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bstract

Clustering and classification approaches have been commonly applied in reducing the heterogeneity in accident data. As part of an effort to
nderstand the features of the heterogeneity, this study assessed accident data from the perspective of accident occurrences. Using the rule-based
lassification method, rough set theory, rules were derived which consisted of indispensable factors to certain accident outcomes and reflected the
rocess of accident occurrences. The occurring frequency of each derived rule was then adopted as the basis for grouping accidents for further
nalyses. Empirical results showed that rules with high occurring frequencies were largely related to drivers with high-risk characteristics. On the
ther hand, road facilities played a key role in rules with low-occurring frequencies. The distinctive features indicated the essential differences

etween the frequently repeated and the sparsely unique processes of accident occurrences. This suggests that the heterogeneity of accident data
s not limited to one single factor, such as age, gender or area. Thus, the proposed approach, which takes the process of accident occurrences into
onsideration, can be a potential alternative to more comprehensively analyze the heterogeneity in accident data.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

The issue of heterogeneity in accident analysis and road
afety modeling is critical and has been noticed by many
esearchers. If not carefully taken into account, heterogeneity
ay lead to erroneous data interpretations or biased coeffi-

ient estimates. Heterogeneity can be roughly divided into two
inds: the observed and the unobserved (Washington et al.,
003; Cameron and Trivedi, 2005). Observed heterogeneity
efers to inter-individual differences that are controlled or mea-
ured by explanatory variables; on the other hand, unobserved
eterogeneity refers to all other differences. While unobserved
eterogeneity is difficult to deal with due mostly to data limita-

ions, researchers have put a lot of effort into reducing possible
eterogeneity in on-hand data.
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One of the many approaches to reducing heterogeneity is
o select relatively homogeneous data; for example, grouping
ccident cases (or partitioning an accident dataset) by the age or
lcoholic status of the driver or by crash site. It is clear that
esearch interest and professional knowledge play important
oles in accident data processing of safety research. In other
ords, the heterogeneity was presumably specified rather than

evealed by the data itself. Those targeted groups are specifi-
ally analyzed because of the presence of their persistent but
nobserved age-specific, gender-specific or area-specific fac-
ors. Although some particular groups, such as male and female
rivers, have long been associated with having essentially dif-
erent accident patterns, those significant differences may not
tand universally because of various factors like national or
egional cultures. To more objectively deal with the heterogene-
ty problem, some systematic approaches have been proposed. In
articular, clustering methods have been considered as a useful
ool to partition accident data so that the modeled or interpreted

ata are relatively homogeneous (Karlaftis and Tarko, 1998).

Recognizing contributions from past studies, this research
ims to group accident data from the perspective of accident
hains; that is, grouping accident data by using the concept of

mailto:jtwong@mail.nctu.edu.tw
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•
accident dataset was first analyzed with rough set theory.
Condition attributes were filtered so that the attributes unable
to distinguish accident cases were excluded. Thereafter, by
learning from past accident cases, a minimum number of rules
58 J.-T. Wong, Y.-S. Chung / Accident An

ccident chains—combining accident-contributing factors. This
pproach more thoroughly examines the causality between fac-
ors and accident outcomes. Furthermore, it is also helpful in
ncovering the effects of confounding factors (Elvik, 2003) and
n gaining new insights (Juarez et al., 2007; Wong and Chung,
007). Accordingly, this research will aim to explore the char-
cteristics of each sub-dataset formed from the perspective of
ccident chains.

The purposes of this study were two-fold. One was to
ompare the characteristics of accidents belonging to different
roups; the other was to examine the observed heterogeneity
mong accident groups. A two-stage approach was then pro-
osed for the purposes. Rough set theory and statistical tests
ere adopted at the first stage to derive rules for grouping acci-
ents. A multinomial logistic regression model was applied at
he second stage to evaluate the effects of factors in accident
utcomes for various accident groups.

Other elements in the paper are organized as follows: The
wo-stage approach is described in Section 2. A real dataset
as adopted to demonstrate the approach. Rules as well as their

haracteristics are explored in Section 3. Discussions follow in
ection 4 and conclusions are drawn in Section 5.

. Methodology

Tree- or rule-based methodologies have been shown as
seful tools to obtain homogeneous datasets in accident anal-
ses. Recent applications included classification trees or CART
Abdel-Aty et al., 2005; Chang and Wang, 2006; Karlaftis and
olias, 2002; Magazzù et al., 2006; Park and Saccomanno, 2005;
tewart, 1996), generic algorithms (Clarke et al., 1998, 2005),
nd rough set theory (Wong and Chung, 2007). Of which, the
ule-based methodology, rough set theory (Pawlak, 1982), has
een shown as a useful tool to express the accident chain idea.
y comparing the differences among accident cases, rule sets are
enerated to represent accident chains. Each rule can be treated
s a pseudo-causal chain which usually consists of driver charac-
eristics, trip characteristics, weather conditions, road conditions
nd accident outcomes. Interested readers can refer to Pawlak
1991) and Pawlak and Skowron (2007) for a thorough intro-
uction to rough set theory. A nice tutorial about rough set
heory was presented by Walczak and Massart (1999), and Wong
nd Chung (2007) explained the connections between rules and
ccident chains.

For the purpose of accident analyses and prevention, people
ave been interested in causality and have tried to find the gen-
rating processes of accidents, especially for those that occur
epeatedly. The occurring frequency of a rule is termed as rule
trength in rough set theory. A rule with high frequency of
ccident occurrence indicates that many accidents repeatedly
ccur under identical conditions for some critical factors. Con-
equently, strong causality between factors and outcomes may
xist for such rules. On the other hand, a low-frequency rule

efers to only a few accidents, occurring under the associated
onditions. Accidents belonging to the same rule are treated as
dentical; however, it should be noted that accidents belonging to
lightly different rules are not essentially different since some of
s and Prevention 40 (2008) 357–367

he considered critical attributes could be partially overlapping in
erms of the effect on accident occurrence. For example, trip time
nd illumination of roads both affect drivers’ sight distance and
onsequently the occurrence of accidents. Therefore, to avoid
ver-strictly classifying accidents, instead of rules, the classifi-
ation of accidents will be based on rule strength which stands
or the occurring frequency of such accident conditions. Acci-
ents associated with the rules with low-occurring frequency
ould be considered as by-chance accidents. On the other hand,
ccidents under rules with high-occurring frequency may imply
hat they did not occur by chance but for some reason or sys-
em error such as poor road design. These accidents should be
aid more attention by both policy makers and traffic engineers.
herefore, the rule strength is considered as a helpful indicator

o cluster accidents for further analyses.
As stated, the proposed approach consisted of two stages.

n the first stage, accidents were grouped with respect to rule
trength; accordingly, accident characteristics were extracted
ith multinomial logistic regression in the second stage. In the

ollowing, the proposed approach is explained step by step. The
rst four steps describe how to apply rough set theory and sta-

istical tests to group accidents while the last step describes a
ay to use a multinomial logistic regression model in extract-

ng accident characteristics. The whole process is depicted as in
ig. 1.

Step 1: Learning rules from accident datasets. A whole
Fig. 1. Research framework.
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was generated to represent all distinct accident patterns. Each
rule was represented by three elements: variable combina-
tion of condition attributes, strength and belonging accidents.
Combination of variables describes the process of accident
occurrence for a specific accident pattern. Strength repre-
sents the accident counts belonging to a rule, and belonging
accidents refers to the accident cases under the rule.
Step 2: Grouping accident cases based on rule strength. Acci-
dent cases were then grouped according to the associated rule
strength. In other words, accident cases were grouped if their
belonging rules were of equivalent strength. Consequently,
two accident cases were put under the same group if and
only if their belonging rule had equivalent strength. Accidents
referring to distinct rules could belong to the same group as
long as their strength was equivalent.
Step 3: Ranking the aforementioned groups by the order of
rule strength. Rules and the corresponding accidents were
then arranged in the order of strength.
Step 4: Grouping the ordered accident groups. The next step

was to group the ordered accidents. For the convenience
of interpretations, the number of the groups was set small.
Meanwhile, the accident characteristics among groups were
expected to be significantly different from one another where

p
a
t
a

able 1
ttribute and category

imensions Attributes

river characteristics (condition attributes)

Ages
Genders
License types
License conditio
Occupations

rip characteristics (condition attributes)
Trip purposes
Trip time

ehavior and environmental factors (condition attributes)

Protect equipme
Cell phone use
Drinking conditi
Road type
Speed limit
Road shape
Pavement materi
Surface deficienc
Surface status
Obstruction
Sight distance
Signal type
Signal condition
Median
Roadside markin
Weather
Light condition

ccident (decision attribute)

Accident types
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a χ2 test was adopted for large sample sizes and a Fisher’s
exact test for small sample sizes in the significance test.
Step 5: Exploring accident characteristics with multinomial
logistic regression. Finally, multinomial logistic regression
was applied to explore the accident characteristics for the
whole dataset as well as for each accident group. The charac-
teristics of each accident group were then compared.

. Empirical study

In order to demonstrate the effectiveness of the proposed
pproach, an empirical study is presented. The data and soft-
are (Grzymala-Busse, 1992; Grzymala-Busse and Werbrouck,
998) used in Wong and Chung (2007) were adopted to demon-
trate the feasibility and usefulness of the proposed framework.
ingle auto-vehicle (SAV) accidents were chosen as subjects;
ince no other vehicles or pedestrians were involved in such
ccidents, the problem can be more accurately defined. Mean-
hile, far more information is required to explore the accident

atterns of multi-vehicle accidents. Consequently, studying SAV
ccidents makes a good start for the research. The attributes and
heir corresponding categories coded in the accident database
re summarized in Table 1.

Categories

Under (<18), young (18–35), middle-aged (36–55), elderly (>55)
Male, female
Regular, occupational, military, other

ns Valid, invalid, unknown
Student, working people, no job, unknown

Work, school, social, shop, sightseeing, business, other, unknown
Morning peak (07:00–09:00 h), day off-peak (09:00–16:00 h),
afternoon peak (16:00–19:00 h), night off-peak (19:00–23:00 h),
midnight to daybreak (23:00–07:00 h)

nt use Use, no use, unknown
Use, no use, unknown

on Drinking, not drinking, other
Highway, other
50−, 51–79, 80+
Intersection, segment, ramp or other

al Asphalt, other, no pavement
y Normal, other (e.g. holes, soft, and so on)

Dry, wet, other
Yes, No (within 15 meters)
Good, poor (based on road design speed)
Regular, flash, no signal
Normal, abnormal, no signal
Island, marking, none

g Yes, no
Sunny or cloudy, rainy, other
With light, no light

Collision with structure
Collision with road facility
Collision with non-fixed object
Collision with work zone
Off-road
Rollover
Other
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Table 2
Strength and the corresponding number of rules

Strength 1 2 3 4 5 6 7 8 9 10
Number of rules 285 167 76 47 28 23 31 24 20 13
Rule percentage (%) 35.27 20.67 9.41 5.82 3.47 2.85 3.84 2.97 2.48 1.61

Strength 11 12 13 14 15 16 17 18 19 20
Number of rules 11 19 7 10 4 8 6 2 1 7
Rule percentage (%) 1.36 2.35 0.87 1.24 0.50 0.99 0.74 0.25 0.12 0.87

Strength 21 22 23 25 26 27 29 35
N
R
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umber of rules 5 2 3 4
ule percentage (%) 0.62 0.25 0.37 0.50

.1. Strength of accident pattern

With 23 condition attributes (pavement material is redun-
ant and excluded), 808 rules were generated as the minimum
equirement to cover 2316 accident cases, i.e. one rule stood on
verage for three accident cases. As shown in Table 2, the fre-
uencies of some rules were high while some were low. The
aximum strength was 35 for one rule while the minimum

trength was 1 for 285 rules. More than half of the rules were of
trength equivalent to 1 or 2. This demonstrates the uniqueness
f most accident patterns for Taiwan’s SAV accidents in 2003;
hat is, most accidents occurred with different driver character-
stics, different trip characteristics and/or different behavior and
nvironmental factors. Nevertheless, for those rules with high
trength, they represent a large portion of accidents occurring
epeatedly with identical patterns.

The differences of accident characteristics between rules
ith high frequencies and those of low frequencies are the pri-

ary concerns in this research. This study adopted 23 condition

ttributes to describe the occurrence of accidents, which made
he analysis at a very microscopic level. As a consequence, each
ccident may follow its exclusive pattern rather than identical

T
t
A
g

able 3
est results of condition attributes for the final partition

river characteristics Trip characteristics

ondition attribute P-Value Condition attribute

ges 0.0047** Trip purposes
enders 0.0001** Trip time
icense types 0.6558
icense conditions 0.0009**

ccupations 0.0000**

* 0.10 significance level.
** 0.05 significance level.
1 1 2 1
0.12 0.12 0.25 0.12

atterns. Nevertheless, in addition to the rules with low frequen-
ies, the rules with high frequencies were also derived. This
hows that stereotype accidents do exist.

.2. Accident grouping

For the convenience of interpretations, two to six groups were
referred, in which the more significantly different condition
ttributes existed among groups, the more desired they were. In
his research, a bottom-up procedure was implemented to deter-

ine the boundaries of accident groups. Statistical tests were
mployed to determine the appropriateness of cluster bound-
ries. The χ2 test was adopted for large sample sizes while the
isher’s exact test for small sample sizes. The significance level
as set at 0.10, and three clusters were then determined after

horough analysis. The corresponding rule strength intervals for
he clustered groups were 1–2, 3–23 and 25–35 with the num-
er of accidents being 619, 1451 and 246, respectively. Seen in

able 3, the license type and roadside marking attributes were

he only two non-significant condition attributes among clusters.
ll other condition attributes were significantly different among
roups.

Behavior and environmental factors

P-Value Condition attribute P-Value

0.0000** Protect equipment use 0.0044**

0.0000** Cell phone use 0.0074**

Drinking condition 0.0000**

Road type 0.0073**

Speed limit 0.0000**

Road shape 0.0000**

Pavement material 0.0118**

Surface deficiency 0.0022**

Surface status 0.0034**

Obstruction 0.0307**

Sight distance 0.0000**

Signal type 0.0000**

Signal condition 0.0000**

Median 0.0000**

Roadside marking 0.2621
Weather 0.0704*

Light condition 0.1000*
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Table 4
Accident characteristics for whole and partitioned accident groups

Condition attribute Category Whole dataset (%) Weak pattern
(strength = 1–2) (%)

Medium pattern
(strength = 3–23) (%)

Strong pattern
(strength = 25–35) (%)

Age Under 0.3 0.5 0.2 0.0
Young 60.3 59.9 60.9 67.4
Middle-aged 32.2 29.7 33.1 26.5
Elderly 6.5 8.8 5.4 5.7
Other 0.7 1.1 0.4 0.4

Gender Male 86.0 84.3 86.3 95.1
Female 14.0 15.7 13.7 4.9

License type Regular 81.6 80.8 80.6 80.8
Occupational 6.9 7.2 7.4 4.9
Military 0.4 0.7 0.3 0.4
Other 11.1 11.3 11.7 13.9

License condition Valid 86.7 87.3 85.4 84.5
Invalid 8.0 8.0 8.7 14.3
Unknown 5.3 4.7 5.9 1.2

Occupation Student 4.0 6.5 2.8 3.3
Working people 69.1 51.1 55.7 67.3
No job 8.1 8.2 7.9 5.7
Unknown 18.8 34.2 33.6 23.7

Trip purpose Work 7.3 6.0 8.7 6.1
School 0.4 1.3 0.0 0.0
Social 9.0 9.1 8.9 8.2
Shop 1.9 2.8 1.5 1.6
Sightseeing 4.8 4.7 4.8 2.4
Business 2.1 2.1 2.0 2.4
Other 52.5 50.8 51.6 67.9
Unknown 22.0 23.2 22.5 11.4

Trip time Morning peak 5.8 5.2 6.8 1.6
Day off-peak 21.5 22.3 19.0 18.0
Afternoon peak 10.7 13.7 9.0 13.1
Night off-peak 15.8 15.9 16.0 12.2
Midnight to daybreak 46.2 42.9 49.2 55.1

Protect equipment use Use 83.8 85.8 82.0 90.2
No use 3.8 4.1 4.3 2.9
Unknown 12.4 10.1 13.7 6.9

Cell phone use Use 0.9 0.5 1.1 0.8
No use 87.1 88.7 86.1 93.5
Unknown 12.0 10.8 12.8 5.7

Drinking condition Drinking 28.2 26.8 27.3 26.1
Not drinking 61.5 62.6 60.5 72.2
Unknown 10.3 10.6 12.2 1.7

Road type Highway 7.7 5.5 9.5 9.0
Other 92.3 94.5 90.5 91.0

Speed limit 50− 55.4 59.9 55.2 29.8
51–79 37.0 34.1 35.8 60.4
80+ 7.6 6.0 9.0 9.8

Road shape Intersection 20.6 19.6 22.4 31.0
Segment 79.0 79.4 77.5 69.0
Ramp or other 0.4 1.0 0.1 0.0

Surface deficiency Normal 98.7 97.4 99.1 99.2
Other 1.3 2.6 0.9 0.8

Surface status Dry 86.6 87.3 84.3 77.6
Wet 13.0 12.2 15.5 22.4
Other 0.4 0.5 0.2 0.0

Obstruction Yes 94.6 93.0 94.8 97.6
No 5.4 7.0 5.2 2.4
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Table 4 (Continued )

Condition attribute Category Whole dataset (%) Weak pattern
(strength = 1–2) (%)

Medium pattern
(strength = 3–23) (%)

Strong pattern
(strength = 25–35) (%)

Sight distance Good 89.6 87.9 89.7 93.9
Bad 8.3 7.7 9.1 4.1
Unknown 2.1 4.4 1.2 2.0

Signal type Regular 9.8 6.9 12.0 14.3
Flash 7.0 6.9 7.5 25.3
No signal 83.2 86.2 80.5 60.4

Signal condition Normal 15.9 12.1 18.6 39.6
Abnormal 0.2 0.3 0.2 0.0
No signal 83.9 87.6 81.2 60.4

Median Island 34.0 27.2 38.0 59.2
Marking 45.9 49.9 42.2 15.1
None 20.1 22.9 19.8 25.7

Roadside marking Yes 57.3 54.6 58.1 56.3
No 42.7 45.4 41.9 43.7

Weather Sunny or cloudy 88.8 88.7 86.9 84.1
Rainy 10.3 10.1 11.9 15.9
Other 0.9 1.2 1.2 0.0

L 5.6
4.4
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ight condition With light 86.8 8
No light 13.2 1

The characteristics of the accident groups as well as the whole
ata are shown in Table 4. This shows that the accident char-
cteristics of the whole dataset were relatively close to those
lustered in the weak and medium rule strength. However, the
ccident characteristics of the high rule strength group appeared
ubstantially different from the others and showed relatively high
ercentages of the following attributes: drivers were male and
oung; drivers’ licenses were invalid; trips occurred between
idnight and dawn; trip purposes were not specified; speed limit
as medium (51–79 kph); median was an island; crash positions
ere at intersections, signals were under flash operation; road

urfaces were wet; roads had no obstructions; sight distances
ere good; and drivers were under the conditions of wearing

eatbelts, not talking on their cell phones and not drinking.
These results may suggest that the accidents with strong pat-

erns, i.e. high rule strength, are most likely related to high-risk
rivers. Young and male drivers, compared with elderly and
emale drivers, respectively, have been identified as high-risk
rivers in many studies (Massie et al., 1995, 1997; Murray,
997; Kim et al., 1998; Laapotti and Keskinen, 1998; Shinar and
ompton, 2004). Drivers on road without a valid driver license
ave explicitly exhibited risky behavior. The road environment
etween midnight and dawn has been associated with a more
isky driving environment compared with driving during day-
ime (Lin and Fearn, 2003; Keall et al., 2005). Although drivers
ho drive between midnight and dawn cannot be automatically

onsidered as high-risk drivers, there is a high possibility that
ore high-risk drivers are among them since a relatively high

ercentage of these drivers are driving for no specific purpose.

n other words, they are probably enjoying the night lifestyle and
ot driving for school, business or other necessary purposes.

In addition, accidents associated with strong patterns occur
nder conditions that may not appear for average or conservative

i
m
p
m

86.5 81.6
13.5 18.4

rivers. No obvious causes from the road or natural environ-
ent were found in these patterns—neither obstructions on the

oad nor poor sight distance. Interestingly, these drivers were
ot using cell phones, had not drunk alcohol and were wear-
ng seatbelts. This shows that they were rational drivers and
ere following the law. In particular, it might reflect the culture
ifferences in drinking—drinking is probably not as common
or the young males in Taiwan as those in Western countries.
s to the accident location, the findings met our expectations:

ingle vehicle accidents occur more likely on road segments
han at intersections. This may result from the fact that traffic
ows at intersections are more complicated and subject to more
onflicts; consequently, multi-vehicle accidents are more likely
o happen at intersections. However, since most SAV accidents
ith strong patterns at intersections turned out to be collisions
ith road facilities, this implies that facilities near intersections
ay be the critical contributing factor for high-risk drivers, espe-

ially during the night when traffic is low, which encourages fast
riving for some. Moreover, a wet road surface increases the
ifficulty of maneuvering a vehicle. The relatively high percent-
ge of wet surfaces as a factor in the occurrence of accidents
ith strong accident patterns may imply that the drivers have

mmature skills or that they are overconfident.

.3. Results of multinomial logistic regression

To further explore the characteristics for each sub-dataset,
e conducted multinomial logistic regressions for a variety
f clustered accidents. Five models were devised and tested,

ncluding base model (whole dataset), weak strength model,

edium strength model, weak plus medium model and medium
lus strong model. For fair comparisons, all models were esti-
ated with an identical specification which was developed based
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Table 5
Estimating results of MNL models

Accident typea Whole (base) Weak strength Medium strength W + M M + S

Coefficient Odds
ratio

Coefficient Odds
ratio

Coefficient Odds
ratio

Coefficient Odds
ratio

Coefficient Odds
ratio

Structure Intercept −2.456**b 0.952* −3.433** −2.304** −3.574**

Age Middle-aged 0.060 1.061 0.292 1.339 0.376 1.457 0.021 1.021 0.420 1.521
Elderly −0.236 0.790 −0.840 0.432 −0.159 0.853 −0.263 0.769 −0.140 0.869

Trip time Peak period −0.430* 0.651 −0.429 0.651 −1.449** 0.235 −0.454* 0.635 −1.443** 0.236
Off-peak period −0.063 0.939 −0.031 0.969 −0.431 0.650 −0.096 0.909 −0.408 0.665

Drinking Drinking 0.579** 1.785 0.292 1.340 0.766** 2.151 0.549** 1.732 0.801** 2.228
Road shape Intersection −0.204 0.815 0.889** 2.433 −0.758* 0.469 −0.151 0.860 −0.825* 0.438

Median Island −1.222** 0.295 −1.120** 0.326 −2.005** 0.135 −1.194** 0.303 −2.061** 0.127
Marking 0.316 1.372 −0.769* 0.463 0.559 1.749 0.238 1.269 0.630* 1.877

Non-fixed object Intercept −4.724** −1.654* −22.207** −4.614** −22.256**

Age Middle-aged 0.168 1.182 0.935 2.548 –c – 0.151 1.163 – –
Elderly 0.925 2.523 0.770 2.160 – – 0.949 2.583 – –

Trip time Peak period −0.951 0.387 −0.802 0.448 – – −0.974 0.378 – –
Off-peak period 0.391 1.479 0.545 1.724 −0.411 0.663 0.374 1.454 −0.408 0.665

Drinking Drinking −0.452 0.636 −0.254 0.776 – – −0.477 0.621 – –
Road shape Intersection −0.858 0.424 0.231 1.260 – – −0.827 0.437 – –

Median Island −0.804 0.448 −0.848 0.428 16.728** 1.8E+07 −0.726 0.484 16.650** 1.7E+07
Marking 0.031 1.032 −0.922 0.398 17.507** 4.0E+07 −0.021 0.979 17.490 3.9E+07

Work zone Intercept −4.091** −0.913 −4.984** −3.941** −5.156**

Age Middle-aged 0.784 2.191 1.139* 3.123 0.892 2.441 0.723 2.061 0.977 2.657
Elderly 0.973 2.646 0.761 2.140 – – 0.927 2.526 – –

Trip time Peak period −0.327 0.721 −0.376 0.686 −0.802 0.449 −0.379 0.685 −0.771 0.463
Off-peak period −0.209 0.811 −0.036 0.964 −1.382 0.251 −0.250 0.779 −1.358 0.257

Drinking Drinking −0.889 0.411 −0.427 0.653 – – −0.913 0.401 – –
Road shape Intersection −0.174 0.840 0.713 2.041 0.225 1.253 −0.125 0.882 0.157 1.170

Median Island −1.729** 0.177 −2.537** 0.079 −0.485 0.616 −1.670** 0.188 −0.482 0.617
Marking −0.619 0.538 −1.550** 0.212 −0.416 0.660 −0.673 0.510 −0.340 0.712

Off-road Intercept −1.770** 1.468** −2.596** −1.654** −2.703**

Age Middle-aged −0.121 0.886 0.144 1.155 0.071 1.074 −0.147 0.863 0.095 1.099
Elderly 0.214 1.239 −0.336 0.714 0.233 1.263 0.203 1.225 0.237 1.267

Trip time Peak period 0.391** 1.479 0.005 1.005 0.360 1.433 0.377** 1.458 0.363 1.438
Off-peak period 0.464** 1.590 0.105 1.110 0.587** 1.799 0.443** 1.558 0.603** 1.827

Drinking Drinking 0.333** 1.395 −0.293 0.746 0.655** 1.926 0.303** 1.354 0.687** 1.988
Road shape Intersection −1.124** 0.325 0.166 1.180 −1.587** 0.204 −1.075** 0.341 −1.634** 0.195

Median Island −1.350** 0.259 −1.148** 0.317 −1.471** 0.230 −1.284** 0.277 −1.561** 0.210
Marking −0.167 0.847 −1.125** 0.325 0.011 1.011 −0.216 0.806 0.054 1.056

Rollover Intercept −3.198** 0.337 −6.386** −3.088** −6.529**

Age Middle-aged −0.604** 0.547 −0.077 0.926 −0.751 0.472 −0.615** 0.541 −0.719 0.487
Elderly −0.235 0.791 −0.758 0.469 −0.400 0.670 −0.198 0.821 −0.468 0.626

Trip time Peak period 0.352 1.422 −0.038 0.963 0.872 2.393 0.355 1.427 0.851 2.343
Off-peak period 1.078** 2.937 0.874** 2.396 1.853** 6.378 1.067** 2.908 1.870** 6.490

Drinking Drinking −0.574* 0.563 −0.508 0.602 −19.701 0.000 −0.606** 0.546 −19.670 0.000
Road shape Intersection −0.889** 0.411 −0.131 0.878 −0.213 0.808 −0.875** 0.417 −0.155 0.856

Median Island −0.289 0.749 −0.293 0.746 0.832 2.298 −0.228 0.796 0.779 2.180
Marking −0.121 0.886 −0.948* 0.387 1.158 3.185 −0.177 0.837 1.237 3.447

Other Intercept −3.373** 0.253 −5.367** −3.218** −5.523**

Age Middle-aged 0.237 1.267 0.602* 1.825 0.941* 2.563 0.205 1.227 0.991* 2.693
Elderly 0.924** 2.520 0.562 1.754 – – 0.902** 2.464 – –

Trip time Peak period 0.272 1.313 0.036 1.036 −0.508 0.602 0.236 1.266 −0.484 0.617
Off-peak period −0.122 0.886 −0.285 0.752 −0.105 0.900 −0.147 0.863 −0.077 0.926
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Table 5 (Continued )

Accident typea Whole (base) Weak strength Medium strength W + M M + S

Coefficient Odds
ratio

Coefficient Odds
ratio

Coefficient Odds
ratio

Coefficient Odds
ratio

Coefficient Odds
ratio

Drinking Drinking 0.162 1.176 −0.037 0.963 −0.066 0.936 0.134 1.143 −0.043 0.958
Road shape Intersection 0.170 1.185 1.104** 3.016 0.170 1.186 0.188 1.207 0.144 1.155

Median Island −0.233 0.792 −0.216 0.806 −0.920 0.398 −0.202 0.817 −0.968 0.380
Marking 0.363 1.437 −0.655 0.519 0.870 2.386 0.286 1.331 0.945 2.574

a The reference category for accident type is collision with road facility, for age is young, for trip time is midnight, for drinking is not drinking, for road shape is
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b *Significance level for Wald χ2 statistic at 0.10; **significance level for Wa
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n the whole dataset. Based on concerns about sample size
nd the limitation of logistic regression, only those attributes
howing up in over 35% of the rules were considered, which
ncluded age, trip time, drinking condition, speed limit, road
hape, median and roadside marking. Moreover, to avoid empty
ells, some small categories which represented unclear condi-
ions, such as unknown or other, were excluded (413 cases were
xcluded). The likelihood ratio test at the significance level
f 0.10 was adopted to select the variables. This resulted in
ve variables being included in the final specification. They
ere, age (young, middle-aged, elderly), trip time (peak, off-
eak, midnight), drinking (not drinking, drinking), road shape
intersection, segment) and median (island, marking, none). The
stimation results for the proposed models are shown in Table 5,
here the reference accident type was set to the collision with

oad facility. All models were shown to be well fitted based on
he χ2 goodness of fit tests at the significance level of 0.10. Over-
ll, we were able to see that some significant differences existed
mong the models.

From the results of the base model in Table 5, we could clearly
dentify several factors contributing significantly to a variety of
ccident types. They were interpreted, based on the comparison
o collisions with road facilities, in detail as follows:

1) Young drivers, compared to collisions with road facilities,
were more likely to be involved in rollover accidents. The
odds of a middle-aged driver involved in rollover crashes
was 0.547 times that of a young driver. This is consistent
with past studies that young drivers exhibit higher percent-
ages of rollover accidents (Farmer and Lund, 2002) than
other age groups.

2) The odds ratios show that midnight accidents were more
likely to be related to collisions with structures, and day-
time accidents were more likely to be off-road and rollover
accidents. These findings can be related to visibility of struc-
tures which are not as easily identified during the night time
compared to regular road safety facilities. On the other hand,
since fixed facilities can be better spotted and avoided dur-
ing daytime, both off-road and rollover accidents are more

likely to occur than collisions with road facilities. This may
suggest that during daytime, drivers themselves, not road
facilities, play a key role in the occurrence of single auto-
vehicle accidents.

(

statistic at 0.05.

3) Drunk drivers tend to lose situational awareness and are
much likely to lose control of their vehicles and hit structures
or generate off-road accidents compared with crashing into
road facilities. The odds of a drinking driver involved in
collisions with structures and in off-road crashes compared
to collisions with road facilities were 1.785 and 1.395 times,
respectively, the odds a not-drinking driver would.

4) Intersections, where more road facilities (such as traffic
lights) are expected and where vehicles tend to slow down,
are more likely to have collisions with road facilities. On the
other hand, off-road and rollover accidents are more likely
to occur on road segments. These results were clearly shown
in odds ratio values.

5) Referring to collisions with road facilities, the low odds
ratios (0.295, 0.177 and 0.259) clearly suggest that roads
with median islands could significantly reduce collisions
with structures, work zones and off-road accidents. This
result reflects the fact that higher road standards with bet-
ter safety facilities help reduce some accidents, but will
also create pitfalls if the safety facilities are not properly
provided.

Additionally, results from models with different rule
trengths show some very interesting characteristics of accidents
nd were also observed and are worth noting.

1) The results from the weak strength model showed many
differences. This may imply that the characteristics of acci-
dents occurring uniquely are highly different from accidents
with medium or strong rule strength. The age, trip time and
drinking attributes played insignificant roles in differentiat-
ing the accident types, except work zone accidents, under
the weak strength model. On the other hand, road-facility-
related attributes (including road shape, median island and
median marking) contributed significantly in differentiat-
ing the accident types under weak strength accidents. This
is consistent with the fact that the occurrence of weak rule
strength accidents is rather stochastic on poorly constructed
roads.
2) In comparing the medium plus strong model with the
medium strength one, the differences were slight. It may
be because of the fact that the sample size of accidents
with strong strength was relatively small (7.86% of the total
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accidents). The only difference was the occurrence of col-
lisions with structures on the roads with median marking.
The significantly high possibility of drivers associated with
the strong rule strength being involved in collisions with
structures suggests that there is a small portion of high-
risk drivers who may easily ignore the unfavorable road
attributes.

3) The median island attribute showed very consistent estima-
tion results among all models. Almost all coefficients under
this category were negative and significant. This may sug-
gest that the relatively higher safety standards of roads with
median islands reduce the occurrence of facility-irrelevant
accidents.

4) Except for the weak strength model, the intersection area
which is equipped with more facilities than road segments
is consistently prone to the occurrence of facility-related
accidents.

5) Except for the weak strength model, the drinking attribute
showed positive signs towards the structure and off-road
types under all models. This may result from the fact that
drunk drivers usually drive faster, have lower capability of
handling their vehicles and are in lower awareness of traffic
and road conditions.

6) As for the trip time attributes, the coefficients of off-road
and rollover types were consistently and positively signifi-
cant among most models during off-peak periods. This may
suggest that drivers themselves, rather than the road envi-
ronment (structure, work zone, facility, etc.), play the key
role in the occurrence of single auto-vehicle accidents.

In summary, the findings from MNL analyses indicate that
rivers involved in accidents with strong rule strength are at
omewhat high-risk, although the sample size compared to gen-
ral drivers is limited and only part of their associated attributes
an be specifically identified. Therefore, corresponding coun-
ermeasures may be focused on enhancing drivers’ awareness
f potential threats on roads and on their dangerous driving
ehaviors. On the other hand, it was found that rather than
he driver and trip characteristics, road facilities – such as

edian and roadside marking – play the key role in acci-
ents associated with weak rules. Thus, improvement in the
uality of road maintenance may prevent such accidents. It is
lear that countermeasures designed to target accidents with
trong and with weak rules should focus on different preventive
spects.

. Discussion

This paper grouped accidents from the chain perspective
n order to analyze the heterogeneity in accident data. A
omparison of the characteristics of sub-datasets with vari-
us occurring frequencies was also made. A non-parametric
lustering method – rough set theory supplemented with sta-

istical tests and logistic regression models – was primarily
sed. The empirical results have shown that the accident
haracteristics of filtered and unfiltered dataset are somewhat
ifferent.

p
t
t
t
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.1. Heterogeneity

The heterogeneity discussed in this paper is different from
ast studies. It is based neither on driver characteristics (such
s age or gender) nor on environmental characteristics (such as
rban or rural roads). Instead, the heterogeneity discussed here
riginated from a hypothesis in which the features of frequently
epeated accident processes and that of sparsely unique ones
ay be essentially different. The distinct features of accident

roups uncovered in this empirical study did show the possible
xistence of such heterogeneity. The accidents associated with
eak rules occur rather uniquely. Since they occur by chance and

end not to lead to similar consequences under similar processes
nd conditions, it is intuitively expected that it would be rela-
ively inefficient to devise the corresponding countermeasures
or them. Surprisingly, it is observed that those accidents are
eavily related to the road environment and could be possibly
mproved by providing adequate road facilities.

Countermeasures for traffic accidents have previously
ocused either on the drivers who break laws, such as drunk
rivers or speed offenders, or on road design, like building better
oads. Although these measures are generally known and effec-
ive, less attention is put on identifying the risky but rational
rivers associated with the strong pattern accidents. This indi-
ates more research is needed to identify such drivers and to set
p the specific measures to prevent such accidents. It should be
oted that preventing accidents associated with weak patterns is
s crucial as preventing those with strong patterns. However, the
fficiency of specifically designed countermeasures to prevent
ccidents related to strong patterns will be heightened since acci-
ents associated with the weak patterns are highly diverse. Thus,
hen detailed heterogeneous accident information is taken into

ccount, countermeasures, such as on-board warning messages
nd smart roadside safety facilities which try to provide accu-
ate safety information to right drivers at right statuses (FHWA,
006), are expected to be effective against the occurrence of
trong pattern accidents and are worth being studied.

.2. Aggregation bias

The issue of aggregation biases has been noticed and studied
y many researchers (Davis, 2004; Hewson, 2005; Vlahogianni
t al., 2004; Walker and Catrambone, 1993), of which Davis
2004) presented a thorough discussion using simulated data.
e argued that since accident data have no independent status,

he statistical regularities are simply the result of aggregating
articular types and frequencies of mechanisms. The process
mplemented in this study could run into similar issues. Despite
he difficulty, the proposed procedure does lay a concrete basis
or understanding accident scenarios and paves a way for further
tudy with detailed design experiments, which is being examined
n our other research project.

Analyzing each rule instead of accident groups provides a

ossible way to alleviate such problems. Each rule herein is
reated as an individual mechanism since rules are derived under
he condition controlled by many critical factors. By examining
he characteristics of each rule classified as strong patterns, we
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nd that most rules do support the findings from crosstab analy-
is (Table 4) and MNL models (Table 5), wherein accidents with
trong patterns indicate that the drivers involved are in some-
hat high-risk danger. Although the features of individual rules
o not completely agree with the results from MNL models, the
esult, nevertheless, suggests that the proposed approach can be
ffective in processing the heterogeneous accident data and that
nderstanding the contributing factors of those large member
ules can be advantageous.

It is unfortunately far more difficult to interpret individual
ules under the weak and medium strength model since the num-
er of rules runs into hundreds. An alternative way is to relax a
ittle on the pattern requirements after the most (and least) impor-
ant attributes have been identified. This can be achieved by
sing an index called significance of attributes (Pawlak, 1991).
his index evaluates the number of objects that cannot be distin-
uished with the elementary sets when one condition attribute
s dropped from the model. In doing so, the number of rules is
xpected to decrease. However, the thoroughness of the accident
rocesses described by the rules will also decrease at the same
ime. The issue of overwhelming number of rules derived from
ough set theory has also been noticed by researchers (Løken
nd Komorowski, 2001) and requires further study.

. Conclusions

Seeing that the heterogeneity of accident data in conventional
pproaches was usually pre-specified or determined with only a
ew factors, this study proposed an objective approach and has
ioneered in exploring the heterogeneity from the perspective
f accident chains. The empirical results showed significantly
ifferent features between frequently repeated and unique rules
or Taiwan’s single auto-vehicle accidents. This confirmed our
nitial speculation. Moreover, the drivers involved in accidents
ith frequently repeated rules reflected the characteristics of
igh-risk drivers shown in various studies. These characteris-
ics were not limited to driver characteristics and included all
ritical factors related to accident occurrences. The result sug-
ests that the proposed approach has the potential to precisely
dentify high-risk drivers. On the other hand, it is road condi-
ions that played the key role in accidents associated with unique
ules. That is to say, certain road conditions are safe under aver-
ge circumstances. However, when combined with other risk
actors, though it rarely happened, the safe road conditions may
till become dangerous. This suggests that road design, road fur-
iture, road maintenance, traffic control and work zone set-up
hould be considered in a more comprehensive perspective; and
s a consequence, there may be fewer accidents corresponding
o unexpected circumstances.

This study has taken a step forward in the direction of explor-
ng the heterogeneity in accident data. The proposed approach
an be adopted in other datasets or be used to analyze differ-
nt accident outcomes. However, the results may vary due to

he differentiation in local factors, such as regional culture and
afety policies. In addition, it is important to emphasize that
ssues including possible aggregation biases and the overwhelm-
ng number of rules have limited our analysis. The derived rules

K

K

s and Prevention 40 (2008) 357–367

ould help reveal the aggregation bias in the process of retriev-
ng contributing factors. To resolve the issue of aggregation bias
nd shed light on the whole features of accidents by using the
ule-based approach, however, needs further research. An exper-
mental design where the environmental settings are based on
he strong rules and the contributing factors under MNL would
e helpful. In addition, it is worth exploring and understand-
ng driving behaviors associated with accidents for setting up
ossible interventions.
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