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Abstract

We are entering the era of digital business moments where autonomous things will buy and sell services from each other
in order to make people’s life easier. They will also negotiate in order to achieve the best price for their services which
will result in Internet of Things auctions. Such auctions will be combinatorial and recurrent. Recurrent auctions pose a
problem of bidder drop which leads to market collapse. Moreover, in Internet of Things, bidders will employ different
strategies according to their pattern of consuming resources. We describe two bidding strategies which may lead to mar-
ket collapse or very low revenue: opportunistic and periodic bidding. We devise two algorithms: revenue maximizing
auction and highest bid lock auction, analyze their performance under these two bidding strategies, and compare them
to traditional combinatorial auction. We find out that the revenue maximizing auction prevents market collapse under
opportunistic bidding while highest bid lock auction provides the highest revenue under both strategies.
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Introduction the area of cloud computing, judging from the prolif-
eration of different pricing rules, pricing is arduous to
determine for business owners and hard to navigate for
the customers.* In highly dynamic IoT systems, the con-
trol over a fixed price will be even more difficult and
less scalable. For example, the providers may not be
able to rely on setting a global price for their services as
prices for the same service may fluctuate among differ-
ent locations due to the local demand and supply pat-
terns. Auctions, on the other hand, provide a greater
flexibility due to the ability to adjust the price to current

With the rapid development of Internet of Things
(IoT), more and more devices are connected and can
perform tasks without human intervention.! Gartner
predicts that we are entering the era of digital businesses
and business moments.” Devices will be able to come
together instantly to perform actions that were tradi-
tionally done by humans. They will also negotiate in
order to achieve the best price for their services.’
Therefore, there is a need for marketplaces for IoT
resources provided by those machines where the nego-
tiation, or in other words, auction could take place. On
such marketplaces, the currency may be either virtual Department of Electronics Engineering, National Chiao Tung University,
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market demand. For example, Amazon has successfully
been using auctions for unused large capacity.” Finally,
many of the IoT resources, like the actuators, may only
serve one user at a time. For such resources, auctions
additionally solve resource access conflicts in cases
when more than one customer application requests the
service at the same time.®

In this article, we will consider auctions where the
buyers of IoT resources are the bidders and the provi-
ders are the sellers. In order to fulfill a business
moment, often a whole bundle of heterogeneous IoT
resources will be needed. For example, when an appli-
cation representing an advertisement company needs to
play some multimedia, a display and speakers will be
needed (e.g. in the taxi or belonging to a smart city’s
public infrastructure). In case one type of resource can-
not be provided, the business moment might not be
able to take place. Such auctions, where resources will
be traded in inseparable bundles, in an “all or nothing”
manner, are called combinatorial auctions.” Moreover,
many of the business moments will happen over and
over again, when the same IoT resources will be
requested and consumed repeatedly. For example, in
agriculture, the auction for the shared set of tools
(drones, sensors, and machinery) is repeated daily in a
community of farmers. Such trading will lead to a
recurrent auction.® In such auctions, bidders learn from
previous rounds and change their strategy. Lower bid-
ders will drop out of the auction when they realize they
have no chance of winning, while higher bidders will
shade their bids realizing there is less competition since
lower bidders dropped out. This may drive prices down
in what is called a bidder drop problem.’ In extreme
cases, the prices drop to nearly zero causing a market
collapse.

Another challenge to designing proper recurrent
auction mechanism stems from heterogeneous nature
of IoT. Different bidders will have different resource
consumption needs resulting in different bidding strate-
gies. We identify two resource consumption behaviors
that lead to two different bidding strategies. In opportu-
nistic bidding, bidders (e.g. an advertising company) are
interested in getting resources as often as possible or at
least every specified number of rounds. Thus, to
increase their chances of winning, they will start from
their maximum possible value and lower the bids in
subsequent rounds. In periodic bidding, bidders (e.g. a
farmer) are only interested in getting resources once
within specified number of rounds. They will use
remaining rounds to probe the system for the lowest
price. Thus, they will start from the minimum value
allowed by an auctioneer and increase their bids in sub-
sequent rounds. Opportunistic bidding is more predict-
able because bidders reveal the maximum value they
are ready to pay. It is also less aggressive in terms of
individual bidder behavior since the price drop is not

very severe, but it leads to more severe bidder drop,
which causes market collapse in the long run, than peri-
odic bidding. On the other hand, periodic bidding does
not result in market collapse but is less predictable
because bidders do not reveal the maximum value they
are ready to pay. This results in overall lower revenue
because the bidders may not reach their maximum value.

We show that for opportunistic bidding, optimal
revenue can be achieved by first eliminating low bidders
from the auction and then alternating the wins among
the remaining bidders, thus giving them the incentive to
keep their bids high. To achieve this, we propose a reve-
nue maximizing auction (RMA). RMA performs well
with more predictable strategies like opportunistic bid-
ding, but it causes market collapse with less predictable
strategies like periodic bidding. We develop a second
algorithm, called highest bid lock auction (HBLA),
which records the highest bid ever submitted by the bid-
der and prevents them from winning if they bid lower
than that. We show that the HBLA is able to both pre-
vent market collapse in opportunistic bidding and
increase revenue above traditional combinatorial auc-
tion (TCA) in periodic bidding.

The rest of the article is organized as follows. In the
next section, we discuss related works. In section
“System model,” we discuss the design of auctions for
heterogeneous IoT resources and develop two bidding
strategies. In section “Winner determination algorithms
for IoT,” we propose two algorithms: RMA and
HBLA for winner determination in recurrent combina-
torial auction. In section “Simulation and results,” we
compare the performance of RMA and HBLA applied
to two bidding strategies with the performance of
TCA. We finish the article with section “Conclusion.”

Related work

Easley and Kleinberg'® provide introduction to auc-
tions and outline bidding strategies for basic single
round auctions in accessible terms. The single round
auctions for IoT resources have been proposed with
regard to sensing capabilities of smart phones where
users perform participatory sensing tasks. For example,
Chen and Wang'' propose a strategy proof mechanism
for collaborative sensing. Furthermore, Zhu et al.'?
propose a multiple round task allocation algorithm
based on auction, but they do not explore the effects of
bidders’ strategy on the revenue in such a recurrent
auction. Finally, Sun and Ma'® propose all-pay auc-
tions and a collection-behavior based multi-parameter
posted pricing mechanism for participatory sensing.
One solution to increase revenue in auctions is set-
ting a reserve price. The auctioneer will keep the
resources if the bids are below this price. However, this
introduces two problems. First, in highly dynamic [oT
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markets, it may be not possible to predict future bid-
ders’ behavior based on previous bid values, thus mak-
ing reserve price hard to determine; in the same way, it
can be hard to set the fixed price. Second, IoT markets
will include resources that are perishable which means
they cannot be stored for later use (e.g. access to an
actuator). Therefore, improperly set reserve price may
lead to excessive resource waste of unsold resources, '
which will also cause revenue loss. That is why in this
work, we focus on solutions that can prevent market
collapse without resorting to the reserve price.

Another approach to prevent market collapse in
recurrent auctions is described by Lee and Szymanski®
as well as Murillo et al.” Both works propose encoura-
ging lower bidders to stay in the auction by providing
fair assignment of the resources by assigning them dif-
ferent priorities or scores. However, fairness introduces
lower bidders to the auction, and therefore, the overall
revenue will also decrease. Murillo et al.'® also aim at
improving the revenue of recurrent auction with fair-
ness and thus cannot achieve optimal revenue, besides
they implement a reserve price causing some resource
waste.

System model

In order to achieve complete automation of tasks nec-
essary to realize the full potential of digital business
moments proposed by Gartner, not only data but also

the whole spectrum of IoT resources must be made
accessible for trade by digital entities. In our previous
work,'® we have proposed a platform where resources
and applications consuming them are represented by
agents. In this article, we develop the necessary compo-
nents of an IoT marketplace, which comprises of
resources, bidders, and auctioneer.

Resources

IoT encompasses a wide variety of heterogeneous
resources depicted in Figure 1. They could be classified
into four groups according to their level of abstraction.
At the first level there are everyday objects that are
“dumb” by themselves, but by equipping them with
electronic tags, for example, a QR code, they become
digitized. The second level constitutes electronic devices
that can perform a single function, that is, the sensors
and actuators. At the next level there are machines and
systems composed out of those simple devices, which
can perform more complex tasks, for example, an
autonomous vehicle. Last are the services which are
decoupled from physical machines. These constitute
cloud or fog services, data aggregation, business solu-
tions, and so on. The subject of an auction is access to
the resources in a specified amount of time, and the
ability to perform any action allowed by its
Application Programming Interface (API), like using a
tagged object, changing the temperature of a

bar code, etc.
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Figure I. loT resources ordered according to their level of abstraction.
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thermostat, controlling the autonomous vehicle, or
accessing the computing resources. Thus, although they
are heterogeneous, each of the resource groups con-
tains resources that are perishable, that is, they must be
used in a time specified by an auction, because they
cannot be stored for future use. A resource is identified
by its unique ID, type, and number of units and time
duration of one unit.

Bidders

Each bidder has a different valuation for the resources
it wants to buy which is called a rrue value.'® True value
represents the maximum price the bidder is willing to
pay for the resources. In non-combinatorial auction,
true value represents the price per unit of resource. But
since business moments may require whole set of
resources, bidders treat resources as compliments,7 that
is, they are only interested in the whole bundle. Thus,
they hold a true value only for the whole bundle, which
may be different than the sum of individual resource
values. In this article, we are dealing with repeating
business moments so the resource requests remain the
same in subsequent auction rounds. We assume the
bidders are rational, that is, try to maximize their pay-
offs, and can be dishonest in reporting their true values
but there is no collusion or other malpractice. We
denote bidder 7’s true value as v; and the bid they actu-
ally report as b;. Bid value is a function of true value
according to bidder 7’s strategy S;

b; = Si(vy) (1)

The bidder’s strategy is always a trade-off between
two opposing goals. One is to bid high enough to win
and the other is to bid low enough to pay lowest possi-
ble price. Recurrent auctions present an advantage to
the bidders since they can use some of the rounds to
adjust their strategy, while keeping the overall fre-
quency of winning within desired limits. Bidders will
therefore decrease their bids to probe the system, risk-
ing not becoming a winner in some rounds. On the
other hand, bidders will withdraw from the auction if
their win frequency is not satisfied. In this article, we
model the bidders’ win frequency requirement after Lee
and Szymanski,'* where the number of consecutive losses
denoted ¢/ cannot exceed their tolerance denoted .

We divide bidders into two main groups, called peri-
odic bidding and opportunistic bidding, according to
the way in which they consume resources and in result
behave differently while bidding for them. In opportu-
nistic bidding, bidders start from their maximum possi-
ble value and lower the bids in subsequent rounds,
while in periodic bidding they start from the minimum
value allowed by auctioneer and increase their bids in
subsequent rounds.

Opportunistic bidding strategy. The bidder needs the
resources at minimum once within ¢ rounds, but is also
interested in getting resources in other rounds if possi-
ble. Thus, this kind of bidder is more concerned with
keeping winning the resources rather than finding out
the lowest possible price. In this case, the bid lowering
is less aggressive; bidders will decrease the bid upon
winning the previous round only by the lowest possible
decrement, which we assume is equal to 1. We developed
the strategy shown in Algorithm 1 to model this kind of
behavior. Their strategy can be summarized as follows:

In the first round bid b; = v;;
Decrease b; by 1 if won in previous round;
Increase b; by 1 if lost in previous round and
b;<v;;

e  Withdraw from auction if ¢/>¢.

Algorithm I. Opportunistic bidder pseudocode.

while participating in auction do
if round==1 then
b,‘ —V;
else
if won in previous round then
cd—0
b,' — bi —1
if b;i<Vmi» then
bi < Vmin
else {lost in previous round}
if / <t then
cd—d+1
b,‘ — b,' + |
if b,’>V,' then
b,’ —V;
else {c/>t}
withdraw from auction

Periodic bidding strategy. In this case, the bidder is only
interested in getting resources once within ¢ rounds,
and in the remaining rounds, it has nothing to lose.
Thus, we can say that this kind of bidder is more con-
cerned with finding out the lowest possible price rather
than keeping winning the resources. It can aggressively
probe the system to find out the lowest winning price.
Since bidder can accept losing in the first couple of
rounds, it will not want to disclose its true value to the
auctioneer. Thus, it will start from lowest bid accepted
by auctioneer, v,;,, increasing the bid in consecutive
rounds, trying to get to v; within ¢z rounds. v; is the
upper bound on its bid value, so if it did not win within
¢t rounds, it will drop out of the auction. In case of win
anywhere up to and including round ¢, it decreases the
winning bid by a chosen fraction d, 0 <d <1, and starts
the process again. The choice of d depends on bidder’s
risk profile with more risky bidders having lower d.
The strategy can be summarized as follows:
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In the first round bid b; = v,,;;,;
Bid b;*d, if won in previous round;
Increase b; by some step if lost in previous
round;
e  Withdraw from auction if c/>t.

Algorithm 2 shows the implementation of this strat-
egy, in which the bidder further divides its tolerance
period into # and #,. During the first #; rounds, it aims
at reaching the last winning bid value, stored in bygge;. It
does this by incrementing the bid by step s;. If this does
not lead to a win, then in the second part of the tolerance
period, t,, it increments the bid by s, trying to reach its
true value v;. The reasoning behind such behavior is that
bidder wants to pay at most its last successful bid value.
However, in case the situation changes and its last win-
ning bid is not high enough to win in current round, it
still has several more rounds to reach its true value.

Auctioneer and winner determination

Auctioneer represents the seller or the group of sellers
of IoT resources, which could be enterprises or private
owners. Auctioneer can either be the same entity as the
seller or it can be a separate entity that runs an auction
for bidders and sellers. The distributed and uncon-
trolled nature of IoT makes designing an auction for its
resources a complex task. In this work, we restrict the

Algorithm 2. Periodic bidder pseudocode.

compute t,
compute tp
btargez Vi
s1 — (vi — b/t
Sy — 0
while participating in auction do
if round==1 then
bi < VYmin
else
if won in previous round then
cd—20
btarget — b
b,‘ — b,*d
if bi<vmin then
bi < Vmin
S| — (btarget - bi)/tl
sy (vi — btarget)/(tZ +1)
else {lost in previous round}
if d <t then
d—c+1
if b; < bygrge: then
b,' — b,' + S|
else if b;<v; then
b,‘ — b,‘ + S$2
else
bi v
else {c/>t}
withdraw from auction

problem to one seller selling its goods to multiple buy-
ers, as in case of big resource providers like companies
or organizations. Therefore, we assume that resources
are traded in a synchronous manner, meaning that
their units are of equal length and aligned in time. The
auction takes place at time intervals equal to resource
unit length and we ignore the computation overhead.

Winner determination in a combinatorial auction is
a NP-hard problem similar to a multi-dimensional
knapsack problem.” In a recurrent combinatorial auc-
tion, it can be modeled as follows

N
max Z bi(r)x;(r)
i=1
(2)

N
S.t.Zx,-q,-ngj,Vj e{l,M}
i=1

where r is the current auction round, N is the total num-
ber of bidders, b;(r) is bidder /’s bid submitted in round
r, x;(r) € {0, 1} represents whether bidder i is assigned
resources (x; = 1) or not (x; = 0), g;; is the number of
units of resource j requested by bidder i, Q; is the num-
ber of available units of resource j, and M is the number
of resource types.

We will call formula (2) a traditional combinatorial
auction (TCA). In a recurrent auction, that is, »>1, the
problem arises from the fact that bidders learn the
result of previous auction rounds and can change their
strategy. Lower bidders will drop out of auction when
they realize they have no chance of winning, while
higher bidders will lower their bids realizing they have
less competition. In our previous work,'” we have
shown that even with scarce resources, the competition
may not be enough for the prices to stabilize, causing
market collapse. Below we will examine the effect of
different bidding strategies on auctioneer’s revenue in a
recurrent TCA. There are N = 20 bidders and M =5
types of resources, each with Q; = 20 units. Bidders’
bids, requests, and tolerance are random and they are
the same in both bidding strategies. We use normal dis-
tribution with mean of 5 for bidders’ true values v;.
Bidders’ requests, ¢;; are uniformly distributed over
[0..4]. The bidders’ tolerance values #; are uniformly dis-
tributed over [2..10]. Lowest accepted bid is v,,;, = 1.

Opportunistic bidding strategy in TCA. In Figure 2(a), we
can observe the revenue resulting from bidders using
opportunistic strategy. It will lead to a market collapse
after around 100 rounds. In Figure 2(b), we can observe
behavior of bidders to further analyze the situation that
led to market collapse. Bidders start the auction from
bidding their true value. A number of bidders were
unable to win any resources despite bidding their v;.
They all drop out of the auction after their tolerance
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Figure 2. Auctioneer’s revenue under (a) opportunistic and (c) periodic bidding strategy and bidder behavior under
(b) opportunistic and (d) periodic bidding strategy in traditional combinatorial auction.

ran out, which is signified by their bids dropping to 0
before round 10. The remaining bidders are reducing
their bids and still winning resources. Their bids reach
the lowest price accepted by auctioneer around round
100. They continue to win resources while offering this
price until the end of the auction, because there is no
competition.

Periodic bidding strategy in TCA. In this case, bidders start
from lowest possible value; thus, the revenue reaches
much lower values than with opportunistic strategy, but
it does not cause market collapse. This is shown in
Figure 2(c). The bidder behavior that leads to such reve-
nue is shown in Figure 2(d). Everyone starts from mini-
mum value. Those who win in first round keep bidding
that value while others increase their bid. This causes
the winners and losers switch places. Next, since there
are enough resources for everyone, and most bidders
can win more often than what is required by their toler-
ance, they start dropping the bids while still winning.
The sudden spikes in bid values signify bidders that did
not win resources until # and have to significantly
increase bid to ensure a win.

Winner determination algorithms for loT

In this section, we develop two auction algorithms for
IoT. First, we tackle the more severe problem of market
collapse in TCA under opportunistic strategy. In order
to prevent the collapse, we need to maintain enough
bidders in auction to provide competition. On the other
hand, keeping additional bidders for the sake of compe-
tition introduces lower bidders into the auction who
decrease the average revenue. Therefore, we develop
RMA for opportunistic bidding which aims at includ-
ing the lowest possible number of bidders in order to
maintain competition. Second, we extend the design to
cover more unpredictable bidding behavior modeled by
periodic bidding. We develop HBLA which achieves
the same result as RMA for opportunistic bidding and
outperforms both RMA and TCA in periodic bidding.

RMA

In order to maximize the revenue in recurrent auction,
we need to find an optimal point between the high
number of winners needed to sustain competition and
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the low number of winners needed to maximize the rev-
enue. Since the number of winners depends on the
number of available resources and bidders’ requests, in
order to find such an optimal point, we can analyze
bidder behavior with regard to the ratio of a combined
request from all participants and the number of avail-
able resources. Let us first consider the opportunistic
bidding scenario.

If a combined request from all the participants is
more than twice the number of available resources

N
> 45>20.% € {1.M} 3)

i=1

then due to high competition, on average they will lose
more often than win. It means that bidders will keep
their true value as bid, provided they did not drop from
the auction due to their tolerance limit. However, such
a large number of participants means low bidders are
included in the auction and they will lower the total
revenue.

If, on the other hand, combined request from all the
participants is less than twice the number of available
resources

N
Y 45<20.Yj € {1.M} (4)

i=1

then on average they will win more often than lose.
However, it can result in reducing their bids because of
lack of competition and driving overall revenue down.
Thus, ideally, the combined request from all partici-
pants should be about twice the available resources

N
> q5~20,.% € {1.M} (5)

i=1

so that each bidder could win every second round. It
keeps the necessary competition but cuts the unneces-
sary low bidders. To achieve this in an opportunistic
bidding scenario, we propose a RMA, which works in
the following way.

In Round 1, we compute winners according to TCA
formula

N
max Z bi(Dx;(1)
= G
s.t. inqy- < Qj)vj S {LM}

i=1

and denote the set of winners as W;, which is the high-
est bidding group among all bidders. In Round 2, we
exclude the winners from Round 1 and compute the
optimal set of winners with the remaining bidders

bi(2)xi(2)

N
max Z

i=1igw

S (7)
S.t. Z x,q,,SQ,,V]E {l,M}
i=1.igw

and denote this set of winners as W5, which is the sec-
ond highest bidding group among all bidders.

Thus, the total set of participants in the recurrent
auction will be W = W, + W,. In subsequent rounds,
we alternate the set of participants, in even rounds
including only W, and in odd rounds including only
W,. The bidders will decrease their bid by 1 after they
win, but they will lose in the next round, which will
cause them to increase the bid back to the previous
value. This also causes starvation of the weakest bid-
ders who are not in either set of winners. Thus, two
groups of the strongest winners are created who win
and lose alternately, keeping up the competition as well
as highest possible revenue.

HBLA

The above auction algorithm only works with less
aggressive bidding strategies like opportunistic bidding
described earlier. With more aggressive and unpredict-
able strategy, like periodic bidding, the bidder does not
reveal neither their true value, nor bid increments or
decrements per round. As a result, bidders cannot be
clearly assigned into alternating winning groups and
eventually RMA will collapse. To remedy this, we
develop HBLA to take advantage of the fact that auc-
tioneer can also infer bidders’ values from the past auc-
tion rounds. HBLA records highest bid ever submitted
by each bidder which we denote as bmax; and does not
assign resources if the bidder bids below that bid.
Therefore, its algorithm is as follows (Algorithm 3).

In HBLA, in order to win the auction, the bidders
are forced to submit the highest bid they ever revealed
to the auctioneer. Thus, even if the bidder does not care
to lose in some of the rounds, they will be forced to bid
high at least in the rounds that they do care to win the
resources. This helps to prevent the market collapse
even in highly aggressive bidding strategies like periodic
bidding.

Algorithm 3. HBLA pseudocode.

for each round do
for each bidder do
bmax; < max(bmax;, b;)
if b;<<bmax; then
b; = 0
determine winners by TCA
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Simulation and results

Simulation setup

We simulate the following algorithms:

1. RMA
2. HBLA

with two bidding strategies:

1. Opportunistic bidding strategy
2. Periodic bidding strategy

We simulate our system in MATLAB and compare
the results to TCA. We use the following setup.

Auctioneer and resources. There is one seller, and M = 5
types of resources, each with Q; = 20 units. The mini-
mum accepted bid is v,,;, = 1. The winner determina-
tion problem is solved using MATLAB’s linear
programming tool. Each simulation consists of 1000
auction rounds.

Bidders. All bidders’ variables are generated at the
beginning and remain the same throughout the simula-
tion. Bidders’ requests, ¢;; are uniformly distributed
over [0..4]. We use normal distribution with mean of 5
for bidders’ true values v;. The bidders’ tolerance values
t; are uniformly distributed over [2..10]. To model dif-
ferent risk profiles of bidders using the periodic strat-
egy, d; are uniformly distributed over (0..1]. Bidders
quit the auction by submitting bid »; = 0 and if they
quit, they do not return to the auction.

Simulation results

First, we examine revenue of RMA and HBLA under
opportunistic and periodic bidding strategy with
N = 20 bidders. The results are shown in Figure 3. The
revenue for RMA is shown in Figure 3(a). The algo-
rithm chooses two groups and awards them alternately.
Since the two highest groups of bidders are chosen, and
they are competing to stay in the auction, with oppor-
tunistic bidding, the algorithm is able to achieve reve-
nue in each round that is comparable to first rounds of
TCA (see Figure 2(a)). On the other hand, with peri-
odic bidding, RMA performs poorly. Since all bidders
start from lowest value, RMA randomly assigns win-
ners. The other bidders increase the bid to be able to
win in the second round, but in subsequent rounds
everyone reduces the bid by a higher value after winning
compared to the value of increase after loosing. Since
they win every second round regardless of the bid value,
the ratio of decrease to increase grows and the algo-
rithm causes market collapse. Figure 3(b) shows HBLA
revenue. In opportunistic bidding, it achieves the same
revenue as RMA due to the fact that in this strategy,
bidders start from their maximum value and it stores
this value. If they bid lower, they are not considered for
the resource assignment so they are forced to increase
their bid. Moreover, HBLA in periodic strategy does
not cause a market collapse and is able to increase the
revenue above the result from combinatorial auction
(see Figure 2(c)) because it stores the maximum bid ever
submitted by each bidder. The bidders are thus forced
to come back to their highest bid each time they are
going to run out of tolerance for consecutive loss.

Next, we vary the number of bidders while keeping
the number of resources Q; = 20, to examine how
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Figure 4. Auctioneer’s revenue under (a) opportunistic strategy and (b) periodic strategy for varying numbers of bidders and
different auction algorithms (TCA—traditional combinatorial auction; RMA—revenue maximizing auction; HBLA—highest bid lock

auction).

algorithms perform with different supply-to-demand
ratios. We calculate average revenue from 10 runs of
each auction simulation and the results are shown in
Figure 4. In general, all algorithms conform to the prin-
ciple that increasing demand drives the revenue up,
except for RMA under periodic bidding strategy. In
opportunistic strategy, as shown in Figure 4(a), since
bidders reveal their true value, RMA achieves the same
revenue as HBLA for each value of N. TCA leads to
collapse when the number of bidders is low. The higher
the ratio of bidders to resources, the more chances to
achieve stability as the high demand may warrant
enough competition for bidders to stay in the auction,
which we have shown in our previous work.'” In peri-
odic bidding strategy shown in Figure 4(b), RMA fails
to generate any significant revenue. TCA and HBLA
show faster revenue increase with demand than in case
of opportunistic bidding. HBLA outperforms TCA
especially with small demand when the competition in
TCA is not high enough to keep revenue high. Overall,
HBLA performs the best in both bidding strategies.

Conclusion

We have presented two bidding strategies in recurrent
auctions for perishable IoT resources: opportunistic
and periodic bidding. We have shown that revenue
obtained in TCA when bidders use these strategies is
not optimal. It may cause market collapse with oppor-
tunistic bidding and low revenue with periodic bidding.
We have devised two auction algorithms: RMA and
HBLA and applied to those bidding strategies. We
show that both RMA and HBLA substantially increase
revenue in comparison to TCA under opportunistic
bidding strategy while HBLA outperforms TCA in

periodic bidding strategy. We conclude that HBLA
performs best for the two bidder behaviors, thus being
better suited for auctions for perishable IoT resources.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: The work was supported by Ministry of Science and
Technology.

References

1. Want R, Schilit BN and Jenson S. Enabling the Internet
of Things. Comput 2015; 48(1): 28-35.

2. Schreibenreif D. Digital businesses will compete and
seek opportunity in the span of a moment. Technical
report G00262735, 24 March 2014. Stamford, CT:
Gartner, Inc.

3. Lopez J. Internet of things scenario: when things negoti-
ate. Technical report G00219512, 11 January 2012. Stam-
ford, CT: Gartner, Inc.

4. Cloud pricing: it’s (really) complicated, http://www.net
workworld.com/article/ 2172538 /cloud-computing/cloud-
pricing—it-s-really—complicated.html

5. Wang Q, Ren K and Meng X. When cloud meets eBay:
towards effective pricing for cloud computing. In: Pro-
ceedings of the IEEE INFOCOM, Orlando, FL, 25-30
March 2012, pp.936-944. New York: IEEE.

6. Liang CW, Hsu JYJ and Lin KJ. Auction-based
resource access protocols in IoT service systems. In: Pro-
ceedings of the IEEE 7th international conference on



International Journal of Distributed Sensor Networks

10.

11.

12.

service-oriented computing and applications, Matsue,
Japan, 17-19 November 2014, pp.49-56. New York:
IEEE.

Cramton P, Shoham Y and Steinberg R. Combinatorial
auctions. Cambridge, MA: The MIT Press, 2005.

. Lee JS and Szymanski BK. A participation incentive

market mechanism for allocating heterogeneous network
services. In: Proceedings of the IEEE global telecommuni-
cations conference, Honolulu, HI, 30 November—4
December 2009, pp.1-6. New York: IEEE.

Murillo J, Muiioz V, Busquets D, et al. Schedule coordi-
nation through egalitarian recurrent multi-unit combina-
torial auctions. Appl Intell 2011; 34(1): 47-63.

Easley D and Kleinberg J. Auctions (chapter 9). In: Easley
D and Kleinberg J (eds) Networks, crowds, and markets:
reasoning about a highly connected world. Cambridge:
Cambridge University Press, 2010, pp.249-273.

Chen C and Wang Y. SPARC: strategy-proof double
auction for mobile participatory sensing. In: Proceedings
of the international conference on cloud computing and big
data, Fuzhou, China, 16-19 December 2013, pp.133-140.
New York: IEEE.

Zhu Y, Zhang Q, Zhu H, et al. Towards truthful mechan-
isms for mobile crowdsourcing with dynamic smart-
phones. In: Proceedings of the IEEE 34th international

13.

14.

15.

16.

17.

conference on distributed computing systems, Madrid, 30
June-3 July 2014, pp.11-20. New York: IEEE.

Sun J and Ma H. Collection-behavior based multi-
parameter posted pricing mechanism for crowd sensing.
In: Proceedings of the IEEE international conference on
communications, Sydney, NSW, Australia, 10-14 June
2014, pp.227-232. New York: IEEE.

Lee J and Szymanski B. Auctions as a dynamic pricing
mechanism for e-services. In: Hsu C (ed.) Service enter-
prise integration, vol. 16. Boston, MA: Springer, 2007,
pp.131-156.

Murillo J, Lopez B, Muiioz V, et al. Fairness in recurrent
auctions with competing markets and supply fluctuations.
Comput Intell 2012; 28(1): 24-50.

Gdowski R, Safianowska MB and Huang CY. Atlas: an
agent based IoT platform for utilizing private device
potential. In: Proceedings of the IEEE 11th VTS Asia
Pacific wireless communication symposium, Ping-Tung
Hsien, Taiwan, 28 August 2014. New York: IEEE.
Safianowska MB, Gdowski R and Huang C. Revenue
maximizing auction for perishable 0T resources. In: Pro-
ceedings of the international conference on information and
communication technology convergence, Jeju, South Korea,
19-21 October 2016, pp.417-422. New York: IEEE.



