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Abstract 
 
We present an ATRIPPI model for analyzing 
protein-protein interactions. This model is a 167-
atom-type and residue-specific interaction 
preferences with distance bins derived from 641 co-
crystallized protein-protein interfaces. The ATRIPPI 
model is able to yield physical meanings of hydrogen 
bonding, disulfide bonding, electrostatic interactions, 
van der Waals and aromatic-aromatic interactions. 
We applied this model to identify the native states 
and near-native complex structures on 17 bound and 
17 unbound complexes from thousands of decoy 
structures. On average, 77.5% structures (155 
structures) of top rank 200 structures are closed to 
the native structure. These results suggest that the 
ATRIPPI model is able to keep the advantages of 
both atom-atom and residue-residue interactions 
and is a potential knowledge-based scoring function 
for protein-protein docking methods. We believe that 
our model is robust and provides biological 
meanings to support protein-protein interactions.   

Keywords: protein-protein interaction, atom-atom 
interacting preference, knowledge-based scoring matrix, 
residue-residue interaction preference  
 
1. Introduction 
 

Protein-protein interactions are involved in most 
biological processes. Identifying their associated 
networks comprehensively is the key to 
understanding cellular mechanisms [1]. Many 
experimental and computational methods have been 
proposed to identify protein-protein interactions. 
Protein interactions derived from the large-scale 
experimental methods, such as the two-hybrid 
system [2] or affinity purifications [3], are often 
inconsistent and high false-positive rates [4]. Many 
computational methods have been developed to 
predict protein-protein interactions by using gene 
expression profiles [5], known three-dimensional 
(3D) complexes [6, 7], 3D-domain interologs [8, 9], 

and interologs [10]. The development of 
computational approaches to map interactions seems 
useful in light of the shortcomings of large-scale 
experimental methods.  

Known 3D structures of interacting proteins 
provide interacting domains and atomic details for 
direct physical interactions [11]. The comparative 
modeling, which a known complex structure 
comprising homologs of these two sequences is 
available, has been applied to predict protein-protein 
interactions [6, 7, 9]. To analyze interacting 
interfaces from structural complexes is useful to 
understand the protein-protein mechanism and to 
develop knowledge-based scoring functions [12-15] 
for protein-protein interactions. Accurate docking 
methods often provide substantial structural 
knowledge of complexes, from which functional 
information can be studied. Generally, a docking 
method should have a scoring function which can 
discriminate correct or near-native docked 
orientations from incorrect docked ones.  

Various approaches have been developed to 
analyze protein-protein complexes for understand or 
predicting protein-protein interactions [12, 13, 16-
21]. Glaser et al. [13] analyzed residue contact 
preferences based on a nonredundant set of 621 
protein-protein interfaces and derived knowledge-
based residue-residue contact preferences. Moont 
and coworkers [22] studied empirical residue–
residue pair potentials. Zhang et al. [21] determined 
18 different atom types to estimate effective atomic 
contact energies. The residue-based methods [13, 22]  
are limited to reflect hydrogen bonds, disulfide 
bonds and electrostatic effect; conversely, the limit 
of atom-based methods [21] is often poor to describe 
residue propensities (e.g. aromatic-aromatic 
interactions and amino acid compositions) in 
protein-protein interfaces. Therefore, combinations 
of residue and atom properties have been suggested 
as a possible means to improve performance in 
measuring protein-protein interactions. [23] 
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Here, we present a 167-atom-type and residue-
specific interaction model for protein-protein 
interactions (ATRIPPI). This model, which are 
derived from 641 co-crystallized protein–protein 
interfaces selected from Protein Data Bank (PDB) 
[24], is able to consider both residue-residue 
interactions and the contributions of atom-atom pairs 
with distance bins. The ATRIPPI model includes 
group-charged model for electrostatic force, donor-
acceptor model for hydrogen bonds and van der 
Waals contact model for hydrophobic-hydrophobic 
interactions. ATRIPPI was evaluated on 34 bound 
and unbound complexes and proved that our 
ATRIPPI model effectively identified the native and 
near-native complexes from thousands of decoy 
structures for these targets. 
 
2. Results and Discussion 
 

We selected a non-redundant data set, which 
consists of 641 protein-protein interfaces of known 
high-resolution structures from PDB, to derive both 
atom-atom and residue-residue interacting 
preferences. In this data set, 621 protein-protein 
complexes were proposed by Glaser et al. [13] and 
20 antibody-antigen interfaces were collected from 
PDB. These antibody-antigen complexes are 1fbi, 
1fdl, 1iai, 1jhl, 1jrh, 1kip, 1kiq, 1mel, 1nca, and 2jel 
based on PDB entry. Each antibody-antigen complex 
consists of two interfaces, which are between the 
antigen and the light and heavy chains on the 
antibody, respectively. In this data set, 237 
complexes are heterodimers and 404 complexes 
homodimers and the sequence identity is less than 
30% to each other. This set can be divided into some 
categories, such as oligomeric proteins, enzyme-
inhibitor complexes, membrane proteins, and 
antibody-antigen complexes. The ATRIPPI model 
was evaluated on 17 bound and unbound complexes 
with different atom/residue types to discriminate the 
native state from 2,500 near-native random states. 
The set consists of 10 complexes selected from 641 
dimer complexes and 7 complexes selected form 
other related works for comparing with other 
methods. We followed the method [25] to generate 
2500 decoys, which are near the native structures, 
for each test complex in the data set. Figure 1 shows 
the framework of our ATRIPPI model for atom-atom 
and residue-residue preferences derived from 
protein-protein interfaces of this data set. 

 
2.1 Atom and residue types 

 
The atoms with different environments, 

connectivity and chemical nature, would be different 
in physicochemical properties. Here, we considered 
all heavy atoms (i.e. non-hydrogen atoms) of 20 
amino acids are residue specific, i.e. the atom Cα of 
Gly is different from the atom Cα of Ala. Based on 

atom name defined in PDB format, the number of 
atom types is 167 (Table 1), including 80 and 87 
atom types in the backbone and side chain, 
respectively. We can consider the physicochemical 
properties of both atom-atom and residue-residue 
interaction preferences by using this 167-atom types. 
For example, the hydrogen bonding is able to be 
identified if the specific pairing atoms are interacting 
on the respective chains, such as the atom N of Lys 
interacting to the atom O of Asp ; the atom NH1 of 
Arg interacting to the atom OD1 of Asp on 
sidechains. The atom-atom interactions (i.e. the atom 
CG, CD1, CD2, CE1, CE2 and CZ of Tyr and the 
atom CG, CD1, CD2, CE2, CE3, CZ2, CZ3 and 
CH2 of Trp) and the residue-residue interactions (e.g. 
Tyr and Trp or Leu and Ile) are able to model 
hydrophobic-hydrophobic interactions. The atom NZ 
(Lys) and the atom OD1 (Asp) may form the 
electrostatic interaction if the distance is within 6 Å 
in this study. An atom pair SG (Cys) and SG (Cys) 
form the disulfide bond if the distance of this pair is 
within 2.8 Å. Here, we obtained a residue-residue 
interaction by summing all of possible atom-atom 
pairing interactions of these two interacting residues. 
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Figure 1. The scheme of the ATRIPPI model. 
 
2.2   Atom-atom interacting types 
 

The ATRIPPI model is able to yield protein-
protein interacting properties of hydrogen bonds, 
electrostatic interactions, and van der Waals contacts 
(hydrophobic-hydrophobic) (Figures 2 and 3). These 
three preferences are essential interactions to analyze 
protein-protein interactions. To identify hydrogen 
bonds, we identify all donor and acceptor atom pairs 
(Table 1) that satisfy the distance from 2.5 to 3.5Å. 
All carbon atoms separated by 4.0 Å were 
considered to be interacting through van der Waals 
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contacts. The salt bridge interaction is inferred for a 
pair of oppositely charged residues (Arg, Lys or His 
interacting with Asp or Glu) if they meet the 
following criteria: (i) The centroids of the side-chain 
charged groups in oppositely charged residues lie 
within 4.0 Å of each other [26, 27]; and (ii) at least 
one pair of Asp or Glu side-chain oxygen atoms and 
side-chain nitrogen atoms of Arg, Lys or His is 
within 4.0 Å. To identify disulfide bonds, our 
program finds SG (Cys) and SG (Cys) atom pairs 
that satisfy the distance is smaller than 2.2 Å. Based 
on these conditions, the ATRIPPI model derived 
9,705 hydrogen bonds, 965 salt bridges, 41 disulfide 
bonds and 30,715 van der Waals interactions derived 
from 641 protein-protein interfaces. In order to 
observe the interaction preferences of the ATRIPPI 
model, 167 atom types are divided into 6 classes 
(Figures 2 and 3) based on the physicochemical 
properties of atom types: (i) atom N in the backbone; 
(ii) Atom C and Cα in backbone; (iii) Atom O in 
backbone; (iv) atom Cβ and Cγ of side chain; (v) Cδ, 
Cε and Cζ of side chain; and (vi) atom N, O and S of 
side chain. 
Table 1. The 167 atom types, donor and acceptor for 
hydrogen bonds, atom formal charge and 20 residue types 
defined in the ATRIPPI model  

Residue 
types 

No. atom 
types atom types 

Gly 4 N a CA C O b O 
Ala 5 N CA C O C O CB 
Val 7 N CA C O CB CG1 CG2  
Leu 8 N CA C O CB CG CD1 CD2 
Ile 8 N CA C O CB CG1 CG2 CD1 

Met 8 N CA C O CB CG SD CE 
Phe 11 N CA C O CB CG CD1 CD2 CE1 CE2 CZ

Tyr 12 N CA C O CB CG CD1 CD2 CE1 CE2 CZ 
OH b 

Trp 14 N CA C O CB CG CD1 CD2 NE1 a CE2 
CE3 CZ2 CZ3 CH2 

Ser 6 N CA C O CB OG 
Pro 7 N CA C O CB CG CD 
Thr 7 N CA C O CB OG1 CG2 
Cys 6 N CA C O CB SG 
Asn 8 N CA C O CB CG OD1 ND2  
Gln 9 N CA C O CB CG CD OE1 NE2 
Lys 9 N CA C O CB CG CD CE NZ 
His 10 N CA C O CB CG ND1 c CD2 CE1 NE2 c

Arg 11 N CA C O CB CG CD NE CZ NH1 c NH2 c

Asp 8 N CA C O CB CG OD1 d OD2 d 
Glu 9 N CA C O CB CG CD OE1 d OE2 d 

Atom and residue names are taken from the typical PDB 
format. 
a, b the atom types of donor (blue) and acceptor (red) for 
hydrogen-bond type, respectively.  
c, d the atom types with formal positive and negative charge, 
respectively.  
 
2.3   Atom-atom interacting preferences 
 

Figure 2A indicates the atom-atom preferences at 
the distance bin, ranging from 3.0 Å to 3.5 Å. In this 
matrix (167 x 167), the most preferences (red blocks) 
of pairing atoms are able to form the hydrogen bonds 

by the atom pair N and O on the interacting side 
chains, respectively. This atom pair (N and O) on the 
sidechain of the charged residues (e.g. Arg, Lys, His, 
Asp, and Glu) play a central role for hydrogen bonds 
in the protein interfaces. Among these atom pairs 
forming hydrogen bonds, the atom pair N of Arg 
interacting to atom O of Asp and Glu is the most 
preference because the multiple donor and acceptor 
atom types of Asn or Gln. In the preference scores at 
the distance bin ranging from 3.5Å to 4.0Å (Figure 
2B), the preferences of forming hydrogen bonds are 
rapidly decreasing and van der Waals interactions 
(atom Cδ, Cε, and Cζ in green block) by aromatic and 

long side-chain carbon atom are increasing. 
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Figure 2. The 167x167 atom-atom interaction scoring 
matrixes at two distance bins: (A) 3.0 Å to 3.5 Å and (B) 
3.5 Å to 4.0 Å. 167 atom types are divided into atom types 
on the backbone (atom N, C, Cα and O) and on the side 
chain (atom Cβ, Cγ, Cδ, Cε, Cζ, N, O and S) based on atom 
names in the typical PDB. The arrangements of atom types 
are based on the physicochemical properties. The scores 
reflect the normalized pairing preferences are derived from 
641 protein-protein interfaces. The red and blue colors 
denote the most and least atom-atom interacting 
preferences, respectively. 

Figure 3 shows the trends of atom-atom 
interacting preferences based on 11 protein-protein 
interacting matrices with 0.5 Å bins ranging from 3 
Å to 8.0 Å by considering the contacts between atom 
types in the 0.0–3.0 Å as a separate bin. These 
matrices are symmetric and 167 atom types are 
divided into backbone atom types and sidechain 
atom types. Here, we analyzed our ATRIPPI model 
based on sidechain-sidechain, sidechain-backbone, 
and backbone-backbone interactions by roughly 
dividing 167 atom types into backbone atom types 
(i.e. atom N, C, Cα and O) and sidechain atom types 
(i.e. atom Cβ, Cγ, Cδ, Cε, Cζ, N, O and S).  
According to Figure 3, we summarized some 
observations of atom-atom and residue-residue 
interacting preferences in the following: (a) Because 
the large side chains hinder backbone-backbone 
interactions, the atom-atom interacting preferences 
on the interacting backbones are small when the 
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distances of atom pairs are ranging between 3.5 Å 
and 5.0 Å (from  matrix A to matrix E). The 
preferences of backbone-backbone interactions are 
increasing when the distance of a pairing atom is 
more than 5.5 Å. (b) On other hand, for the atom-
atom preferences of sidechain-sidechain interactions, 
the preferences are high when the distances of 
pairing pairs are less than 5.5 Å and the preferences 
are decreasing when the distance is more than 6.0 Å. 
(c) The interacting preferences of backbone-
sidechain interactions are increasing from 4.5 Å to 
8.0 Å (from matrix E to matrix K). (d) The 
interacting preferences of sidechain-sidechain 
interactions are general much larger than ones of 
backbone-backbone interactions for each distance 
bin. (e) The hydrogen bonds are formed by a atom 
pair N and O when their distance is less than 3.5 Å 
(e.g. green and red blocks in matrices A and B in 
Figure 3). Most of these hydrogen bonds are formed 
by atoms N and O on the interacting sidechains, 
respectively. Some of hydrogen bonds are formed by 
the atom pair N and O on the interacting backbones. 
The matrix A (e.g. <3.0 Å) also shows that the 
disulfide interaction is formed by the atom pair S and 
S of Cys on the respective interacting chains. Except 
hydrogen bonding and disulfide interactions, other 
interacting preferences are very low in these two 
matrices A and B. 
 

2.4 Hydrogen bonds and electrostatic 
interactions 
 

The effect of the hydrogen bonds is one of the 
important features in protein-protein interactions. A 
hydrogen bond is often formed by the donor-
acceptor or acceptor-donor atom pairs. The 
hydrogen-bonding atom types (i.e. donor and 
acceptor) of 167 atom types are summarized in Table 
1. Figure 4A shows the relationship between atom-
atom preference scores and the distance of pairing 
donor-acceptor atoms from 3.0 Å to 12.0Å. The 
preference scores ranging from 2.0 to 4.0 Å are 
mainly derived from atom pairs N and O of the 
interacting side chains (red blocks in Figures 3A and 
3B) and partly from interacting backbones on the 
protein-protein interfaces. The highest probability of 
atom pairs forming the hydrogen bonding is between 
Arg and Glu, reflecting also the tendency for 
opposite charge residue pairs (Figure 4B). Compared 
with these atom-atom pairs, we found that the 
number of hydrogen bonds of similar charge residue 
pairs is quite low because of the electrostatic 
repulsion between them (Figure 4B). However, using 
18 different protein atom types [14], which were 
identified by clustering all the heavy atoms of the 20 
common amino acids, was unable to reflect the 
different frequencies of hydrogen bonds for different 
pairs of residues.  

 
3 ~  4
2 ~  3
1 ~  2
0 ~  1

-1 ~  0
-2 ~ -1
-3 ~ -2
-4 ~ -3

A: < 3.0Å B: 3.0Å ~ 3.5Å C: 3.5Å ~ 4.0Å

E: 4.5Å ~ 5.0ÅD: 4.0Å ~ 4.5Å F: 5.0Å ~ 5.5Å G: 5.5Å ~ 6.0Å

I: 6.5Å ~ 7.0ÅH: 6.0Å ~ 6.5Å J: 7.0Å ~ 7.5Å K: 7.5Å ~ 8.0Å

N O
Cβ
Cγ

Cδ
Cε
Cζ

N
O
S

Cα
C

N

O

Cβ Cγ

Cδ Cε Cζ

N O S

Cα C

Side
chain
Backbone

N

O

Cβ Cγ

Cδ Cε Cζ

N O S

Cα C

Side
chain
Backbone

N

O

Cβ Cγ

Cδ Cε Cζ

N O S

Cα C

Side
chain
Backbone

Backbone Side chain

N O
Cβ
Cγ

Cδ
Cε
Cζ

N
O
S

Cα
C

Backbone Side chain

N O
Cβ
Cγ

Cδ
Cε
Cζ

N
O
S

Cα
C

Backbone Side chain

 
Figure 3. Eleven 167x167 atom-type scoring matrixes with 0.5 Å bins ranging from 3 Å to 8.0 Å. 167 atom types are 

divided into atom types on the backbone (atom N, C, Cα and O) and on the side chain (atom Cβ, Cγ, Cδ, Cε, Cζ, N, O and S) 
based on atom names in the typical PDB. The arrangements of atom types are based on the physicochemical properties. The 
scores reflect the normalized pairing preferences are derived from 641 protein-protein interfaces. The red and blue colors 
denote the most and least atom-atom interacting preferences, respectively.   
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Figure 4. The relationship between atom-atom 
interacting preferences and distances of the pairing atoms. 
(A) Hydrogen bonds of the donor-acceptor atom pairings; 
(B) Hydrogen bonds of donor-acceptor atom pairings with 
the similar charge and opposite charge; (C) Electrostatic 
interactions of opposite-charged atom pairings; (D) Van 
der Waals interactions of carbon atom pairings in 
interacting aromatic groups and in backbones. 

In the ATRIPPI model, the charged groups are 
atom NE, NH1 and NH2 of Arg; the atom NZ of Lys; 
the NE2 atom of His; the atom OD1 and OD2 of Asp; 
and the atom OE1 and OE2 of Glu. Figure 4C shows 
the relations of Sij between opposite charge atoms 
and distances of pair atoms. The most preference 
scores (Sij) of pair atoms with opposite charges for 
electrostatic interactions when their distances are 
less than 4.5 Å. However, using only a distance 
cutoff (e.g. <6.0 Å [14]) was often unable to yield 
electrostatic interactions exactly in protein-protein 
binding site. The electrostatic interactions often form 

salt bridges and hydrogen bonding if their distance is 
less than 3.0 Å. 
 
2.5   Hydrophobic–hydrophobic Interactions 
 

The percentage of van der Waals interactions, 
which are mostly used to stabilize a protein-protein 
interface, is 64.07% of all atom-atom interactions 
derived from 641 protein-protein interfaces. The 
most common atom-atom pairs involving van der 
Waals interactions are from aromatic residues. 
Owing to the large surface area provided by ring-
stacking, the carbon atoms of the residues Phe, Tyr, 
and Trp are often interacting to the carbon atoms of 
Phe, Tyr, and Trp. The carbon-carbon interactions in 
aromatic group exhibit an elevated preference which 
is agreement with the well-known aromatic-aromatic 
interactions [28]. In addition, we found that carbon 
atoms of aliphatic side chains for Val, Leu, Ile and 
Met have high preferences to interact with carbon 
atoms of the aromatic side chains for Phe, Tyr, and 
Trp (Figures 2 and 3). The favorable atom pairs 
between the charged residues (e.g. Lys, His, and Arg) 
and the hydrophobic residues (e.g. Phe, Tyr, and Trp) 
suggest that hydrogen bond interactions and van der 
Waals interactions may exist simultaneously 
(Figures 3D, 3E, and 3F). For non-polar contacts 
(Figure 4D), the preferences of carbon atom 
interactions on the sidechains is much higher than 
ones of the carbon atoms in backbones. If we used 
only one distance cutoff < 6.0 Å, the aromatic-
aromatic interactions were unable to reflect exactly 
in protein-protein binding interfaces.  

 
Table 2. The ATRIPPI model results on 17 bound and 17 unbound complexes with different atom and residue types 

 Unbound structures Bound structures No. hits in top 200 for bound 
structures 

Complex name Receptor a Ligand a Complex a RMSD b 167 atom type e 18 atom type f 20 residue type 

A. Enzyme-inhibitor complexes 
Torpedo Acetylcholinesterase/Fasciculin II 2ace 1fsc 1fssd 0.76 109 136 0 
Mouse Acetylcholinesterase/Fasciculin II 1maa 1fsc 1mah 0.6 86 119 0 
Subtilisin Novo/Eglin C 1sup 1sbnc 1sbn 0.4 162 133 0 
Uracil-DNA Glycosylase/inhibitor 1udh 1udic 1udid 0.5 156 144 0 
Uracil-DNA Glycosylase/inhibitor 1akz 1ughc 1ugh 0.28 185 159 0 
Kallikrein A/pancreatic trypsin inhibitor 2pka 1bpi 2kaid 0.7 158 137 0 
β-trypsinogen/bovine pancreatic trypsin inhibitor 2ptn 6pti 2ptcd 1.2 150 151 0 
Subtilisin BPN/subtilisin inhibitor 1sup 3ssi 3sicd 0.61 147 169 0 

B. Antibody-antigen complexes 
IgG1 HyHel-5 Fab fragment/lysozyme 1bqlc 1dkj 1bql 0.84 155 136 0 
IgG1 Fv fragment/lysozyme 1jhlc 1ghl 1jhld 0.49 149 116 0 
Jel42 Fab fragment/histidine phosphocarrier protein 2jelc 1poh 2jeld 0.73 158 128 0 
Fab HyHel-5/lysozyme 3hflc llza 3hfl 0.6 160 141 0 
1gG1 HyHel-10 Fab fragment/lysozyme 3hfmc 1lza 3hfm 0.56 164 149 0 

C. Other complexes 
Actin/deoxyribonuclease I 1atnc 3dni 1atnd 0.5 155 136 0 
Glycerol kinase/GSF III 1glac 1f3g 1glad 0.5 168 138 0 
HIV-2 protease with peptide inhibitor (dimer) 2mipc 2mipc 2mip 0.6 190 168 0 
Human growth hormone/receptor 3hhrc 1hgu 3hhrd 1.2 185 178 0 
a 4-letter PDB code for the crystal structures used in this study. 
b The RMSD (Å) of the Cα atoms of unbound the receptor and ligand after superposition onto the co-crystallized complex structure. 
c Crystal structure is taken from bound complex. 
d Crystal structure is selected from 641 protein-protein interfaces. 
e Hits are defined as candidate structures with all main chain atoms RMSD ≦ 2.0 Å from the crystal complex. 
f All types are defined as Zhang et al. [14] 
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2.6   Results on bounded and unbound 
complexes 
 

The ATRIPPI model was evaluated on 17 bound 
and unbound complexes with different atom and 
residue types (Table 1) to discriminate the native 
state from 2,500 near-native structures by using the 
scoring matrices (Figures 2 and 3). The set consists 
of 10 complexes selected from 641 dimer complexes 
and 7 complexes selected form other related works 
for comparing with other methods. We followed the 
method [25] to generate 2500 decoys, which are near 
the native structures, for each test complex in the 
data set. 
Table 3. Average numbers of hits in top rank 200 using 
ATRIPPI on 17 bound and 17 unbound complexes with 
different number of distance bins, atom types, and residue 
types 

 167 atom types 18 atom types 20 residue types

 1 bin a 11 bins 
b 1 bin a 11 bins 

b 1 bin a 11 bins 
b 

Bound 
structure 117.82 150 0 143.41 103.58 7.76

Unbound 
structure 88.47 98.17 4.88 86.23 89.64 0 

a Using only one distance bin and the cutoff is set to 6.0 
b The distances observed into 0.5 Å bins ranging from 3.0 
to 8.0 Å. 
Table 4. Average numbers of hits in top 200 of using 
ATRIPPI on 17 bound and unbound complexes with 
different distance-bin sizes  

Bound complex Unbound complexComplex 
name Interval 

size (0.5 Å) 
Interval 

size (1.0 Å) 
Interval 

size (0.5 Å) 
Interval 

size (1.0 Å)
enzyme-
inhibitor 132.2 144.1 90 95.5 

antibody-
antigen 110.4 157.2 97.6 133.6 

other 
complexes 172.2 174.5 115.2 114.2 

total 138.3 155.1 98.2 101.5 
Hits are defined as candidate structures with RMSD ≦ 2.0 
Å from the native crystal complexes. 

Table 2 shows the performance of ATRIPPI 
results on 17 bound and unbound complexes with 
different atom/residue types. The 167-atom-type 
model (ATRIPPI) is the best and the residue-based 
approach is the worst based on the number of top 
rank 200 structures whose root-mean-square 
derivation (RMSD) < 2.0 Å on Cα coordinates 
between selected structures and the native structure. 
The 167-atom-type model is better than 18-atom-
type model and is much better than 20-residue-type 
model because the ATRIPPI model can consider 
atom-atom interactions and incorporates specific 
interactions (e.g. electrostatic interactions, van der 
Waals, and hydrogen bonds). Conversely, the 18-
atom-type model can not reflect residue-residue 
interactions (such as the aromatic-aromatic 
interactions). The residue-based model is often 

unable to reflect the specific interactions. The 
ATRIPPI model considers not only residue-residue 
interactions but also atom-atom interactions. 

Figure 5 shows the correlations between the 
ATRIPPI potentials and the root mean square 
deviation (RMSD) between the native structure and 
decoy structures for five antibody-antigen complexes 
in bound systems. The RMSD values of the native 
structures are zero. Most of near-native structures are 
ranked within top rank 10. These results show that 
our energy function is able to identify native and 
near-native structures from lots of decoy structures. 

 
Figure 5. Binding energy vs. RMSD (abscissa) for the 
top 2,500 structures of each antibody-antigen complexes in 
bound systems: (a) 1bql, (b) 1jhl, (c) 2jel, (d) 3hfl and (e) 
3hfm. 
 
2.7 Distance bins and Interval sizes 
 

The number of distance bins and the interval 
sizes are important factors for improving the 
discrimination of the ATRIPPI model (Tables 3 and 
4) for protein-protein interaction predictions. The 
ATRIPPI model using 11 bins performed well when 
the atom-atom interaction models (i.e. 167 and 18 
atom types) were applied (Table 3). The results 
shows that the atomic pair scores using a cutoff 
distance with a suitable interval is able to reflect 
electrostatic effects, hydrogen bonding, and van der 
Waals contacts. Interestingly, the residue-based 
model obtained good results when only one bin was 
applied. Table 4 shows that the ATRIPPI model with 
large interval size (1.0 Å) outperformed the 
ATRIPPI model with small interval size (0.5 Å). For 
each antigen-antibody complex, the ATRIPPI model 
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yielded that the average number of near native 
structure in top 200 structures is greater than 150 in 
17 bound complexes. Bound and unbound protein 
structures frequently differ in the conformations of 
some side chains in the binding site. Generally, all 
models yielded better performance on bound 
complexes than on unbound complexes. 

 
3.   Materials and Methods 

 
Figure 1 shows the framework of our ATRIPPI 

model for atom-atom and residue-residue 
preferences derived from protein-protein interfaces 
of 641 dimer complexes. The protein-protein binding 
site and contact residues were first identified for 
each complex in the data set. Based on the defined 
distance bins and atom-type representations, we 
calculated the atom-atom and residue-residue 
interactive frequencies. Finally, the frequencies of 
the atom-atom and residue-residues interacting 
preferences were studied and transformed into 
interactive scores based on Boltzmann distribution. 
The ATRIPPI model was then evaluated on 34 test 
complexes to distinguish between the native and 
near native structures from incorrect structures in the 
decoy set.  
 
3.1   Interacting interfaces and distance bins 
 

For each complex in the data set, we identified 
interacting interfaces and contact residues (and 
atoms) of two interacting chains. Contact residues, 
whose any heavy atoms should be within a threshold 
(Rc) to any heavy atoms of another chain, were 
considered as in the interacting sites of the protein-
protein interface in a complex. Each chain must have 
more than 5 contact residues and the number of 
interacting contact-residue pairs more than 25 to 
make sure that the contact between the proteins was 
reasonably extensive [29]. Based on different Rc, we 
obtained various the sizes of interacting sites 
forming different distributions of the resulting 
potentials. When the Rc is less than 4 Å, the atom-
atom interactions is able to describe the specific 
interactions (e.g. hydrogen bonds and disulfide 
bonds). Conversely, an extension of Rc to larger 
distances is abele to incorporate the influences of 
van der Waals interactions and residue-residue 
interactions. We divided distances observed into 0.5 
Å bins ranging from 3.0 to 8.0 Å. The total number 
of distance bins is 11 by considering the contacts 
between atom types in the 0.0–3.0 Å are placed in a 
separate bin. The interval size and number of 
distance bins were decided based on various 
parameter tests.  
 
3.2 Interaction preferences 
 

The atom-atom contact frequencies observed in 
the protein-protein complex structures are assumed 
to obey a Boltzmann distribution. We followed 
previous work [15] to define the interaction 
preferences and scores between atom types i and j as  

)
)(
)(

ln()(
df
df

kTdS
ref

ij
ij −=  

where i and j denote atom types, respectively; k is 
the Boltzmann’s constant; T is the absolute 
temperature; fij(d) and fref (d) are the observed and 
reference probability, respectively, of the 
occurrences of atom types i and j contacting at the 
distance bin d. The score is smaller than zero (Sij < 0) 
if the observed probability is greater than the 
reference probability. The preference of an 
interacting atom i, j pair is high when Sij < 0. By 
contrast, Sij > 0 if fij < fref. Using a set of known 3D 
protein complex structures from data set C (i.e. the 
641 protein-protein interfaces), we can make 
observations of atom-atom contacts in a particular 
distance bin. We compute the frequencies of 
observing atom type i and atom type j in a particular 
distance bin from 641 dimer complexes. The fij (d) is 
defined as  
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N ij(d) is the number of atom type i and j in a 
particular distance bin d; DB is the number of the 
distance bins. In this work, DB is 11. The 
denominator is the total number of atom types i, j 
contacts for all distance bins. The reference state is 
often built on the basis of the quasichemical 
approximation. Here, the reference state is defines as  
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where n is the number of atom types (n is 167 in this 
paper). 
 
4.  Conclusions 
 

This study demonstrates the robustness and 
feasibility of the ATRIPPI model with 167-atom 
types for protein-protein interactions. This model is 
able to yield the advantages of atom-based and 
residue-based interactions. The atom-based 
interaction is an effective means of assessing specific 
interactions, including hydrogen bonds, electrostatic 
interactions, and disulfide bonds. The residue-based 
interaction is able to reflect the aromatic-aromatic 
interactions. The ATRIPPI model with different 
distance bins is sensitive to binding affinity and is 
able to effectively identify the native and near-native 
structures from thousands of decoy structures for 34 

398



test complexes. These results suggest that the 
ATRIPPI model is robust and provides biological 
meanings to support protein-protein interactions. 
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