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Featured Application: The featured application of this study is to combine the geometrical and
spectral features from advanced multi-wavelength LiDAR in land cover classification.

Abstract: The airborne multi-wavelength light detection and ranging (LiDAR) system measures
different wavelengths simultaneously and usually includes two or more active channels in infrared
and green to acquire both topographic and hydrographic information. The reflected multi-wavelength
energy can also be used to identify different land covers based on physical properties of materials.
This study explored the benefits of multi-wavelength LiDAR in object-based land cover classification,
focusing on three major issues: (1) the evaluation of single- and multi-wavelength LiDARs for
land cover classification; (2) the performance of spectral and geometrical features extracted from
multi-wavelength LiDAR; and (3) the comparison of the vegetation index derived from active
multi-wavelength LiDAR and passive multispectral images. The three-wavelength test data were
acquired by Optech Titan in green, near-infrared, and mid-infrared channels, and the reference data
were acquired from Worldview-3 image. The experimental results show that the multi-wavelength
LiDAR provided higher accuracy than single-wavelength LiDAR in land cover classification,
with an overall accuracy improvement rate about 4–14 percentage points. The spectral features
performed better compared to geometrical features for grass, road, and bare soil classes, and the
overall accuracy improvement is about 29 percentage points. The results also demonstrated the
vegetation indices from Worldview-3 and Optech Titan have similar characteristics, with correlations
reaching 0.68 to 0.89. Overall, the multi-wavelength LiDAR system improves the accuracy of
land cover classification because this system provides more spectral information than traditional
single-wavelength LiDAR.

Keywords: multi-wavelength LiDAR system; land cover classification; normalized difference
vegetation index

1. Introduction

1.1. Motivation

Airborne light detection and ranging (LiDAR), also known as airborne laser scanning (ALS),
is the one of the most important technologies to obtain three-dimensional (3D) information effectively.
The lidar system acquires high-resolution topographic data including (3D) shape and backscattered
energy. LiDAR data provide both geometrical and radiometrical information to identify different
objects, and it has been extensively used in various applications, for example digital elevation
modeling [1], topographic mapping [2], 3D object modeling [3], and land cover classification [4,5].
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Land cover classification is an important task for understanding natural resources as well as land
resource management. Because of the demand for land cover information, various land cover maps
are available online with different spatial resolutions, for example, the European Space Agency (ESA)
300 m global land cover map (GlobCover) [6] and 30 m global land cover data (GlobeLand30) [7].
The land cover map can be derived from active or passive sensors using an unsupervised classification
system such as ISODATA and supervised classification such as Support Vector Machines (SVM).
Several studies reported land cover classification using airborne LiDAR data, which provide 3D shape
information rather than 2D spectrum information in classification. Moreover, the penetration of LiDAR
also improves the ability to identify vegetation. The LiDAR features for land cover classification can
be based on geometrical, waveform, and intensity features. In addition, LiDAR data and multispectral
images can be combined to gain both shape and spectrum information [4].

Most commercial airborne LiDAR systems are commonly monochromatic or dual-wavelength
laser systems, recording either discrete signals or full waveform signals. The monochromatic LiDAR
system, such as topographic LiDAR, utilizes fixed wavelength laser (e.g., 1064 nm in near-infrared
(NIR)) to acquire the return signal from the target. The dual-wavelength LiDAR system is capable
of measuring two different wavelengths (e.g., 532 nm in green and 1064 nm in NIR) simultaneously.
One of the well-known dual-wavelength LiDAR system is bathymetric LiDAR, which uses an NIR
laser to determine water surface and a corresponding green laser to determine the underwater terrain.
Bathymetric LiDAR can collect shallow-water terrain based on the NIR and green lasers. To enhance the
applications of LiDAR system, a different type of multi-wavelength LiDAR system has been developed
(such as Optech Titan, Riegl VQ-880-G, and Leica Chiroptera II) that acquires more 3D points than the
monochromatic LiDAR system and also offers physical properties of material (such as backscattered
energy) in different wavelengths. Backscattered energy from active sensors is a kind of physical
property from different targets, mainly dependent on target materials, target roughness, and laser
wavelength. Multi-wavelength LiDAR utilizes different wavelengths to obtain backscattered energies
to separate different land covers. Therefore, understanding the capability of the multi-wavelength
LiDAR system (also called multispectral LiDAR) is an important subject in the development of
LiDAR technology.

1.2. Previous Studies

Several studies show the advantages of multi-wavelength LiDAR data in different applications,
such as atmospheric processing [8,9], geological analysis [10], fire detection [11], topographic
mapping [12–14], map updating [15], and plant monitoring [16,17]. Bakula, (2015) [18] analyzed the
accuracies of digital terrain models (DTMs) from Optech Titan and showed that the mean differences
among DTM generation from three channels were less than 0.03 m, and the composition of the three
intensities could be considered an alternative orthoimage product. Bakula et al. (2016) [19] also used
the Optech Titan multispectral LiDAR and maximum likelihood classifier in land covers classification,
achieving an overall accuracy of 90% for six classes. Fernandez-Diaz et al. (2016) [20] presented the
capabilities of assessment and performance metrics for the multi-wavelength LiDAR to quantify the
performance of Optech Titan multi-wavelength LiDAR system in land cover classification, bathymetric
mapping, canopy characterization, and geometrical accuracy. Zou et al. (2016) [21] used Optech Titan
multi-wavelength LiDAR data to perform object-based land cover classification and found that a
pseudo normalized difference vegetation index (pNDVI) generated from a multi-wavelength LiDAR
system may improve vegetation identification, achieving an overall accuracy higher than 90% and
kappa coefficient reaching 0.89. Sun et al. (2017) [22] compared the reflectance of active multispectral
LiDAR, active hyperspectral LiDAR, and passive spectrometer for leaf nitrogen concentration; their
coefficient of determination (R2) for spectrometer (R2 = 0.73) and hyperspectral LiDAR (R2 = 0.74)
showed a high correlation with leaf nitrogen content. Based on previous studies, the multi-wavelength
LiDAR not only increases the number of 3D points but also provides backscattered energies in
different wavelengths.



Appl. Sci. 2017, 7, 663 3 of 20

Geospatial object-based image analysis (GEOBIA) [23] has been widely applied in multispectral
images to merge similar pixels into a region; the geometrical and radiometrical properties of regions
are then extracted to separate different land covers. The advantages of object-based classification
compared with pixel-based classification have been established in previous studies [24,25]. Through
image segmentation, the related image pixels are combined into image objects that provide the objects’
attributes and shape to identify different land covers [26]. Object-based classification is therefore more
flexible than traditional pixel-based classification. A similar process can be applied to object-based
LiDAR classification [27]. To obtain useful information in LiDAR classification, the LiDAR data
are clustered into an object, and its features are then selected to separate different land covers in
object-based LiDAR classification.

1.3. Need for Further Study

Multi-wavelength or multispectral LiDAR is an advanced sensor in the development of LiDAR
technology. Several researchers studied the capability and benefit of using multispectral LiDAR in
different applications, mostly focusing on the features from multi-wavelength LiDAR itself, but the
comparison of measurements based on active multispectral LiDAR and passive multispectral image are
sparse. This study explores the benefits and limitations of different aspects of land cover classification,
including the comparison of single- and multi-wavelength LiDARs, the spectral and geometrical
features, and the similarity of NDVI between an active multi-wavelength LiDAR system and a passive
multispectral image.

1.4. Research Purpose

The aim of this research was to analyze the results of land cover classification using
multi-wavelength LiDAR and compare the vegetation features from active multi-wavelength LiDAR
and passive multispectral images. The geospatial object-based image analysis (GEOBIA) was used to
achieve land cover classification. The multi-wavelength LiDAR was from Optech Titan using 532 nm
(green), 1064 nm (NIR), and 1550 nm (MIR), whereas the multispectral image is from Worldview-3
(WV-3) satellite multispectral images. This study adopted the object-based image classification
approach, a proposed scheme including feature extraction, image segmentation, and object-based
classification. The correctness and completeness were generated by manual interpretation and
verified by comparing LiDAR and multispectral images. The analysis compared (1) the results from
single-wavelength LiDAR and multi-wavelength LiDAR; (2) spectral and geometrical features from
multi-wavelength LiDAR system; and (3) LiDAR-derived and image-derived vegetation index.

2. Materials

2.1. Test Area

The test area, located at Adams Park, Canada, is about 574,600 m2 (1690 × 340 m) at a geometric
elevation ranging from 28 m to 93 m. The park is a suburban area along the shoreline of Lake Ontario
that contains both land and water regions (Figure 1a), and the land cover includes buildings, roads,
trees, grass, and bare soil.

2.2. Multi-Wavelength LiDAR

The multi-wavelength LiDAR data were acquired in September 2014 by Optech Titan, a system
that includes three active imaging channels at 532 nm visible (green), 1064 nm (NIR), and 1550 nm
(MIR) [28]. The flying height is about 400 m. Number of flying strips is three, all merged into
a single LAS file. The preprocessing of multi-wavelength LiDAR removes noise points (e.g., air point).
Because system parameters and trajectories were limited or unavailable, this study used the intensities
from LiDAR’s standard product, which is the amplitude of the return reflection without intensity
calibration. Both topographic and hydrographic data for spatial mapping can be obtained from the
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Titan system from these three channels. We compared the characteristics of the individual laser pulses
as well as other characteristics of each channel required to evaluate the behavior and performance of
the system (Table 1).

These three intensities with wavelengths of 532 nm, 1064 nm, and 1550 nm (Figure 1b–d) were
stored in separated files according to the ASPRS LAS standard. The tested data contained about
14,731,124, 13,530,547, and 12,439,573 points from these three channels, respectively. The total number
of points in the study area was about 40 million, and the average point density was about 70.7 pts/m2.
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Figure 1. Optical image and light detection and ranging (LiDAR) intensity images. (a) True color
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Table 1. The specifications of Titan multi-wavelength light detection and ranging (LiDAR) system.

Items Channel 1 Channel 2 Channel 3

Laser Wavelength (nm) 1550 1064 532
Beam divergence (mrad) 0.35 0.35 0.7

Laser classification Class IV Class IV Class IV
Look angle (degree) 3.5 forward Nadir 7.0 forward

Pulse repletion frequency (kHz) 50–300 50–300 50–300
Pulse energy (µJ) 20–50 ~15 ~30
Pulse width (ns) ~2.7 3–4 ~3.7

Point density is an important factor in LiDAR processing. In general, three channels in different
look directions may acquire more points than one channel. One advantage of multi-wavelength
LiDAR is the ability to increase the number of points in a single strip. The scanning angles of the
Titan system were designed in different directions to avoid interference and obtain more points.
We selected three sub-regions to compare the point densities for different land covers (Table 2),
including simple man-made objects, mixed objects, and complex tree regions (boxes 1, 2, and 3 in
Figure 1a). Each sub-region is about 2500 m2 (50 × 50 m). In comparison to point density of the single
wavelength system, the additional wavelengths in the three wavelengths system (i.e., 1550 nm in
3.5 degree forward; 1550 nm in nadir; 532 nm in 7.0 degree forward) may increase the number of points
in the three sub-regions. For building region, the point densities of single wavelength were originally
about 23.2–24.8 points/m2 and the use of multi-wavelength LiDAR increased it to 71.5 points/m2.
The point density is related to the ability of multiple returns and multi-channel lasers in different
scanning directions. This area contains three overlapped flying strips and the tree and building regions
were covered by same flying strips. The tree area has a higher penetration rate than buildings and
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thus produces higher number of multiple returns. A comparison of the tree and building shows that
the complex tree region has the highest point density because laser beams from different directions
may penetrate the tree crown, demonstrating the benefit of using multi-wavelength LiDAR to improve
point density in complex tree regions.

Table 2. Point density in different land covers (Unit: points/m2).

Density λ532 λ1064 λ1550 Sum

Building 24.8 23.5 23.2 71.5
Grass 32.7 31.9 29.5 94.1
Tree 39.6 46.9 39.2 125.7

The multi-wavelength LiDAR was rasterized into 0.5 m grid data that included DSMs, DTMs,
and intensities from different wavelengths. Because the average point density of the test area was
about 70.7 points/m2, the height of DSM was the highest point in the cell, and the intensity map
selected the intensity of the highest point in the cell. The ground point for DTM was automatically
generated by a non-ground point filtering method in TerraScan Software, and the ground points were
then placed into the grid by the kriging interpolation method.

2.3. Multispectral Satellite Image

The reference data are from a WV-3 multispectral satellite image acquired on 21 May 2015.
The off-nadir view angle is about 7.8 degrees, and the ground sampling distances for panchromatic
and multispectral images are 0.315 m and 1.26 m, respectively. The wavelength of panchromatic image
is from 450 nm to 800 nm and contains eight multispectral bands, including coastal (400–450 nm),
blue (450–510 nm), green (510–580 nm), yellow (585–625 nm), red (630–690 nm), red edge (705–745 nm),
NIR-1 (770–895 nm), and NIR-2 (860–1040 nm) [29]. We manually selected ground control points from
multi-wavelength LiDAR and WV-3 image. The registration accuracy of rational function geometrical
model is better than one pixel. The DSM from all points was used to generate 0.3 m panchromatic and
1.2 m multispectral orthoimages. We also performed radiometric correction to convert the pixel values
to reflectance values [30] using metadata of WV-3 images. The land cover classification only adopted
LiDAR features, and the WV-3 satellite image was only a reference image in the selection of training
and test regions. In addition, we compared the vegetation indices from the passive WV-3 multispectral
image and active multi-wavelength LiDAR.

2.4. Targets of Classification

The study area comprises traditional urban types and covers a variety of land cover features on
the ground such as buildings, roads, parking lots, shrubs, trees, and open grassy spaces. To define
land cover classes in classification, we considered the most important classes for the land cover map
and their availability in this study area and selected five major types for classification: buildings,
trees, grass, roads, and bare soil. These classes are well-defined land cover types in urban areas and
can be identified without ambiguity in reference data. This study manually selected 280 randomly
distributed sampling objects comprising 44,158 pixels in the study area. The pixel size was 0.5 × 0.5 m
(i.e., the pixel size of rasterized LiDAR), and the area of all selected pixels was 11,039.5 m2. We used
140 objects as the training data and the remaining 140 objects as the test data (Table 3), distributed in
areas excluding the water regions (Figure 2).
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Table 3. Number of objects and pixels for training and test area.

Object (Pixel) Building Tree Grass Road Soil Sum

Training 30 (4140) 30 (4630) 30 (5136) 30 (4761) 20 (1697) 140 (24,906)
Test 30 (3212) 30 (3337) 30 (4166) 30 (2967) 20 (1284) 140 (19,252)
Total 60 (7352) 60 (7967) 60 (9302) 60 (7728) 40 (2981) 280 (44,158)
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3. Proposed Scheme

The proposed scheme utilized the concept of geospatial object-based image analysis (GEOBIA) [23]
in land cover classification. Figure 3 shows the workflow of proposed scheme. The GEOBIA approach
for land cover classification consists of three steps, including feature extraction, image segmentation,
and object-based classification. The input data are LiDAR data from different wavelengths, and the
preprocessing feature includes extraction, such as geometrical and spectral features. After selecting
the training dataset, the object-based classification process applies segmentation and the SVM
classifier, and the output data are the classification results from different combinations, including
three combinations based on different features (Cases 1 and 2) and different data sources (Case 3).
All the combinations used object-based classification to detect land cover types, and the results of all
combinations were used to compare the performance of different features.
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3.1. Feature Extraction

Feature extraction selects useful information to distinguish different land covers, including spectral
and geometrical features from LiDAR. The spectral features selected were intensity and NDFI
(Normalized Difference Feature Index), and the geometrical features selected were normalized digital
surface model (nDSM) and curvature [31]. The intensities were the amplitude of the return reflection.
We used the concept of NDVI to calculate the vegetation index (NDFI) from the spectral characteristics
of each channel in the multi-wavelength LiDAR system; the NDFI is used to separate vegetation
and non-vegetation from the return signals of active sensor. Because the Optech Titan does not have
a red channel, we used the green channel to replace the red channel in NDVI; the infrared channels
include NIR and MIR (Equations (1) and (2)). The NDVI from a passive multispectral image was also
calculated for comparison (Equations (3) and (4)). The differences between active and passive sensors
in the vegetation index were: (1) the return signal of passive signal was reflectance, whereas the return
signal of the active signal was backscattered energy; (2) the band width of the passive sensor was
comparatively wider than the active sensor.

NDFIMIR−G = λ1550 − λ532/λ1550 + λ532 (1)

NDFINIR−G = λ1064 − λ532/λ1064 + λ532 (2)

NDVI1 = NIR1 − Red/NIR1 + Red (3)

NDVI2 = NIR2 − Red/NIR2 + Red (4)

where λ1550 is 1550 nm intensity from LiDAR; λ1064 is 1064 nm intensity from LiDAR; λ532 is 532 nm
intensity from LiDAR; NIR1 is 772 to 890 nm wavelengths from WV-3; NIR2 is 866 to 954 nm
wavelengths from WV-3; and red is 706 to 746 nm wavelengths from WV-3.

The geometrical features were used to represent the shape and roughness of the LiDAR data.
The nDSM represents the object height, obtained by subtracting DTM from DSM. Different objects’
heights can be identified by nDSM. For example, grass and trees have similar spectral responses but
different object heights. The curvature, a feature that represents roughness by calculating the spatial
eigenvalues of target point clouds and the adjacent points (Equation (5)), is a useful feature to separate
objects with smooth and rough surfaces; for example, the roughness of a tree crown is higher than
road surface. Curvature is calculated from irregular points within the nearest 50 points and then
interpolated into grid data for object classification (Figure 4).

Curvature = emin/e1 + e2 + e3 (5)

where ei are the spatial eigenvalues.
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3.2. Image Segmentation

The purpose of image segmentation is to generate objects for classification by merging pixels
with similar attributes into a region, typically referred to an object. We used the LiDAR features
(e.g., intensity, nDSM, curvature) as input data for segmentation, considering both attribute and shape
factors. The pixels with similar attributes were merged into an object, and the attributes were the
pixel values of the input data. The shape factors were the geometric pattern of the segmented object.
The segment criteria are based on the heterogeneity index [32], which combines the attribute and shape
factors. Segmentation is a bottom-up method starting from a pixel, and the heterogeneity index is
calculated from each pixel as a logical object according to neighborhood pixels. If the heterogeneity
index meets the predefined criterion, these pixels are merged.

We implemented image segmentation using Trimble eCognition software (Version 8.7 Trimble Inc.,
Westminster, CO, USA). All input features used the same coordinate system and pixel size, so different
features are overlapped in the same coordinate system for segmentation. We used equal weight for
all input features, so all input features have the same impact on segmentation. As the numerical
value of all input features are not the same (e.g., nDSM is ranged from 0 m to 50 m while NDFI is
ranged from −1 to +1), the range of the value will influence the results of segmentation. This study
normalized all the features into the same range. Therefore, all input features have same range of values
for segmentation. Segmentation has three parameters, and we used the same empirical parameters
for all cases: the segmentation scale was 50, shape was 0.1, and compactness was 0.5. It should be
noted that the ideal segmentation parameters for different types of input data might not be the same.
We observed the results of segmentation using different parameters to find proper segmentation
parameters for this test area. The objective of this study was to compare the results of land cover
classification by different features, so we used the same parameters for different types of input data.

3.3. Object-Based Classification

Following segmentation, the object classification stage classifies each object into different land
covers based on each object’s spectral and geometrical features. In reality, most land cover is the
composition of several similar LiDAR points identified through human interpretation, but identifying
the properties of a single LiDAR point is more difficult. The process of object-based classification
is more similar to the human interpretation and has been widely used to improve the classification
accuracy for remote sensing data [33]. For object-based classification in this study, we used a supervised
support vector machine (SVM) designed to handle the complex features by maximizing the margins
of hyperplanes using support vectors, and the SVM then classified different features based on
training data in the hyperplane. The kernel of SVM in this study was the radial basis function
(RBF) [34,35]. To examine the capability of multi-wavelength features, this study used different
features in segmentation and classification. Note that the same training and check areas were used in
all combinations.
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4. Results

The experiments in this study analyzed three different aspects of the validation procedure.
The first aspect compares single- and multi-wavelength LiDAR systems. Three channels (i.e., green,
NIR, and MIR) were used to simulate single-wavelength LiDAR individually, and the results from
single- and multi-wavelength LiDARs were used to compare the accuracy of land cover classification.
The second aspect checks the suitability of spectral and geometrical features in land cover classification
by evaluating different features extracted from multi-wavelength LiDAR system to understand the
significance of the features. The third aspect compares the vegetation indices from passive multispectral
images and active multi-wavelength LiDAR, including the results of vegetation classification and
correlation of vegetation index.

To quantify the benefits of the multi-wavelength LiDAR system in land cover classification,
we used completeness (also called producer accuracy) and correctness (also called user accuracy) for
each land cover in different combinations. Completeness measures the percentage of classes occurring
in the reference data and errors of omission; by contrast, correctness measures the percentage of
extracted classes correctly classified and errors of commission. The confusion/error matrixes for all
cases have been placed in the Appendix A.

4.1. Comparison of Single-Wavelength and Multi-Wavelength LiDAR

To compare the accuracy of land cover classification between single- and multi-wavelength
LiDAR systems, we designed four combinations (Table 4) including the features intensity, nDSM,
and curvature. The first three combinations were single-wavelength LiDAR features from each
channel, respectively. The last combination merged all features from three channels, totaling nine,
including three intensities, three nDSMs, and three curvatures. The segmentation of single-wavelength
LiDAR only considered its own intensity, whereas the segmentation of multi-wavelength LiDAR
considered three intensities simultaneously. The classification employed the same training areas but
different features.

Table 4. The combinations for single- and multi-wavelength LiDAR classification.

Combinations Features

Case 1-1 nDSMλ532, Curvatureλ532, Intensityλ532
Case 1-2 nDSMλ1064, Curvatureλ1064, Intensityλ1064
Case 1-3 nDSMλ1550, Curvatureλ1550, Intensityλ1550
Case 1-4 All features of Case 1-1, Case 1-2 and Case 1-3

As previously described, the test area was classified into five land cover classes (buildings, trees,
grass, roads, and bare soil), and the results from the four combinations were color-coded to indicate
each land cover type (Figure 5).

The quantitative results (i.e., completeness and correctness; Table 5 and Figure 6) show that,
as expected, the accuracy of the green channel was lower than the other two channels in infrared
because the green channel is designed to represent water surface in most situation. The completeness
of roads for 532 nm (Case 1-1) was only 59%, lower than other cases, meaning that the infrared
channel performs better than the green channel for asphalts road. Therefore, the intensity of infrared is
widely used to discriminate between asphalt and non-asphalt roads [36]. The completeness values
of bare soil for 532 nm (Case 1-1) and 1064 nm (Case 1-2) were less than 52% because soil, road,
and grass have similar height and curvature in the single-wavelength system. The completeness of
1550 nm (Case 1-3) is slightly better than the other two channels because it is near-to-mid infrared.
Wang et al. (2012) [8] also found that results from 1550 nm were better than those from 1064 nm.
The integration of all features (Case 1-4) provided better discrimination among soil, road, and grass
than single-wavelength features.
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Figure 5. Results of Case 1. (a) Reference image; (b) the result of Case 1-1; (c) the result of Case 1-2;
(d) the result of Case 1-3; (e) the result of Case 1-4.

Because trees and buildings are significantly higher than other land covers, they show
limited improvement when the three wavelengths were integrated. Overall, the completeness
improvement from single- to multi-wavelength LiDAR ranged from 1.7 to 42.3 percentage points.
In correctness analysis, the behavior of soil, road, and grass was similar to results from completeness.
The multi-wavelength features (Case 1-4) also improved the correctness of these three classes from 1.4 to
35.8 percentage points. The soil and grass had a higher improvement rate when the multi-wavelength
feature was adopted. The decrease in completeness is less than 2.5 percentage points between cases 1-1
and 1-4 for grass. For correctness, the decrease in accuracy is less than 0.2 percentage points between
cases 1-2 and 1-4 for tree.

Table 5. Completeness and correctness for different classes in Case 1-1 to Case 1-4.

(a) Completeness (b) Correctness

Combinations Grass Build. Road Tree Soil Combinations Grass Build. Road Tree Soil

Case 1-1 96.3% 84.5% 59.0% 100% 40.0% Case 1-1 73.4% 99.5% 80.8% 97.1% 44.0%
Case 1-2 83.5% 99.5% 98.2% 100% 51.6% Case 1-2 84.9% 98.4% 99.9% 100% 48.6%
Case 1-3 82.5% 99.5% 94.3% 100% 83.8% Case 1-3 90.1% 94.9% 98.5% 99.9% 67.1%
Case 1-4 93.8% 99.5% 99.9% 100% 82.3% Case 1-4 94.6% 100% 99.9% 99.8% 79.8%
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Figure 6. Completeness and correctness for different classes in Case 1-1 to Case 1-4.

The classification results lead to overall accuracy (OA) from individual channels of 82%, 90%,
and 92% from wavelengths 532, 1064, and 1550 nm, respectively. The OA and kappa coefficient achieved
96% and 95%, respectively, using extracted features from the multi-wavelength LiDAR system The OA
of multi-wavelength LiDAR increased 4–14 percentage points compared to single-wavelength LiDAR
(Figure 7). The single-wavelength LiDAR extracts limited information and caused misclassifications
when the classes had similar reflectivity, such as that for roads and grass in the green channel. The OA
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of classified results were similar to the features from 1064 nm and 1550 nm (90% and 92%) (Figure 7),
but misclassifications still appeared for grass and soil (Figure 6).
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4.2. Comparison of Spectral and Geometrical Features from Multi-Wavelength LiDAR

Airborne LiDAR records both 3D coordinates and reflected signals, and the LiDAR points can be
used to generate the spectral features (i.e., intensity and vegetation index) and geometrical features
(i.e., height and roughness). One characteristic of multi-wavelength LiDAR is providing spectral
features at different wavelengths. The spectral feature of multi-wavelength LiDAR is not only the
intensity, but also the vegetation index from the infrared and green channels. To compare the capability
and benefits of spectral and geometric features for different land cover classification, we designed three
combinations (Table 6): spectral features included intensity and NDFIs; geometrical features included
nDSM and curvature; and the third merged the features of previous two combinations. For these
three cases, the input features for classification were also the features for segmentation, and we used
equal weight when combining all these input features in segmentation. We summarized the results
of these three cases (Figure 8) and the completeness and correctness for each land cover in different
combinations (Table 7, Figure 9).

Table 6. The combinations for spectral and geometrical features classification.

Combinations Features

Case 2-1 Intensityλ532, Intensityλ1064, Intensityλ1550, NDFIMIR−G, NDFINIR−G
Case 2-2 nDSMλ532, nDSMλ1064, nDSMλ1550, Curvatureλ532, Curvatureλ1064, Curvatureλ1550
Case 2-3 All features of Case 2-1 and Case 2-2
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Table 7. Completeness and correctness for different classes in Case 2-1 to Case 2-3.

(a) Completeness (b) Correctness

Combinations Grass Build. Road Tree Soil Combinations Grass Build. Road Tree Soil

Case 2-1 96.6% 81.5% 98.2% 96.9% 88.3% Case 2-1 98.7% 98.0% 84.7% 93.1% 86.7%
Case 2-2 18.3% 95.0% 62.3% 100% 50.7% Case 2-2 34.0% 100% 34.3% 99.9% 69.3%
Case 2-3 93.8% 99.5% 99.9% 100% 94.0% Case 2-3 98.1% 100% 99.9% 96.9% 87.8%
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Figure 9. Completeness and correctness for different classes in Case 2-1 to Case 2-3.

The completeness from spectral features (Case 2-1) was higher than 80% because road, soil,
and grass have different spectral signatures [37]. In addition, the results of spectral features were
significantly better than for the geometrical features (Case 2-2) for road, soil, and grass. The geometrical
features showed higher accuracy for buildings and trees because these two objects have different
roughness (i.e., curvature). Because the heights of grass, road, and soil classes are similar; these
geometrical features are not easily discriminated among those objects. The integration of spectral
and geometrical features (Case 2-3) improved the accuracy of these three classes from 1.7 to
75.5 percentage points.

In correctness analysis, the integration of all features (Case 2-3) improved the accuracy from
1.1 to 65.6 percentage points. Most accuracy indices from spectral features were higher than those
from geometrical features (Table 7); in other words, the results indicate that the use of LiDAR spectral
features contributes more than the geometrical features. The OA of spectral features reaches 93% but
only 64% for geometrical features (Figure 10) because of the higher accuracy for buildings and trees but
lower accuracy for grasses, roads, and soils. The results demonstrate that spectral features from LiDAR
could be useful features in land cover classification when multi-wavelength intensities are available.
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4.3. Comparison of Vegetation Index from Active and Passive Sensor

Passive sensors (e.g., optical multispectral images) can only be used to detect naturally available
energy (e.g., solar energy). By contrast, active sensors (e.g., LiDAR) provide their own energy source
for illumination and obtain data regardless of time of day or season; therefore, active LiDAR sensors are
more flexible than optical sensors in different weather conditions. Vegetation detection is an important
task in ground-point selection for the digital terrain model (DTM) generation from LiDAR. Traditionally,
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vegetated areas are detected using the surface roughness from irregular points; intensity from LiDAR
data is seldom used in the separation of vegetation and non-vegetation. With the development of
multi-wavelength LiDAR, the intensities from different wavelengths are possibly similar to passive
sensors in vegetation detection. Our goal is to discover the capability of the vegetation index from
LiDAR, and the aim of this section is to compare the performance of vegetation index from active and
passive sensors.

The NDVI has been widely used in vegetation detection, but it is calculated from passive
multispectral images. Because the passive sensor has inherent limitations, such as day operation and
haze, an active sensor like LiDAR can be operated at night and penetrate haze and might be an option
to overcome these restrictions. We designed two cases to analyze the similarity and consistency
(Table 8) between vegetation indices from active and passive sensors. Because the reflectance of the
multispectral WV-3 image represents the radiance of the object surface (e.g., tree top), we selected the
intensity of the highest point in a 1.2 × 1.2 m cell (i.e., pixel size of WV-3 multispectral image) as the
LiDAR intensity for LiDAR-derived vegetation index so that both reflectance of the passive sensor
and return energy of the active sensor represent the energy of object surface in different wavelengths.
For the training and test data, the grass and tree classes were merged into a vegetation class, and the
building, road, and soil classes were combined into a non-vegetation class; only the vegetation indices
were used in segmentation and classification. A visual comparison of the two results of vegetation
detection (Figure 11) show high consistency between these two vegetation indices.

Table 8. The combinations for active and passive sensors classification.

Combinations Features

Case 3-1 NDFIMIR-G and NDFINIR-G (from multi-wavelength LiDAR)
Case 3-2 NDVI1 and NDVI2 (from WV-3 multispectral image)
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Completeness and correctness were compared between vegetation and non-vegetation in different
combinations (Table 9 and Figure 12). Here we considered only two classes: vegetation and non-vegetation;
therefore, the results were better than the results in Sections 4.1 and 4.2 (i.e., five classes). The completeness
and correctness analysis for active LiDAR and passive imagery were higher than 96%. The correctness
of vegetation detection from the passive sensor was 98% in test samples and slightly lower, 96%, for the
active sensor. A small amount of vegetation and non-vegetation was misclassified, but the overall accuracy
reached 98% in both cases. The overall accuracies and kappa coefficients were also similar in this test area
(Figure 13), with vegetation indices generated from multi-wavelength LiDAR were similar to those from
passive multispectral imagery. The kappa of the passive sensor was slightly better (1%) than that for the
active sensor. This experiment demonstrated that the vegetation index from active LiDAR sensor could
be used to detect vegetation area effectively.
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Table 9. Completeness and correctness for different classes in Case 3-1 to Case 3-2.

(a) Completeness (b) Correctness

Vegetation Non-Veg. Vegetation Non-Veg.

Case 3-1 100.0% 96.6% Case 3-1 96.4% 100.0%
Case 3-2 98.8% 98.3% Case 3-2 98.2% 98.9%
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Figure 13. Results of overall accuracies for active and passive vegetation index.

We also used the training data to calculate the coefficient of determination (R2) among these
vegetation indices (Figure 14). For each training dataset, four vegetation indices were extracted from
both active and passive sensors. Any two vegetation indices were selected to determine the similarity
between them, and six combinations were selected for similarity analysis. The R2 between two passive
vegetation indices (i.e., NDVI1 and NDVI2) reached 0.99 while the R2 between two active vegetation
indices (i.e., NDFIMIR-G and NDFINIR-G) reached 0.88. The R2 among active or passive vegetation
indices showed high consistency in these training data.
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In the analysis across sensors, the R2 for combinations of (NDFIMIR-G and NDVI1) and (NDFIMIR-G

and NDVI2) were less than 0.7 because the NDFIMIR-G used the MIR while the NDVI1 and NDVI2

used NIR. The root-mean-square errors (RMSEs) of (NDFIMIR-G and NDVI1) and (NDFIMIR-G and
NDVI2) (i.e., 0.2405 and 0.2386) also had a large fitting error compared to other cases. For NDFINIR-G,
NDVI1, and NDVI2, all calculated from NIR, the R2 of combinations (NDFINIR-G and NDVI1) and
(NDFINIR-G and NDVI2) were higher than 0.87 for both combinations. Anderson et al. (2016) [38] also
found that the vegetation indices from active sensors had high correlations. They reported that the
vegetation indices measured from active and passive sensors were correlated (R2 > 0.70) for the same
plant species. Although the vegetation index recorded by the active sensor was consistently lower
than that of the passive sensor, differences were small and within the range of possibility. In this study,
the vegetation indices from active LiDAR were also lower than those from passive imagery and were
highly correlated (R2 > 0.87) between active and passive sensors. In addition, the overall accuracy in
classification of vegetation from non-vegetation was higher than 98%. Our analysis clearly showed
that vegetation indices from multi-wavelength could be a helpful feature for vegetation detection.

5. Conclusions and Future Works

The multi-wavelength LiDAR system is a new technology for obtaining additional spectral
information for LiDAR point analysis. This study analyzed the benefits of multi-wavelength LiDAR in
land cover classification. Object-based classification is an effective method for land cover classification
and vegetation inventory, and this study established an object-based land cover classification scheme
using spectral and geometrical features from multi-wavelength LiDAR. The major contributions of
this study were to (1) analyze the classification results from single- and multi-wavelength LiDARs;
(2) evaluate the improvement rates of different land covers using geometrical and spectral features;
and (3) compare the vegetation indices derived from active and passive sensors. The conclusions are
summarized as follows:

(1) In the comparison of single- and multi-wavelength LiDARs, the multi-wavelength
LiDAR generates more spectral information than the traditional single-wavelength LiDAR.
The improvements of OA ranged from 4 to 14 percentage points when multi-wavelength features
are available. The spectral features from multi-wavelength LiDAR are useful for the classification
of grass, road, and bare soil classes.

(2) In the comparison of geometrical and spectral features, the geometrical features are suitable for
identifying objects with different heights and roughness, for example, buildings and trees. spectral
features are suitable for identifying objects with different intensities, for example, asphalt roads
and grass. The results of geometrical feature showed lower accuracy (i.e., OA 64%), whereas
the integration of geometrical and spectral features showed higher accuracy (i.e., OA 98%).
The experiment showed the benefit of integrating different features in land cover classification.
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(3) The concept of the vegetation index is to maximize differences between vegetation and
non-vegetation cover using infrared and visible bands and can be utilized for active sensors
when intensities from different wavelengths can be obtained. In comparing the vegetation indices
from active and passive sensors, both achieved higher than 90% OA using a supervised SVM
classification. Although the vegetation index recorded by the active sensor was consistently lower
than that of the passive sensor, differences were small and within the range of possibility. In this
study, the R2 from active LiDAR was also lower than that from passive imagery and was highly
correlated (R2 > 0.87). The experiment demonstrated the possibility of using vegetation indices
from active sensors in vegetation classification.

In this study, the proposed method mainly focused on land cover in topographic mapping.
Because the multi-wavelength LiDAR is applicable to bathymetric application, future work will
evaluate the ability of multi-wavelength LiDAR to separate water from non-water regions and assess
the accuracy of underwater mapping, such as water depth and sediment classification. Because data on
system parameters and trajectories are limited or unavailable, this study focused on the intensities from
LiDAR’s standard product, which is the amplitude of the return reflection without intensity calibration.
Future work will focus on the calibrated reflectance using additional system parameters and trajectories.
Furthermore, this study used a trial-and-error method to find a set of proper segmentation parameters
for different types of input data. The parameter optimization [39] for different data sets is needed to
improve the results of classification in future study.
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Appendix A. The Confusion Matrixes are Listed in Different Cases in This Study

Table A1. The confusion matrix of Case 1-1.

User/Reference Grass Building Road Tree Soil User Accuracy

Grass 4012 0 1202 0 253 73.4%
Building 0 2714 0 0 13 99.5%

Road 8 0 1752 0 409 80.8%
Tree 0 4 0 3337 95 97.1%
Soil 146 494 13 0 514 44.0%

Producer’s Accuracy 96.3% 84.5% 59.0% 100.0% 40.0%
OA 82.3%

Kappa 77.2%

Table A2. The confusion matrix of Case 1-2.

User/Reference Grass Building Road Tree Soil User Accuracy

Grass 3479 0 0 0 621 84.9%
Building 0 3196 53 0 0 98.4%

Road 0 2 2913 0 0 99.9%
Tree 0 0 0 3337 0 100.0%
Soil 687 14 1 0 663 48.6%

Producer’s Accuracy 83.5% 99.5% 98.2% 100.0% 51.6%
OA 90.8%

Kappa 88.2%
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Table A3. The confusion matrix of Case 1-3.

User/Reference Grass Building Road Tree Soil User Accuracy

Grass 3437 2 167 0 208 90.1%
Building 171 3196 0 0 0 94.9%

Road 42 0 2799 0 0 98.5%
Tree 0 4 0 3337 0 99.9%
Soil 516 10 1 0 1076 67.1%

Producer’s Accuracy 82.5% 99.5% 94.3% 100.0% 83.8%
OA 92.5%

Kappa 90.4%

Table A4. The confusion matrix of Case 1-4.

User/Reference Grass Building Road Tree Soil User Accuracy

Grass 3909 0 0 0 224 94.6%
Building 0 3196 0 0 0 100.0%

Road 0 2 2966 0 0 99.9%
Tree 0 4 0 3337 3 99.8%
Soil 257 10 1 0 1057 79.8%

Producer’s Accuracy 93.8% 99.5% 99.9% 100.0% 82.3%
OA 96.6%

Kappa 95.7%

Table A5. The confusion matrix of Case 2-1.

User/Reference Grass Building Road Tree Soil User Accuracy

Grass 4023 0 0 0 55 98.7%
Building 0 2618 54 0 0 98.0%

Road 0 525 2913 0 0 84.7%
Tree 143 0 0 3232 95 93.1%
Soil 0 69 0 105 1134 86.7%

Producer’s Accuracy 96.5% 81.5% 98.2% 96.9% 88.3%
OA 93.0%

Kappa 91.1%

Table A6. The confusion matrix of Case 2-2.

User/Reference Grass Building Road Tree Soil User Accuracy

Grass 763 8 1106 0 368 34.0%
Building 0 3050 0 0 0 100.0%

Road 3130 146 1849 0 265 34.3%
Tree 0 4 0 3337 0 99.9%
Soil 273 4 12 0 651 69.3%

Producer’s Accuracy 18.3% 95.0% 62.3% 100.0% 50.7%
OA 64.4%

Kappa 54.9%

Table A7. The confusion matrix of Case 2-3.

User/Reference Grass Building Road Tree Soil User Accuracy

Grass 3909 0 0 0 224 98.1%
Building 0 3196 0 0 0 100.0%

Road 0 2 2966 0 0 99.9%
Tree 101 4 0 3337 3 96.9%
Soil 156 10 1 0 1057 87.8%

Producer’s Accuracy 93.8% 99.5% 99.9% 100.0% 94.0%
OA 97.7%

Kappa 97.0%
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Table A8. The confusion matrix of Case 3-1.

User/Reference Vegetation Non-Veg. User Accuracy

Vegetation 9766 362 96.4%
Non-Veg. 0 10236 100.0%

Producer’s Accuracy 100.0% 96.6%
OA 98.2%

Kappa 96.4%

Table A9. The confusion matrix of Case 3-2.

User/Reference Vegetation Non-Veg. User Accuracy

Vegetation 9651 177 98.2%
Non-Veg. 115 10421 98.9%

Producer’s Accuracy 98.8% 98.3%
OA 98.5%

Kappa 97.1%
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