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Comment on "Some exact solutions of convection-diffusion 

and diffusion equations" by J. R. Philip 

Chih-Ts½ Wang and Hund-Dcr Ych 
Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, Taiwan 

In a recent paper, Philip [1994] proposed the solutions of the 
advective-dispersion equation (ADE) in which the dispersion 
coefficient (or diffusivity) is proportional to pn, with P the 
Peclet number, for divergently steady radial flow in porous 
media. Exact solutions for instantaneous and continuous point 
source were developed when n = 2 in two- and three- 
dimensional radial flow fields. With the case of n = 1 in 

two-dimensional radial coordinates, Philip [1994] pointed out 
that the ADE used by Hoopes and Harleman [1967] is not 
correct. Consequently, the equation used by Tang and Babu 
[1979] and Hsieh [1986] is also erroneous. This assertion 
aroused our curiosity. After a careful check and mathematical 
derivations, we find that when the molecular diffusion is ne- 
glected the ADE used by Hoopes and Harleman [1967] is ex- 
actly the same as the one used by Philip [1994]. 

If the effect of molecular diffusion is neglected, the ADE in 
the radially diverging flow field given by Hoopes and Harleman 
[1967, p. 3599, equation (15)] may be expressed as 
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where C is the concentration of tracer; t is the time; r is the 
radial distance; A is a constant equal to Q/(2rr•,b); Q is the 
injection rate of tracer; • is the porosity; b is the aquifer 
thickness; and a is called dispersivity and is a constant. 

The ADE in the two-dimensional radial flow field given by 
Philip [1994, p. 3545, equation (1)] 
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where 0, is the dimensionless concentration; t, is the physical 
time; r, is the physical radial coordinate; and D is the diffu- 
sivity. The term v•/r,, where v• is a constant, represents the 
velocity V. The diffusivity is usually considered to vary with the 
first power of velocity; thus D can be written as D = a V. Note 
that the term Dr, on the right side of (2) may be expressed as 
Dr, = aVr, = av• and, thus, is a constant. Therefore Dr, 
can be moved out of the parentheses on the right side of (2). 
Accordingly, (2) can be expressed as 
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If one lets v• = A, drops the asterisk subscripts in (3), and 
normalizes the concentration of (1), then equations (1) and (3) 
are essentially identical. Let Co represent the concentration of 
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the injected tracer. Three dimensionless variables are intro- 
duced as 

o = C/Co (4) 
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On the basis of (5) and (6), the following partial derivatives 
may be derived: 
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After substituting (7)-(9) into (1), the result divided by Co 
gives the dimensionless form of (1) as 
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Dividing (10) by A/(2cr 2) and letting r/a = 20- •/2 from (6) 
yields 
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It is worth noting that (11) is equal to Philip's [1994] ADE in 
dimensionless form when n = 1 [Philip, 1994, p. 3546, equa- 
tion (6)]. 

In conclusion, we have shown that the ADE of Hoopes and 
Harleman [1967], either in dimensional form when the molec- 
ular diffusion is neglected or in dimensionless form, is equiv- 
alent to the one given in Philip's [1994] paper when n = 1. 
Accordingly, the ADE in radial two-dimensional flow used by 
both Tang and Babu [1979] and Hsieh [1986] is not in error. 
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