2004; Liang et al., 2005; Jiang and Yan, 2008; Su et al., 2008), signal
processing (Tao et al., 2005; Xie and Wang, 2006; Li and Meng,
2006; Rai and Mohanty, 2007; Blanco-Velasco et al., 2008; Guo
et al., 2008), wind engineering (Li and Wu, 2007), and earthquake
engineering (Dong et al., 2008). Several previous studies have ap-
plied EMD to extract intrinsic mode functions (IMFs) (Balocchi
et al., 2004; Liang et al., 2005; Li and Meng, 2006; Wu, 2007;
Blanco-Velasco et al., 2008; Guhathakurta et al., 2008; Guo et al.,
2008; Li et al., 2008; Zhang et al., 2008). However, most applications
are primarily limited to the studies of nature science and engineer-
ing (Zhang et al., 2008). Relatively few applications in social science
can be found. For example, references (Huang et al., 2003a; Wu,
2007; Guhathakurta et al., 2008; Zhang et al., 2008) have utilized
EMD to analyze financial time series. Additionally, Hamad et al.

(2009) has applied EMD to analyze traffic volume data. Hamad
et al. (2009) applied a combined approach of EMD and back-propa-
gation neural networks to predict traffic volume by using a set of
real-life loop detector data. From the experimental results, it was
revealed that the hybrid approach, which takes advantage of
EMD, outperforms the traditional traffic volume prediction model
involving a simulation model and time series method. However,
Hamad et al. (2009) have only focused on building a forecasting
model of short-term traffic volume. The time variants of passenger
flow, which plays an essential role in transportation systems, still
remains insufficiently investigated. HSA can be incorporated with
EMD to further explore the time variants of passenger flow.
Analyzing the time variants of short-term passenger flow is an
important issue in building a forecasting model of passenger
demand. With the time variants of short-term passenger flow,
transportation planners can make effective operation plans such
as station passenger crowd regulation planning, transportation re-
source planning and human resource planning and so onto
improve transportation performance. Notice that “short-term” in
this paper refers to a forecasting horizon of 15 min, which is com-
mon in the analysis of transportation operations (e.g., Williams
et al, 1998; Chen and Grant-Muller, 2001; Xie and Zhang,
2006; Zhang and Ye, 2008). This paper aims at analyzing the time
variants of short-term passenger flow in a metro system by using
HHT. The remainder of this paper is organized as follows. Section
2 gives an introduction to the concept and algorithm of HHT. Sec-
tion 3 introduces the data of metro passenger flow, and the re-
sults obtained by HHT. Section 4 compares the results of HHT
with that of fast Fourier transform, and discusses the implications
of the results for a metro system. Section 5 describes the applica-
tions of results obtained by HHT. Finally, Section 6 concludes this

paper.

2. Methodology

In the first stage, the short-term passenger flow is decomposed
into a small number of independent and nearly periodic intrinsic
modes based on the local characteristic time scale by itself via
EMD. Second, the time-frequency-energy distribution is obtained
by HSA.

2.1. Empirical mode decomposition

Empirical mode decomposition (EMD) developed by Huang
et al. (1998) is a signal analysis method which can deal with
non-linear and non-stationary data. The main idea of EMD is to
decompose the original time series data into a finite and small
number of oscillatory modes based on the local characteristic time
scale by itself. Each oscillatory mode, which is similar to a har-
monic function, is expressed by an intrinsic mode function (IMF).
IMFs have to satisfy the following two conditions (Huang et al.,
1998):
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1. in the whole dataset of a signal, the number of extrema and the
number of zero crossings must either equal or differ at most by
one, and

2. at any point, the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima is
zero.

As mentioned above, the first condition resembles the tradi-
tional requirement of a narrow band for a stationary Gaussian pro-
cess. The second condition is to modify the global requirement to a
local one. Ideally, the local mean of data should be zero. However,
it is impossible to define the local mean for non-stationary data by
using a local scale. In order to avoid defining the local averaging
time scale, Huang et al. (1998) proposed forcing the local symme-
try with the local mean of the envelopes defined by the local max-
ima and the local minima. By using EMD, the well-defined
instantaneous frequency can be obtained.

The essence of EMD is the sifting process which extracts IMFs
from the original data. The algorithm of EMD is described as
follows:

Step 1: identify all the local extrema including minimum values
and maximum values in time series data x(t).

Step 2: generate the upper and lower envelopes, en.(t) and
emin(t), by a cubic spline line.

Step 3: calculate the mean value m; (t) from the upper and lower
envelopes, then generate the mean envelop as:

my (t) = (emin(t) + emax(t))/z (l)

Step 4: calculate the difference between the time series data x(t)
and mean value my(t). The first difference h;(t) is designated as
proto-intrinsic mode function,

ha(6) = x(t) —mu (£) (2)

Step 5: check whether the proto-intrinsic mode function h; (t)
satisfies the properties of IMF. Ideally, h; (t) should be an IMF. How-
ever, it may generate a new extremum, and shift or exaggerate the
existing extrema in the sifting process.

If properties of h; (t) satisfy all the requirements of an IMF, h; (t)
is denoted as the ith IMF c;(t), and substitutes residue r(t) for the
original time series data x(t).

r(t) = x(t) — hi (1) 3)

Otherwise, hy (t) is not an IMF. Then, it substitutes h;(t) for the
original time series x(t).

Step 6: repeat Steps 1-5. The sifting process stops while the res-
idue satisfies one of the termination criteria. First, the residue or
the ith component is smaller than the predetermined threshold
or becomes a monotonic function such that no more IMF can be ex-
tracted. Second, the number of zero crossings and extrema is the
same as that of the successive sifting step (Huang et al., 2003b).

By using the above algorithm, the original time series data x(t)
can be decomposed into n modes and a residue as follows:

X(t) =) ci(t) +ralt) (4)
=

where n is the number of IMFs, c;(t) represents IMFs which are
nearly orthogonal to each other and periodic, and r,(t) is the final
residue, which is a constant or a trend. By the sifting process, each
IMF is independent and specific for expressing the local character-
istics of the original time series data. Generally, the first component
has the highest frequency, which represents the shortest period
variants in the time series data, whereas the residue represents
the lowest frequency. Consequently, the set of IMFs is derived from
high frequency to low frequency. In addition, EMD can also be taken
as a filter of high pass, band pass or low pass.

2.2. Hilbert spectral analysis

The second stage of HHT is Hilbert spectral analysis (HSA),
which is performed to obtain the time-frequency-energy distribu-
tion. The following is a brief introduction to HAS from Huang et al.
(1998). After the decomposition procedure in EMD, the Hilbert
transform of IMF Y(t) can be obtained as:

1 (X))
Y(t) _%P/t_t,dt, (5)

where 7 represents a mathematical constant (i.e., pi) which is the
ratio of the circumference of a circle to its diameter, and P indicates
the Cauchy principal value of singular integral. In Eq. (5), the Hilbert
transform is defined as the convolution of X(t) with 1/t. It empha-
sizes the local properties of the time series data X(t). With this def-
inition, an analytic signal Z(t) is a complex conjugate pair
combination of X(t) and Y(t), and it takes the form

Z(t) = X(t) +iY(t) = a(t)e") 6)
where

a(t) = \/X2(t) + Y (b) @)
and

0(t) = arctan (%) (8)

a(t) indicates the amplitude, which is a function of time, and 6(t)
represents the phase, which is also a function of time. In Eq. (6),
the polar coordinate expression shows the local nature of represen-
tation. It is the best local fit of amplitude and phase-varying trigo-
nometric function to the original time series data X(t). The
instantaneous frequency of Hilbert transform is defined as:

(t) = % 9)

After performing Hilbert transform on each IMF, the original
time series data X(t) can be expressed as the real part (RP) in the
following form:

X(t) =RP_ a;(t) exp(i6;(t)) = RP> " a;(t) exp (i / co,(t)dt).
j=1 j=1 E
(10)

The residue r,(t) is dropped, because it may be a monotonic
function or a smaller value than the predetermined threshold. Eq.
(10) represents both the amplitude and the frequency of each com-
ponent as a function of time. With both the amplitude and fre-
quency being a function of time, the frequency-time distribution
of the amplitude is called a Hilbert spectrum H(w,t). The square
of amplitude g;(t) can be taken as energy, so the Hilbert spectrum
can express the energy distribution in the original time series data
on each frequency. According to the definition of Hilbert spectrum,
the marginal spectrum h(w) can be defined as:

T
h(w) = /0 H(w, t)dt (11)

where T is the total data length. The marginal spectrum offers a
measure for the total amplitude contribution from each frequency.
It presents the cumulative amplitude over the entire data span.
The advantages of HHT method can be summarized as follows.
First, EMD can decompose the non-stationary and non-linear data
into a small number of IMFs by the sifting process. Each compo-
nent represents the local characteristic time scale of original data
by itself. All IMFs are nearly independent of each other. Therefore,
each IMF is local, adaptive and orthogonal. Second, each IMF is one
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portion of the original data. The original data can also be
completely reconstructed by summing up the components and res-
idue. Third, since the instantaneous frequency is obtained by using
Hilbert transform, it is possible to observe the changing frequency
of each component. Hence, we can analyze the data in the time-
frequency-energy space.

3. Data and results
3.1. Data

A dataset of rapid transit passenger flow is used to investigate
the viability of HHT for exploring the time variants for short-term
passenger flow. The dataset of passenger flow was collected from
the Muzha line of Taipei rapid transit corporation (TRTC) during
the period from May 1 to May 31, 2008. The selected data, which
contained 2976 records as shown in Fig. 1, were collected by auto-
matic fare collection system every 15 min. The service hours of
TRTC are from 6:00 AM to 1:00 AM the next day.

3.2. Intrinsic mode decomposition

By using EMD, the time series data of passenger flow are
decomposed into nine IMF components and residue as shown in
Fig. 2. The time variants characteristics of passenger flow are
clearly demonstrated in Fig. 2. All the extracted IMF components
are graphically illustrated in the order in which they are extracted,
to indicate the change of frequency (or periodic) from the highest
frequency to the lowest frequency. To start with, the high fre-
quency (or short period) components are obtained in the first
few components (e.g., IMF C1), and the low frequency (or long per-
iod) components are given in the last few components (e.g., IMFs
C6-C9). The first few components represent the highly time vari-
ants or noise in the original passenger flow data, while the last
few components represent the long periodic components. The last
component is the residue of sifting, which generally represents the
trend of the time series. However, this paper focuses on analyzing
the time variants of short-term passenger flow, so the trend is not
essential and it is not extracted from the one-month data.

In order to demonstrate the intrinsic meaning of IMFs, the study
reconstructs these components. Each of these IMFs is superim-
posed on the original time series data. With step-by-step adding
of IMFs, the mean square error (MSE) between the aggregated data
of IMFs and the original time series data is 1.04265E-13. Since the
data are only kept to a few decimal places, this MSE may be the
round-off error in computation. Therefore, the extracted IMFs
and residue can appropriately represent the original data.

x10°

5

0
5/1 5/5 5/12 5/19 5/26 5/31
Date

Fig. 1. The time series of passenger flow of the Muzha line.

3.3. Statistical analysis

In order to explore the physical phenomenon of the extracted
IMF components, Pearson product moment correlation and Kendal
rank correlation are applied in this paper to measure the correla-
tion between each IMF component and the original time series
data. As summarized in Table 1, IMFs C1-C5 and C7-C8 positively
correlated to the original time series in terms of Pearson correla-
tion coefficient. Pearson correlation coefficients of IMFs C3-C5
are respectively 0.545, 0.535 and 0.406, which indicate a stronger
positive correlation. Observing from the Kendall correlation coeffi-
cients, IMFs C3-C5 have higher ranks, the coefficients of which are
0.376, 0.374 and 0.345, respectively. The results of Pearson corre-
lation coefficient and Kendall correlation coefficient are consistent.
With the percentage power of each IMF, IMFs C2-C4 have higher
power, and IMF C3 has the highest percentage power (34.4%). From
Table 1, the percentage powers of IMFs C1, C6-C9 and residue are
not significant. To summarize, IMFs C2-C5 are demonstrated to be
meaningful components for original time series data. The physical
phenomena of IMFs C2-C5 are going to be discussed in next
section.

3.4. The results of Hilbert spectrum

After extracting IMFs by EMD, HHT is then applied to separate
the original time series into nearly orthogonal components. In this
paper, Visual Signal 1.2 (www.ancad.com.tw) is used to obtain
EMD components and HHT. As mentioned above, each component
has the well-behaved Hilbert transform property. The instanta-
neous frequency can present more information about the time
variants of passenger flow in the frequency-time domain. The
instantaneous frequencies of the first five IMFs are graphically
illustrated in Fig. 3. The mean instantaneous frequency of IMF C2
is 0.2445 cycles per hour (i.e. 4.1 h per cycle). In other words, the
mean instantaneous frequency of IMF C2 represents the periodic
pattern of peak period. The mean instantaneous frequencies of
IMFs C3-C5 are 0.1464, 0.0725 and 0.0389 cycles per hour, respec-
tively. After transformation, the cycles of IMFs C3-C5 are about 6.8,
13.8, and near 24 h per cycle. Due to the service hours of the TRTC
metro system are from 6:00 AM to 1:00 AM the next day, IMF C3
could be regarded as the semi-service pattern of passenger flow.
Similarly, the mean instantaneous frequencies of IMF C4 could be
regarded as the semi-daily pattern of passenger flow because of
one half daily hours. The mean instantaneous frequencies of IMF
C5 could be defined as the daily pattern of passenger flow because
of daily hours. To summarize, the instantaneous frequencies of
IMFs C2-C5 imply the time variants of passenger flow, and they
are peak period pattern, semi-service period pattern, semi-daily
pattern and daily pattern.

As discussed above, the Hilbert spectrum represents the energy
distribution of the collected time series data in both frequency and
time scale. It provides more information about amplitude variants
of measured time series data. The time-frequency-energy repre-
sentation of the original data can thus be expressed by the distri-
bution of the amplitude in both frequency and time scale. By
performing Hilbert transform, Hilbert spectrum of all IMFs and
the selected meaningful IMFs C2-C5 can be obtained. The Hilbert
marginal spectrum of all IMFs and the selected meaningful IMFs
C2-C5 are illustrated in Fig. 4a and b. For the Hilbert spectrum of
original data, which displays the energy concentration as a whole,
the strongest energy is located at around the afternoon peak peri-
ods (17:30 PM-19:00 PM) on Monday, May 5 during the whole
observation period. Notice that the graphs of Hilbert spectrum
are not shown in this paper for simplification, and more detailed
analysis is available from the authors. From the theoretical funda-
mental of HHT mentioned above, the square of amplitude can be
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Fig. 2. The original data of passenger flow and its IMFs.

taken as energy. The larger amplitude reveals larger energy. Hence,
the energy information reflecting the real fluctuation of passenger
flow indicates that the largest fluctuation exists at afternoon peak
periods. With the HHT spectrum, metro planners can effectively
observe the fluctuations of short-term passenger flow in the metro
system, and make decisions based on the observation. After per-
forming Hilbert transform with the selected meaningful IMFs, the
Hilbert spectrum clearly shows the energy distribution that con-
centrates on weekdays (Monday-Friday) and weekends (Satur-
day-Sunday). The weekdays have a higher frequency variants
and a stronger energy. Comparing the results of Hilbert spectra,
it demonstrates that the fluctuation patterns of weekdays and
weekends which include the selected meaningful IMFs C2-C5 are

more obvious than that of original passenger flow data. Obviously,
since the noise and the low frequency are eliminated by EMD, the
passenger flow can be more effectively analyzed.

Hilbert marginal spectra of individual IMFs C2-C5 are illus-
trated in Fig. 5a-d. Clearly, it can be observed from these figures
that the energy of each IMF concentrates on narrower frequency
bands. According to the Hilbert spectrum of IMF C2, the energy
concentrates on Monday-Friday and indicates a higher frequency
variant. The highest energy locates around the frequency of
0.1020 cycles per hour for IMF C2, as shown in Fig. 5a. That is to
say, the strongest energy distributes at the higher frequency. In
addition, the frequency of 0.2510 cycles per hour presents rela-
tively smaller energy. The results may imply that IMF C2 preserves
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Table 1
The correlation coefficients and percentage power of components.
IMF Mean Standard Pearson Kendall Percentage
deviation coefficient  coefficient power (%)
C1 1.025 163.49500 .070° —.001 1.76
2 3.237 465.83342  .165" —-.030? 20.50
c3 6.411 622.81081 .545° .376° 34.40
C4 13.532 327.33391  .535° .374° 28.30
c5 25.641 213.94020  .406° .345° 10.90
C6 57.143 83.39142 .027 .027° 133
Cc7 124.070 71.11571 .083° .032? 1.70
c8 185.874  115.57342 .058° .024 1.02
c9 495.050 13.78034 .007 .011 0.12
Residue 1488.096 34.39925 .013 .004 -

@ Correlation is significant at 0.05 levels (2-tailed).
b Correlation is significant at 0.01 levels (2-tailed).

both the frequencies of 0.1020 and 0.2510 cycles per hour. Simi-
larly, the energy concentrates on weekdays and indicates a lower
frequency variant for IMFs C3 and C4 as Hilbert spectrum. Accord-
ing to the Hilbert marginal spectrum of IMFs C3-C4, the highest
energy in turn locates around the frequencies of 0.0942 and
0.0784 cycles per hour as shown in Fig. 5b and c.

4. Comparisons and discussions
4.1. Comparisons

The fast Fourier transform (FFT) method, which is an efficient
method to compute the discrete Fourier transform (DFT) and its in-
verse, has been widely applied in analyzing random data. The pri-
mary property of DFT is that it can convert discrete-time data into
its discrete-frequency components, being a harmonic function. FFT
can be used to depict the global frequency distribution and to ana-
lyze stationary and linear data.

In order to evaluate the performance of HHT in exploring the
time variants of passenger flow, three types of comparisons are

made as follows: comparing HHT to FFT with the original time ser-
ies data, comparing HHT to FFT with individual IMFs C2-C5, and
comparing HHT to FFT with the superimposed IMFs C2-C5. Visual
Signal 1.2 is also used to compute FFT.

4.1.1. Comparison with original time series

For DFT, power spectral density (PSD) can show the strength of
the energy with a function of frequency. The probability density
function of power spectral density can be estimated by using the
parametric and non-parametric estimation techniques. In this pa-
per, the Kernel smoothing density function (Elgammal et al.,
2003; Gurwicz and Lerner, 2005), which is a general non-paramet-
ric estimation technique, is used to define the probability density
function of FFT. A Gaussian function is used as the Kernel function
herein. In addition, PSD is equivalent to the square of the mean
amplitude of DFT. The total variance of the original time series is
recovered upon integrated PSD over the frequency range. A Han-
ning window is used in the Fourier spectrum.

With the passenger flow, HHT and FFT spectra can be obtained
by performing HHT and FFT, respectively. From Fig. 6a, the fre-
quency band varies to a wide extent from the span of original data
by using FFT. The results of FFT only demonstrate the global fre-
quency distribution including main frequencies of 0.0417, 0.0833,
and 0.2083 cycles per hour. On the other hand, the HHT spectrum
indicates the local time scale of each IMF and display the energy
concentration. That is to say, HHT spectrum preserves both the fre-
quency and the energy resolution in the time domain. For the fre-
quency resolution of the entire passenger flow data, the frequency
band of HHT distributes 0.0392-0.0784 cycles per hour as shown
in Fig. 4a. Obviously, the frequency distribution of HHT demon-
strates a narrower range than that of FFT for the entire passenger
flow data.

4.1.2. Comparison with individual IMFs C2-C5

As the definition of the first condition of IMF defined in Section
2, each IMF should be a stationary and narrow band signal. Accord-
ing to the first condition of IMF, each IMF should be a stationary
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Fig. 3. The instantaneous frequencies for the first five IMFs.
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and narrow band signal; therefore FFT is also applied to analyze
the meaningful IMFs C2-C5 for comparison purpose.

Fig. 6b-e illustrates the spectra of IMF C2-C5 by using FFT.
The FFT spectrum of IMF C2 can capture the high frequency,
yet the frequency band varies widely. Although the main fre-
quency of IMF C2 is located at 0.2083 cycles per hour (4.8 h
per cycle), the other frequencies of 0.2917 and 0.0833 cycles
per hour are also significant, shown in Fig. 6b. The main fre-
quency of IMF C3 is obviously detected at 0.0833 cycles per hour
(12 h per cycle). Similarly, FFT spectra of IMFs C4 and C5 can be
identified clearly as well. The main frequencies of IMF C4 are
clearly identified to be 0.0833 cycles per hour (12 h per cycle)
and 0.0417 cycles per hour (24 h per cycle). From Fig. 6e, the
main frequency of IMF C5 clearly is 0.0417 cycles per hour
(24 h per cycle). These results show that FFT method is only
capable of capturing the main global frequencies (cycles) of the
selected component IMFs C2-C5.

Hilbert marginal spectra of individual IMFs C2-C5 are illus-
trated in Fig. 5a—-d. The Hilbert spectrum and the Hilbert marginal
spectrum of individual IMFs C2-C5 can represent the information
of time-frequency-energy distribution as discussed in Section 3.
Observing both HHT and FFT spectra, there are some distinctions
for IMFs C2-C5. Firstly, the results of FFT represent the global fre-
quency for individual component, but those of HHT present the lo-
cal frequency which can illustrate the time variants of passenger
flow. The time variants can reflect the fluctuation of passenger
flow. Secondly, HHT generates a narrower frequency band than
FFT for individual IMFs C2-C4. Taking IMF C2 as an example, there
is obviously a stronger energy distribution at about 0.1020 cycles
per hour with HHT (refer to Fig. 5a). However, the frequency of
IMF C2 with FFT distributes dispersedly at 0.0833, 0.2083, and
0.2917 cycles per hour (refer to Fig. 6b). Obviously, HHT generates
a narrower frequency band than that of FFT. In case of IMF C5, both
HHT and FFT generate a similar frequency distribution at around
0.0417 cycles per hour (24 h per cycle). These results indicate that
the frequencies captured by HHT and FFT are close at low
frequency.

4.1.3. Comparison with superimposed IMFs C2-C5

As mentioned above, IMFs C2-C5 are demonstrated to be mean-
ingful components for original time series data. Therefore, HHT and
FFT are additionally adopted to analyze the superimposed IMFs
C2-C5. From Fig. 6f, the frequency of FFT distributes obviously
on 0.0417 and 0.0833 cycles per hour, and it only captures semi-
daily period and daily period patterns including 12 h per cycle
and 24 h per cycle since the noise and IMFs of low frequency are
removed. However, HHT clearly illustrates the energy distribution
that is concentrated on weekdays and weekends. From Hilbert
spectra and Hilbert marginal spectra of superimposed IMFs C2-
C5 (refer to Fig. 4b), the first two highest energy locates at the fre-
quencies of 0.0549 and 0.1020 cycles per hour. The frequency of
0.0549 cycles per hour means 18.2 h per cycle and represents the
approximate service periods of passenger flow in the metro system
(from 6:00AM to 1:00 AM the next day). The frequency of
0.1020 cycles per hour means 9.8 h per cycle and represents
semi-service periods of passenger flow (one half of service hours,
i.e., 9.5 h). HHT can capture service period and semi-service period
patterns since the noise and IMFs of low frequency are removed.
That is, for superimposed IMFs C2-C5, FFT only captures semi-daily
and daily patterns, but HHT can additionally capture semi-service
period and service period patterns. In addition, the Hilbert spec-
trum reveals that morning peak periods (8:00 AM-9:00 AM) on
weekdays hold a stronger energy distribution. It reflects the peak
characteristics of the metro system. Notice that the information
can only be provided by HHT.

4.2. Discussions

In this paper, the time series data of short-term passenger flow
in a metro system are decomposed into nine independent intrinsic
modes and a residue with various frequencies. The individual IMFs
C2-C5 illustrates the time variants of passenger flow such as peak
period pattern, semi-service period pattern, semi-daily pattern and
daily pattern.

Exploring the extracted IMFs by HHT brings out some interest-
ing patterns of the time variants in short-term passenger flow. For
example, according to our prior knowledge, the passenger flow of
weekdays and weekends may behave similarly, since a large num-
ber of passengers take the Muzha line to visit Muzha Zoo, which is
located near the terminal station. However, from the results, the
weekday period has a stronger energy distribution among the dis-
covered patterns of time variants. This indicates that the leisure
trips on weekends are less than the work trips on weekdays. Deci-
sion makers in a metro system can arrange an appropriate service
plan with respect to the patterns of time variants to save operating
costs and improve performance.

The distinct features of HHT in the analysis of passenger flow
are stated as follows. First, previous studies mainly applied tradi-
tional methods such as multiple regression to analyze passenger
flow. They focused on studying the influential explanatory vari-
ables (e.g., population, employment, land use, social economic,
fares, service level), and on discussing the explanation ability, so
that the physical entities of passenger flow have been neglected.
However, the HHT method can overcome the disadvantages of tra-
ditional methods such as the assumptions of linearity and stationa-
rity, and reflect the fluctuations of passenger flow more accurately.
By using the sifting process, IMFs can completely reveal the unique
pattern by themselves (e.g., IMFs C2-C5). Second, most previous
studies focused on studying the short-term traffic flow. However,
this study obtains the time variants of passenger flow in the metro
line by using HHT. HHT can provide more information (e.g., time-
frequency-energy) to help decision makers establish metro opera-
tion plans such as equipment maintenance plans and train service
plans (e.g., headway), service levels, train schedules, timetables
and crew schedules.

By comparing HHT and FFT, two points are worth to be men-
tioned. From a theoretical point of view, FFT is restricted to analyze
linearity and stationary data. It provides the global frequency dis-
tribution and generates a wider frequency range to fit harmonic
function. However, HHT, which is free of linearity and stationarity
assumption, is adaptive to analyze non-linearity and non-station-
ary data. EMD can serve as a filter to extract the meaningful com-
ponents from the original time series. Hilbert transform offers the
instantaneous frequency to reflect the time variants of time series
data and it obtains the time-frequency-energy distribution. There-
fore, HHT is more adaptive to analyze real-word complexity data
than FFT. Provided that FFT is applied to analyze non-linear and
non-stationary data, two issues should be noticed. First, to fit
non-stationary time series data with a constant amplitude and fre-
quency, the sinusoidal functions will require a much wider range
of frequency. Second, the non-linear harmonic distortion will cause
a leakage effect from the low frequency to generate a high fre-
quency range of spectrum. In practice, FFT is incapable of separat-
ing high frequency noise, which may present the external
environment changes such as weather change (a sunny day/a rainy
day), special activities, etc. However, HHT can eliminate the high
frequency noise and reveal several passenger patterns. For the case
of superimposed IMFs C2-C5, HHT captures semi-service and
service patterns, but FFT obtains semi-daily and daily patterns.
Semi-service and service patterns imply the characteristic of pas-
senger flow during the service period, yet semi-daily and daily pat-
terns reveal the characteristic of passenger flow during the service
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period and the non-service period. However, the characteristic of
passenger flow during the non-service period is meaningless be-
cause the operation strategy focuses on the passenger flow de-
mand during the service period. Obviously, semi-service and
service patterns obtained by HHT can reveal more information of
time variants of passenger flow than that of semi-daily and daily
patterns obtained by FFT. By considering the characteristics of
semi-service and service patterns, planners can generate proper
operation strategies and enhance the performance of metro sys-
tems. Therefore, HHT is superior to FFT in analyzing non-stationary
and non-linear data of passenger flow in a metro system.

5. Applications

Mugzha line is a computerized, automated and driverless metro
system, and it is controlled by the operation control center. Manag-
ers of metro systems can observe the dynamic fluctuation of passen-
ger flow through the time-frequency-energy distribution revealed
in the Hilbert spectrum. For example, in the original passenger flow
data, the strongest energy locates around afternoon peak periods
(17:30 PM-19:00 PM) on Monday, May 5. The time-frequency-en-
ergy distribution may reflect the congestion of passenger flow at
some specific time periods in the metro system. In such a situation,
managers can make operation plans such as arranging additional
trains to the main line in advance to relieve the passenger conges-
tion. Mangers can observe whether the similar pattern of conges-
tion appears during the same periods on any weekdays.

By using the time-frequency-energy distribution of passenger
flow, train schedules and crew schedules in transportation systems
could be planned in advance. The Hilbert spectrum of superim-
posed IMFs C2-C5 clearly indicates the morning peak period
(8:00 AM-9:00 AM) on weekdays. Based on extracted morning
peak characteristics of the metro system, planners of metro system
can set up various operation plans such as train schedules, crew
schedules and train headways in morning peak and off-peak peri-
ods on weekdays to ensure the required service level of the metro
system. Additionally, managers can thus arrange the appropriate
number of staff to enhance the service level with a reasonable
operation cost. Furthermore, managers can examine the capacity
of station facility and equipment to ensure that it meets safety reg-
ulations of transportation systems.

6. Conclusions

In this paper, a signal processing method developed recently,
namely HHT, has been adopted to analyze the short-term passen-
ger flow of a metro system. The HHT approach can extract the
oscillations embedded in data without setting any subjective pre-
liminary assumption. The IMFs extracted by EMD present some
useful time variants patterns of short-term passenger flow includ-
ing peak period pattern, semi-service period pattern, semi-daily
pattern and daily pattern. The results of HSA also indicate the
time-frequency-energy distribution, which can be used to gener-
ate effective operation plans in a metro system. Additionally,
HHT spectra are compared favorably to the traditional FFT spectra
for presenting various frequencies. The comparisons indicate that
HHT can obtain the narrower frequency band, and capture more
information represented by a time-frequency-energy distribution,
which can help to enhance the transportation system planning.
From the results obtained in this study, HHT has been demon-
strated to be an effective approach for discovering the time variant
characteristics of short-term passenger flow.

Although HHT can effectively reflect the characteristics of pas-
senger flow, the HHT method has some shortcomings (Huang
and Wu, 2008). First, HHT can not directly explain the time vari-

ants of original data. While a finite set of IMFs can be generated
by EMD, these IMFs are lack of theoretical fundamentals for
explaining the physical meanings. Generally, it is necessary to
interpret the meanings of extracted IMFs with domain knowledge.
Second, the present EMD method can not analyze the data more
than two dimensions (apart from the time dimension). Hence,
the time variants of passenger flow in terms of spatial dimension
can not be obtained in this study. Recently, some researchers have
tried to develop the EMD approach for extracting IMFs from two-
dimensional data (Bhuiyan et al., 2008; Shi et al., 2009). However,
this paper analyzes the variants of passenger flow in an entire me-
tro line with two dimensions including time and passenger flow by
using HHT. In the future, it is worth to develop a two-dimensional
EMD approach (i.e., temporal-station pair-passenger flow EMD) to
additionally analyze the time variants of passenger flow in terms of
stations. Third, one IMF component may include both high fre-
quency and low frequency, and a frequency may exist in different
IMFs such that the explanation of IMFs is complicated. The future
work can further apply ensemble empirical mode decomposition
(EEMD) method (Wu and Huang, 2008), which adds white noise
in the sifting process, to deal with the problem of mode mixing.
Fourth, although EMD and HHT can generate useful service pat-
terns, they do not have the forecasting capability. However, the
meaningful IMFs can be used as the input variables of forecasting
models such as neural networks and support vector machines for
regression to enhance the forecasting performance. Developing
the hybrid forecasting model by incorporating with EMD is also a
valuable future work.
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