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 

Abstract— A reliable temporary bonding scheme with both 

inorganic amorphous silicon release layer and HD-3007 polyimide 

based on high 355-nm-wavelength laser absorption coefficient in 

release layer is proposed and investigated. Effects of laser 

absorption coefficient and laser ablation path are also studied to 

develop a high throughput laser ablation process. The bonding 

scheme can be achieved within the optimized temperature of 

210°C under 1 MPa bonding force. In addition, chemical 

resistance, mechanical strength with reliability assessment, and 

thermal stability test for bonded structure are inspected. There is 

no obvious degradation in electrical characterization after laser 

ablation, indicating that the temporary bonding scheme has high 

potential to be used for 3D integration applications. 

 
Index Terms—three-dimensional integration, temporary bonding, 

laser release 

I. INTRODUCTION 

HE desire to pursue smaller, thinner, and multifunctional 

integration scheme is the motivation for the consumer 

electronics in the market such as smartphone, tablets, wearable 

device, and internet of things (IoT) [1]. Therefore, 

three-dimensional integration and advanced packaging scheme 

have been proposed as promising solutions for the 

aforementioned pursue due to their advantages of small form 

factor, low power consumption, and heterogeneous integration 

in next generation semiconductor fabrication era [2-3]. The 

platforms that utilized this technology include fan-out 

wafer-level package (FOWLP), 2.5D interposers with through 

silicon via (TSV), and 3D-IC high-density integration with TSV 

interconnects [4]. The above-mentioned platforms involve a key 

technology of mechanically supported thin wafer handling 

through temporary bonding process [5]. 

The temporary bonded structure must meet the requirements 

of chemical resistance ability for subsequent back-end-of-line 
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(BEOL) process, thermal stability during post fabrication 

process with a temperature of 300°C or even higher, and reliable 

mechanically bonding strength between a carrier wafer and an 

ultra-thinned device wafer with thickness below 100 μm [6-7]. 

Moreover, release process temperature and high throughput are 

both significant factors that have to be taken into consideration 

in the de-bonding technology. The prior arts have shown several 

useful temporary bonding scheme and release methods to 

achieve the demand of manufacturing process [6-8].  

In this paper, a new bonding structure constituted with both 

high UV absorption inorganic amorphous silicon as release 

layer and the HD-3007 polyimide as adhesive layer is 

demonstrated. The bonding structure is used for temporary 

bonding platform that utilizes carrier glass wafer and 

amorphous indium gallium zinc oxide (a-IGZO) thin-film 

transistors (TFTs) device wafer with room temperature high 

throughput laser ablation procedure. Although amorphous 

silicon as release layer has been successfully implemented with 

the adhesive layer of spin on glass (SOG) in Tohoku University 

[9], the distinct structure with more detailed inspection for laser 

release technology is carried out in this paper. Hence, using the 

proposed promising bonding structure with high throughput 

laser release scheme can be an attractive option for 3D 

integration and advanced packaging applications. 

II.  TEMPORARY BONDING AND LASER RELEASE 

PROCEDURE  

Fig. 1 shows the schematic process flow of temporary 

bonding with fabricated device integration scheme. The key 

technologies used are temporary bonding and laser release 

process. Amorphous IGZO TFT is fabricated through the 

process of photolithography, IGZO/TaN active/contact layer 

sputtering, and oxide layer deposition. HD-3007 polyimide 

adhesive layer is spin-coated and fully imidized at 300 oC for 30 

min on the device wafer before bonding. The photolysis 

polymer has been utilized as a release layer with great bonding 

result as well as good laser ablation quality [10-11]. In addition, 

the promising candidate material of 250-nm-thick amorphous 

silicon with higher absorption coefficient than photolysis 

polymer is deposited by HDP-CVD on the carrier glass wafer 

(Corning Inc. Eagle XG glass wafer) with the presence of 

boro-aluminosilicate.  The device wafer is bonded face-to-face 

with the carrier glass wafer for 10 min under 1 MPa bonding 
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force in the 1.33x10-7 hPa vacuum chamber. Subsequently, laser 

release process is applied for the bonded structure between the 

polyimide adhesive layer and amorphous silicon release layer at 

room temperature. Finally, separation of the carrier wafer and 

device wafer can be obtained without any extra force in a high 

throughput scheme. In addition, the residue amorphous silicon 

on both device wafer and glass wafer can be cleaned by 

C4F8/SF6 chemistry dry-etching process with inductively 

coupled plasma (ICP) [12]. Then the HD-3007 can be removed 

with 60°C EKC-865 solvent in 5 min with a 40 kHz ultrasonic 

treatment.  

 

 

 
The wafer-level temporary bonding with amorphous silicon 

and HD-3007 polyimide as release layer and adhesive layer is 

successfully developed under 220°C low bonding temperature 

and 1 MPa bonding force. Figures 2(a)-(e) show the Scanning 

Acoustic Tomography (SAT) images from 180°C to 220°C for 

the inspection of the bonding quality [13]. Although some voids 

can be seen when bonding temperature is below 210°C, an 

entire well-bonded blanket wafer can be achieved when bonding 

temperature is at 210°C. In addition, the amorphous IGZO TFT 

device with optimized bonding temperature of 210°C in Fig. 2(f) 

shows the void-free bonding quality, which demonstrates a 

promising alternative for temporary bonding procedure. 

 

 

 

    The laser ablation mechanism is mainly focused on the 

dry-etching process. The photon-energy from laser pulse shot is 

projected onto the high absorption coefficient release layer, then 

the molecular bonds are broken through the transition of the 

material from solid phase to gas phase and some are ejected as 

powder plume in the process [14]. To investigate the optical 

characteristics of amorphous silicon, photolysis polymer, and 

polyimide adhesive layer, these three materials are coated on 

one glass wafer respectively, and then scanned from 300 nm to 

1100 nm wavelength through a spectrometer to obtain their 

transmittances. The absorption coefficient of three materials can 

then be calculated.  

 

           

 
 

Fig. 3 shows that the obvious difference of the absorption 

coefficient among the adhesive layer, amorphous silicon, and 

photolysis release layer at 355 nm wavelength. This indicates 

that the UV wavelength can be absorbed into the amorphous 

silicon and the photolysis release layer but not the adhesion 

layer. In addition, the amorphous silicon has a higher absorption 

coefficient than the photolysis polymer. Hence, unlike the 

photolysis polymer used in prior art [10-11], 250-nm-thick 

amorphous silicon, which does not require aging process before 

bonding, is recommended as a great release layer for temporary 

bonding.  

    The laser power density is about 196 mJ/cm2 when the laser 

emission power is 2.5 W. To realize the throughput ability of 

laser release process between amorphous silicon and photolysis 

polymer, the ablated size with corresponding laser emission 

power is investigated. The laser-ablated radius in the 

amorphous silicon is slightly larger than in the photolysis 

polymer, as shown in Fig. 4(a). Fig. 4(b) shows the well laser 

release direction in meander shape with every pulse laser shot 

overlapped by using a low-cost 355-nm diode-pumped 

solid-state (DPSS) laser from KYO Laser De-bonder. The 

throughput of laser ablation can be calculated using formula 

(1)-(2): 

2Rfpitch Linef speedScan  ……. (1) 
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Where R is the laser-ablated radius of the release area, A is 

the laser-released area, and f is the frequency of laser 

Fig. 1 Process flow of temporary bonding before and after laser 

ablation process. 

Fig. 3 The absorption coefficient of adhesive, amorphous silicon, 

and photolysis release layer under different wavelengths. 

Fig. 2 SAT images of wafer-level bonding with different 

conditions as: (a) 180°C; (b) 190°C; (c) 200°C; (d) 210°C; (e) 

220°C; and device wafer with (f) 210°C, 1 MPa. 



2168-6734 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JEDS.2017.2661479, IEEE Journal of
the Electron Devices Society

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

auto-mechanical scanning system. Scanning line pitch is 

designed as the distance between two centers of the ablation 

area. In addition, the laser release time for a 100-mm wafer in 

diameter in this study is less than 15 s when amorphous silicon 

is used as release layer. Therefore, larger ablated size in the 

amorphous silicon release layer lead to shorter laser release time 

and higher throughput, which is suitable for 3D integration and 

advanced packaging.  

 

 

 

III. RELIABILITY ASSESSMENT OF BONDING SCHEME 

In order to validate the bonding strength and the impact of the 

subsequent manufacturing processes on both release layer and 

adhesive layer, a chemical resistance assessment is examined 

with five types of acid and alkaline solutions. Table I shows the 

results of the bonded structure of amorphous silicon and 

HD-3007 polyimide [13]. The bonded structure remains the 

same without de-lamination even after being assessed for 30 

minutes, indicating the feasibility of a reliable bonded structure 

between device wafer and carrier wafer. 

 

 

 
 

    For the purpose of assessing the bonding strength of the 

bonded structure between amorphous silicon and HD-3007 

polyimide, pull test is carried out to evaluate mechanical 

characteristics on the diced bonded chip with size of 2 cm x 2 

cm. The optimized bonding temperature at 210°C has the 

highest bonding strength of 5.07 MPa with estimated error of 

15% as shown in Table II, which has the similar result as SAT 

images in Fig. 2(d). Moreover, the environmental conditions of 

BEOL fabrication procedure and reliability assessment are also 

considered. Therefore, a humidity test with the conditions of a 

40% humidity at 25°C in 75 days and un-bias standard highly 

accelerated stress test (un-bias HAST) based on JESD22A-118 

with the conditions of 85% humidity at 130°C are utilized to 

realize the degree of decline in the mechanical strength of the 

bonded structure. The results of the mentioned reliability 

assessment conditions in Fig. 5 indicate that the optimized 

bonding temperature at 210°C has the highest bonding strength 

as compared to the others. 

 

 

 
 

 

 
 

 

 
     

Fig. 6 Pull-test results at different assessment temperature within 

10 min, 30 min, and 60 min. 

TABLE I 

RESULTS OF BONDED STRUCTURE FOR CHEMICAL 

RESISTANCE ASSESSMENT 

Fig. 4 (a) OM images of laser ablated on photolysis polymer and 

amorphous silicon at different laser power. (b) Laser release 

direction with overlapped ablation area in meander shape. 

TABLE II 

PULL-TEST RESULTS AT DIFFERENT BONDING 

TEMPERATURE AND RELIABILITY ASSESSMENT 
 

Fig. 5 Pull-test results at different bonding temperature from 

180°C to  220°C and environmental reliability assessment. 
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Thermal stability test is another emphasis for the post 

integration process, which includes PECVD and permanent 

bonding after temporary bonding procedure. Therefore, the pull 

test investigation for the post annealing process with nitrogen 

flow in the oven from 150°C to 350°C within 10 min, 30 min, 

and 60 min are assessed with estimated error of 15% on the 

bonded structure respectively. Fig. 6 shows that when the 

annealing temperature is at and below 300°C, the bonding 

strength has only a slight variance without degradation with an 

increased in annealing time. As a result, great thermal stability 

for the temporary bonded structure can be realized at 

temperature below 300°C. 

IV. A-IGZO TFT ELECTRICAL BEHAVIOR BEFORE AND 

AFTER LASER ABLATION   

To consider the applicable laser release process for real 

device applications, two types of amorphous IGZO thin-film 

transistor device have been assessed. Almost overlapping 

results without deterioration of drain current before and after the 

laser ablation process in TFT gate length of 30 μm and 70 μm 

demonstrate reliable electrical characteristic as shown in Fig. 7. 

The results prove the high reliability of this temporary bonding 

platform using amorphous silicon and adhesive polymer bonded 

structure during the laser ablation procedure.  

 

 

  

V.    CONCLUSION 

 In this study, a temporary bonding scheme with polyimide 

adhesive layer and amorphous silicon inorganic release layer 

has been successfully demonstrated. With a 250-nm-thick high 

UV absorption coefficient release layer of amorphous silicon, 

excellent bonding quality at bonding temperature of 210°C, 

great chemical resistance, mechanical strength, thermal stability 

below 300°C, and reliable electrical behavior before and after 

laser release process are achieved.  In addition, the low-cost 

355-nm diode-pumped solid-state (DPSS) laser de-bonder and 

auto-mechanically applicable ablation direction in meander 

path lead to high throughput fabrication for laser ablation 

procedure. The successful implementation and assessed results 

indicate the feasibility of amorphous silicon as a promising 

candidate for temporary bonding in 3D integration and 

advanced packaging. 
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