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SUMMARY 

Equations of equilibrium (force balance) and flow in multidimensions were coupled in this paper to describe 
land displacements due to pressure decline in aquifers. A Galerkin finite element model based on these 
equations was developed. The saturated/unsaturated behaviour and the isotropic/anisotropic properties of 
permeability and elasticity were considered when the model was formulated. This model was verified by 
comparing its simulation results with those of known analytical solutions for simplified cases. The 
simulation of displacements due to pressure decline in unsaturated media was also performed. Those results 
demonstrated that the choice of boundary ranges for an aquifer with infinite domain may significantly affect 
the estimated horizontal and vertical displacements. To obtain a good estimation of land displacements, the 
boundary ranges should be carefully chosen. The displacements occurring in unconfined aquifers are caused 
by the drop of the water table and the change in body force in the dewatering zone. Simulation results also 
indicated that the change in body force should be considered once an unconfined aquifer has been pumped. 
Otherwise, the horizontal and vertical displacements in unconfined aquifers would be overestimated and 
underestimated, respectively. The behaviour of land displacements due to pumping was shown to be affected 
by changes in the total stresses in aquifers. 
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INTRODUCTION 

Heavy groundwater pumping has induced serious land displacement problems in several cities 
around the world. Pressure decline in confined and unconfined aquifers is accompanied by 
a change in effective stress in the solid skeleton. This change in effective stress then leads to land 
displacements. Most existing models merely predict the vertical displacement (i.e. subsidence). 
This assumption of one-dimensional subsidence allows for the elimination of a set of dependent 
variables and uncoupled equations can be derived. Uncoupling, however, occurs only under 
rather special circumstances and may lead to substantial errors. Horizontal displacement may be 
of the same order of magnitude as vertical displacement in some situations.’ Real subsidence 
problems are coupled in nature in most situations and should be solved as such.’ A physical 
system coupling four partial differential equations was first presented by Biot3 to describe the 
phenomena of transient flow and displacements occurring in three-dimensional deforming 
porous media. On the basis of Biot’s work, Bear and C o r a p c i o g l ~ ~ ~ ~  proposed a mathematical 
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formulation for regional land displacement problems due to pumping from confined or uncon- 
fined aquifers. The finite element method has been widely used to simulate similar field problems. 
Safai and Pinder6* ' constructed a Galerkin finite element model to simulate the land displace- 
ments and axisymmetric flow resulting from pumping in confined and desaturating systems. 
Gambolati and Freeze* and Gambolati er d9 simulated the subsidence of Venice using the finite 
element technique. Schrefler and Zhan" developed a fully coupled finite element model to 
simulate the slow transient phenomena of consolidation in porous media with variable satura- 
tion. Lloret et a/." also analysed the problems of flow and deformation based on consideration of 
some features of the behaviours of unsaturated soils. Lewis and Schrefler" employed the finitc 
element method to simulate land displacement problems in the areas of soil mechanics and 
reservoir engineering. 

The objective of this paper is to develop a general Galerkin finite element model and to study 
the behaviour of multidimensional land displacements due to pressure decline in aquifers. The 
saturated/unsaturated behaviour and the isotropic/anisotropic properties of permeability and 
elasticity are considered in the formulation of the developed model. The change in body force in 
unconfined aquifers, which is usually neglected in engineering practice, is also taken into 
consideration. The verification of this model is done in cylindrical co-ordinates by comparing 
simulation results obtained from it with known analytical solutions for simplified cases. Displace- 
ments in unsaturated media are then simulated. The influences of boundary and the change in 
body force on the simulations are demonstrated and discussed. The effect of changes in stresses on 
the displacement behaviour is also illustrated. 

GOVERNING EQUATIONS 

A general mathematical model describing land displacements due to pressure decline in aquifers 
may be formulated by coupling the transient flow equation and the equilibrium equation. The 
flow equation, which governs the distribution of the pressure head in deforming porous media, 
may be derived on the basis of (1) the continuity of fluid, (2) the continuity of solid, (3) the motion 
of fluid (Darcy's law), (4) the deformation/displacement of media and ( 5 )  the compressibility of 
fluid. Consequently, the flow equation for deforming porous media in Cartesian co-ordinates may 
be written as13 

where q, = - KV$ is Darcy's velocity, S, is the degree of saturation, auk/axk is the dilation of unit 
volume, uk is the component of the displacement in the k direction, n is the porosity of media, /jw is 
the compressibility of the fluid, P is the pressure, q is the sink term, K = K(S,) is the hydraulic 
conductivity tensor which is a non-linear function in terms of the degree of saturation when the 
soil is in an unsaturated condition, $ = P/pg + z is the hydraulic head, p is the density of water, 
g is the gravitational acceleration and z is the elevation above the datum. The air pressure is 
commonly assumed to be atmospheric and may be neglected if the air and water phases are 
included in the unsaturated soil. The non-linear relationship between the degree of saturation S, 
and the pressure P may be found by the retention curve in unsaturated media. Accordingly, 

may be obtained. 
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In the absence of inertial effects, the equilibrium of forces acting on porous media in Cartesian 
co-ordinates may be expressed as14 

doij 
axj  
- +fi = 0, i , j  = x , y , z  

where aij is the total stress tensor,fi = [pnS,  + (1 - n)p,]gi is the component of the body force in 
the i direction, ps is the density of solid and gi is the component of gravitational acceleration in the 
i direction. The relationship between stresses and pressure in Cartesian co-ordinates may be 
expressed as1 

( 3) 

where aij is the effective stress tensor and Sij is the Kronecker delta symbol. Equation (2)  may be 
divided into two parts: the initial steady state, which is a state of equilibrium, and the incremental 
state. These two states may be expressed asI4 

0.. = a!. rJ - S pa . .  r J .  i , j  = x ,y ,z  

+Jo = 0, i, j = x, Y ,  axj 

and 
- daFj +fie = 0, i , j  = x , y , z  
d X j  

where the superscripts (.)’ and (.r denote the initial and incremental values of physical 
quantities, respectively. The initial steady state of equilibrium, equation (4a), may be omitted here. 

According to the concepts introduced by Terzaghi,” the displacement of media may take place 
as a result of changes in the effective stresses. Media are assumed here to be elastic and 
cross-anisotropic (or transversely isotropic). Thus, the elastic-constitutive relationship for the 
media in Cartesian co-ordinates may be expressed by Hooke’s law as 

‘I 2 N + A  A F 0 0 0 
A 2 N + A  F F C 0 0 0 0 0 j f l  

0 O N 0 0  
0 0 O O L O  EYZ 

0 0 O O O L  E,, 

where A ,  C, F, L, and N are the material constants of cross-anisotropic media defined by Love16 
and Eij = f - (dui /dx j  + duj /dxi )  with i, j = x, y, z is the component of the strain. A = F = 1, 
L = N = G and C = 1, + 2G if the media are isotropic, where I and G are known as Lame’s 
constants. Supplemented by equation (5 ) ,  equations (1) and (4b) constitute four non-linear partial 
differential equations with four dependent variables, P, uxr uy, and u,. 

FINITE ELEMENT APPROXIMATIONS 

Equations (l), (4b) and ( 5 )  constitute a general mathematical statement of the physical problem of 
land displacements due to pressure decline in confined or unconfined aquifers. Analytical 
solutions for this general system are not available. Therefore, numerical approaches may be 
employed to solve the problem. A finite element approximation is chosen owing to its ability to 
treat compound regions and complex geometries. 
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Applying the Galerkin approach and Green's theorem to equations (1) and (4b) yields 

= - [ N,q,.odr + N,qdR , k = x,y,z s l  
and 

where N. is the basis function, Nnode is the total number of nodes in the region of interest R and nj 
is the component of the outward unit vector n normal to the boundary r in thej  direction. Let the 
trial solution of the dependent variable cp, which represents P,  uxr uy, and u,, be expressed in the form 

(8) 

where cps is the value of cp at node B. The effective stress in equation (7) may be expressed in terms 
of the displacement by utilizing the elastic-constitutive relationship, i.e. equation (5).  The trial 
solution, equation (S), may then be employed to rewrite equations (6) and (7) in a matrix form as 

N " C d C  

j?= 1 
cp 25 4 = c cp@(t)Nj?(X, Y ,  z) 

where { . } is a column vector whose components are the values of dependent variables at nodes or 
a load vector on the right-hand side; d(-)/dt is the derivative of the dependent variable with 
respect to time and [ .] is the coefficient matrix. The definitions of coefficient matrix and load 
vectors in Cartesian co-ordinates and in cylindrical co-ordinates are listed in Appendix I. 

Employing the formula of finite differences, time derivatives in equation (9) may be written as 

in which { cp), and { ~ p } , - ~  are the values of {cp} evaluated at time t and t - Af, respectively, and At 
is the step-size of time. The vector of variable increment {P'} in equation (9) may be expressed as 
{P' )  = {P}, - { P } , = o  where { P } l , o  is the value ofpressure prescribed at theinitial time. With the 
assistance of equation (lo), the final matrix system may be written as 

CCPPl {PI + CCP,I {ux> + CCPU,l (UY> + CCPU~I{~Z> = {RPf 

CC..Pl {PI + [Cu,u.l {Ux> + [CU.U,l {UY} + CCU,,l {Uz} = {Ru.} 

CCuyI {PI + [CU,,l tux> + C ~ U , U , l  {UY} + [CU,U,l { U z }  = {Ru,} 
~C,PI {PI + C ~ u , , l { U x )  + CC,U,l {UY} + CCU,U,l { U J  = {RUJ 

( 1  1) 

in which the definitions of the coefficient matrices and the load vectors in equation (1 1) are listed 
in Appendix 11. 
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MODEL VERIFICATION 

To verify the finite element model, three simplified cases with known solutions are utilized. 
Cylindrical co-ordinates are employed for all of the following cases. 

A regional case for a single well pumping from a conjined aquifer 

A single fully penetrating well of radius r ,  pumping at a constant rate Qw from a confined 
aquifer with horizontal infinite extent is considered. The formation of this aquifer is homogeneous 
and isotropic. The initial thickness of the aquifer system is assumed to be uniform in space. The 
initial and boundary conditions for such an aquifer system with i ,  j = r, z are described as 

t GO, r 2 rw, 4 = d o  and u,, u, = O  

and u, = 0, aZjnj = 0 84 Qw 

dr 2zrWKB 
-=- t > 0, r = r,, 

t >O,  r - c o ,  $='' and o: jn j=O 

t > 0 ,  z = B ,  -- " - 0 and erjni=O 
a Z  

- 0 and u, = 0, a;pi = 0 a4 t > 0 ,  z=o,  _ -  
az 

where u, is the horizontal displacement in cylindrical co-ordinates, B is the saturated thickness of 
the aquifer, and K = K is a constant for a homogeneous and isotropic aquifer. The magnitude of 
the vertical displacement is assumed here to be rather small as compared with the thickness of the 
compressible layer D. Consequently, B and D may be considered to be equivalent and constant in 
time, i.e. D = B = Bo. Based on these assumptions, Bear and Corapcioglu4 presented analytical 
solutions for the regional variables. These regional variables are the drawdown s = 4' - 4, the 
averaged horizontal displacement P,, which does not vary along the vertical direction of an 
aquifer, and the vertical displacement at the surface of the aquifer u,(r, z = B)  = - Az. 

The data from the paper of the Bear and Corapcioglu4 are utilized for simulations: the 
transmissivity T = K B  = 95 cm2/s; B = D = 142 m; Q, = 50 I/s; yw = p g  = 9.806 x N/cm3; 
and I = G = 4475 x lo3 N/cmz. The water compressibility /Iw is neglected. The non-uniform 
finite element mesh sketched in Figure 1 is employed to simulate the problem. The aquifer 
thickness is divided uniformly by the vertical grid-size Av = 28.4 m. In the horizontal direction, 
the horizontal grid-size Ar is non-uniform. The sizes of Ar are small near the well and gradually 
increase toward the infinite boundary. At r = rw = 0 3  m, a constant flux is specified and the soil 
is restrained from any lateral movement; however, it is free to move vertically. Both the top 
surface and bottom of the aquifer are treated as impervious, i.e. no flux across the impervious 
boundaries. At the top surface of the aquifer, i.e. the top boundary, the soil is free to move both 
vertically and horizontally. At the bottom of the aquifer, i.e. the bottom boundary, the soil is 
restrained from any vertical movement; however, it is free to move horizontally. A finite boundary 
r = R, chosen to be at a distance far from the well, is used in the numerical simulation to 
approximate the infinitely horizontal domain. The soil is treated as free to move both vertically 
and horizontally at r = R (i.e. ar,nj = 0 at r = R) in the numerical simulations, although the soil 
movement at r + 00 may be very small. 

Results of simulations for the drawdown and displacements are shown in Figure 2. In the 
figures, the vertical displacement at the top surface Az, the average of the drawdown s at the nodes 
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Figure 1 .  A finite element mesh in cylindrical co-ordinates 

Figure 2. Distribution of the drawdown s, horizontal displacement I& and vertical displacement Az when pumping from 
a confined aquifer: (a) spatial distribution after continuous pumping for 3 yr and (b) temporal distribution at 3 km from 

the pumping well 

along the vertical direction, and the average of the horizontal displacement ti, at the nodes along 
the vertical direction are taken to represent the regional variables. Simulations of chosen 
horizontal boundary range R = 10 km are demonstrated by circles. Analytical solutions4 for the 
drawdown, horizontal displacement and vertical displacement are indicated by solid lines. The 
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relationship of the drawdown, horizontal displacement and vertical displacement versus the 
distance from the well after continuous pumping for 3 yr is shown in Figure 2(a). The relationship 
of the drawdown, horizontal dispalcement and vertical displacement versus time at a distance of 
3 km from the well is shown in Figure 2(b). When the infinitely horizontal domain is considered, 
the horizontal displacements after continuous pumping for 3 yr are - 16.781 and - 12.553 cm, 
respectively, at distances of 10 and 20 km from the well. The minus values of displacements 
represent soil movement toward the pumping well, i.e. the centre of the horizontal co-ordinate. 
For the horizontal boundary range R = 100 km, the absolute errors” in estimated horizontal 
displacements are - 0.144 and 0.044 cm, respectively, at distances of 10 and 20 km from the well, 
as indicated in Figure 2(a). After continuous pumping for 20 yr, the drawdown, horizontal 
displacement, and vertical displacement at a distance of 3 km from the well are 191.49, - 19.167 
and - 1-490 cm, respectively, when the infinitely horizontal domain is considered. The absolute 
errors in these estimated values are 1507,0209 and - 0.021 cm, respectively, when R = 100 cm. 

It is found from the simulation results that the estimated drawdown and displacements will be 
affected when the values of the horizontal boundary range R are less than 100 km. However, 
when the chosen horizontal boundary ranges are greater than 100 km, the simulation results do 
not change with increasing horizontal boundary ranges. Thus, simulation results with R greater than 
100 km represent the solution for infinity domain and are compared with the analytical solutions for 
infinity domain. Results also demonstrate that the simulated drawdown and displacements match 
well with those of the analytical solutions when R is larger than 100 km. It indicates that caution 
should be taken when choosing the value of R for simulating the infinite domain problem. 

A regional case for a single well pumping from an unconjned aquifer 

A single fully penetrating well of radius rw pumping at a constant rate Qw from an unconfined 
aquifer with horizontal infinite extent is considered. The formation of this aquifer is homogeneous 
and isotropic. The initial thickness of the aquifer system is assumed to be uniform in space. The 
initial and boundary conditions for such an aquifer system with i, j = r, z are described as 

f GO,  r 2 rw, 4 = 4’ and s, u,, u, = O  

and u, = 0, oZjnj = 0 84 a s  Qw t > 0 ,  r = r w ,  -- ---=- 
ar dr 2zrWKB 

t >O, r + m ,  4 = 4 ’  and aFj.nj=O (13) 

- 0 and u, = 0, o:pj = 0 t > 0 ,  z=o,  -- 84 
az 

in which Fh = z - 4 ( r ,  t )  = 0 represents the phreatic surface (or water table) where the elevation 
head is equal to the hydraulic head 4 ( r ,  t )  and S ,  is the specific yield defined as the volume of pore 
water releated by unit decline in water table per unit area. The term q, I Fh - VFh represents the flux 
across the phreatic surface and the term SYa4/at  represents the water released rate from the 
unconfined aquifer in response to the drop of the hydraulic head 4. 

The magnitude of the drawdown s is assumed here to be rather small as compared with the 
saturated thickness B of the aquifer at any time. The magnitude of the vertical displacement at the 
surface of the aquifer is also assumed to be rather small compared with the thickness D of the 
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compressible layer. Also, B and D may be considered to be equivalent and constant in time. Based 
on the above assumptions, Lu and Yeh’* presented the analytical solutions for the drawdown, 
averaged horizontal displacement and vertical displacement at the surface of the aquifers. 

The data from the paper of Corapcioglu and Bear’ are again utilized for simulations: 
K = 669 x lo-’ cm/s; B = D = 142 m; Qw = 50 l/s; S, = 0.4; yw = pg = 9-806 x lo-’ N/cm3; 
and 1 = G = 4.475 x 10’ N/cmZ. The water compressibility BW is neglected. The non-uniform 
finite element mesh, which is the same as that used in the case of the confined aquifer, is employed 
again here. The effect of delayed yield in unconfined aquifers, i.e. the unsaturated effect, is 
neglected here, since it is insignificant for regional problems. The settings of aquifer boundaries 
are chosen to be the same as in the case of the confined aquifer except that the top surface is 
previous. Hence, the water table may drop as a consequence of pumping. The body force within 
the zone where the water table drops may change. This change may be considered to occur near 
the top boundary, since the drawdown is assumed to be rather small compared with the saturated 
thickness. The change in body force is equivalent to the weight of pore water in the dewatering 
zone. 

Results of simulations are shown in Figure 3. Simulations of chosen horizontal boundary range 
R = 60 km, that larger chosen values would not change the estimated results, are demonstrated 
by circles. Results of simulations when the change in body force is neglected are also shown by 
dotted symbols. Analytical solutions,’* which include the change in body force, for the draw- 
down, horizontal displacement and vertical displacement are indicated by solid lines. When the 
infinitely horizontal domain and the change in body force are considered, the horizontal 
displacements after continuous pumping for 3 yr are - 0.789 and - 0394 cm, respectively, at 
distances of 10 and 20 km from the well, as shown in Figure 3(a). The absolute errors in estimated 
horizontal displacements at distances of 10 and 20 km from the well are 0.015 and 0.027 cm, 
respectively, when R = 60 km and including the change in body force. When neglecting the 

1 1  n * .-Ur 

0 
10 20 

Distance r (krn) 
0 5 10 15 20 25 30 

Pumping Time (years) 

Figure 3. Distribution of the drawdown s, horizontal displacement I& and vertical displacement Az when pumping from 
an unconfined aquifer: (a) spatial distribution after continuous pumping for 3 yr and (b) temporal distribution at 3 km 

from the Dumping well 
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change in body force, all the horizontal displacements are overestimated by 0.136 cm. After 
continuous pumping for 30 yr, the drawdown, horizontal displacement, and vertical displacement 
at a distance of 3 km from the well are 74.60, - 7.518, and - 0.929 cm, respectively, when the 
infinitely horizontal domain is considered. The absolute errors in these estimated values are 0.404, 
0063, and - 0.007 cm, respectively, when R = 60 km and including the change in body force. All 
of the horizontal and vertical displacements shown in Figure 3(b) are overestimated and 
underestimated by 1.982 and 0.351 cm, respectively, when neglecting the change in body force. It 
can be observed that the estimated drawdown is nearly unaffected by the change in body force. 
However, the horizontal and vertical displacements may be, respectively, overestimated and 
underestimated by neglecting the change in body force. This suggests that the change in body 
force comes into play once an unconfined aquifer has been pumped, because the displacements 
occurring in unconfined aquifers are caused not only by the drop of the water table but also by the 
change in body force.’* The behaviour of land displacements is similar to that in the confined case 
when the change in body force is not considered. When the drawdown is small compared to the 
saturated thickness at any time and when the change in body force is neglected, the displacement 
quantities are approximately the same for the confined and unconfined aquifers if the values of 
the storage coefficient and specific yield are assumed to be equal. The storage coefficient is herein 
defined as the volume of released water per unit pressure decline per unit area surface due to the 
compaction of aquifer and the expansion of water. Simulation results also show that the 
drawdown and horizontal displacement at the nodes along the vertical direction are almost the 
same for both confined and unconfined cases. It coincides with the assumption that the horizontal 
displacements have no variations along the vertical direction. 

Steady state displacements for a point sink pumpingfrom an isotropiclcross-anisotropic porous elastic 
halfrspace 

A point sink, located at a depth of h below the surface of an aquifer, is assumed to pump at 
a constant rate Qw . The formation of the aquifer is assumed to be homogeneous. The initial and 
boundary conditions for such an aquifer system with i ,  j = r, z are 

t GO, r 2 0 ,  4 = 4 ’  and u,, u,=O 

t >O, r =0, u, = 0 and o:,nj=O 

t >O, r + m ,  4 = 4 ’  and aTj.nj=O 

t >O, z = B, 4 = 4’ and utn, = 0 

The saturated thickness B of the aquifer will approach infinity if the domain of the aquifer is 
considered to be in a half-space. Tam and Lu19 presented analytical solutions for the steady-state 
displacement and pressure decline due to a point sink pumping from an isotropic/cross-anisot- 
ropic porous elastic half-space. 

The following data are used to simulate the problem with the present model: 
K, = 6.69 x l op3  cm/s; Qw = 50 11s; yw = 9.806 x N/cm3; h = 28.4 m; KJK, = 0.5; vrf)  = 00 
v,, = 038;  G,, /E,  = 038; E,/E,  = 1-84”; and E ,  = 1.119 x lo4 N/cm2. The water compressibility 
flW is neglected. K, and K, are the components for the conductivity tensor in the horizontal and 
vertical directions, respectively; v,O and v,, are, respectively, Poisson’s ratios for the horizontal and 
vertical strains that result from a horizontal stress; E, and E ,  are Young’s moduli in the horizontal 
and vertical directions, respectively; and G,, is the shear modulus in the vertical plane. Young’s 
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modulus Ei characterizes the strain in the i direction produced by stress in the same direction. The 
shear modulus Gij characterizes the shear strain c i j  produced by the shear stress aij. Poisson's 
ratio vij  characterizes the compressive strain in t h e j  direction produced by a tensile stress in the 
i direction. 

The non-uniform finite element mesh illustrated in Figure 1 is again employed. Near the point 
sink, both the vertical grid-size Av and the horizontal grid-size Ar are smaller. At r = 0, the sink is 
located at a depth of h below the surface of the aquifer and the soil is restrained from any lateral 
movement; however, it is free to move vertically. At  the other boundaries, the soil is free to move 
both horizontally and vertically. The surface of the aquifer is treated as previous so that the 
Dirichlet boundary for pressure may be specified. The vertical movement at the point PF in the 
mesh indicated in Figure 1 is restrained from any vertical movement to avoid generating 
a singular matrix in numerical simulations. 

Results of simulations for the steady-state displacements are shown in Figure 4. Simulations of 
the chosen normalized boundary depth B,  = B/h = lo00 and normalized boundary range 
R, = R/h  = 280, that larger chosen values of B, and R ,  would not change the estimated results, 
are given in these figures. Analytical s ~ l u t i o n s ' ~  for the horizontal displacement and vertical 
displacement are indicated by the solid lines. At distances of 1 and 2 km from the point sink, the 
vertical displacements shown in Figure 4 are - 0.0217 and - 0.0109 cm, respectively, when the 
half-space domain is considered. For R ,  = 280 and B, = 1O00, the absolute errors in estimated 
vertical displacements at distances of 1 and 2 km are 00079 and 00078 cm, respectively. The 
absolute values of relative errors" shown in Figure 4 are all less than 17.30% for the horizontal 
displacements. 

Note that trial and error should be used to find reasonable estimates for the displacements 
when aquifers with half-space are simulated. The normalized boundary range and normalized 

h 

E 
$0.15 - m 
II 
N 
L' 
Y 

I 
& 0.10 

8 
z 
0 
0 .a P - 0.05 
0 
c 
N 
'C 

- 

c 

r 

0.00: 1 1  1 I I I I ,  1 ,  , , , , I , ,  , , , c - 
0.0 0.5 1 .o 1.5 2.0 

Distance r (km) 

Figure 4. Horizontal distribution for the horizontal and the vertical displacements at the aquifer surface of a cross- 
anisotropic aquifer 
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boundary depth should be chosen to where the drawdown in response to the pumping is rather 
small, so that the simulation results would not change with larger chosen values for those 
boundary distances. 

MODEL PREDICTION ON UNSATURATED MEDIA 

The proposed model is capable of dealing with the displacement problems in unsaturated porous 
media as mentioned previously. The soil displacements due to pressure decline in unsaturated 
media is predicted in the following case. 

Displacements due to pressure decline in unsaturated porous media 

A single partially penetrating well of radius r ,  is considered to pump at a constant rate Qw from 
an unconfined aquifer with horizontal infinite extent. The formation of this aquifer is considered 
to be homogeneous and isotropic. The initial and boundary conditions for such an aquifer system 
with i , j  = r. z are described as 

t < 0, r 2 r,. 4 = 4' and u,, u, = 0 

t >O, r-+oo, 4 = 4' and a:jnj=O 
(151 \ I  

- 0 and u, = 0, o:jnj = 0 t > 0 ,  z = o ,  -- 8 4  
a Z  

t > 0, r = rw. u, = 0 ,  aEjnj= 0 and 2 = 0  for B - H < z < B 
dr 

=- Qw for 0 < z < H 
2nr,KH 

where H is the pumping section of the well. 
The following data from the paper of Safai and Pinder6 are used in the simulation: 

K = 2.0 x m/s; 4' = B = 10 m; Qw = 20 m3/h; y, = pg = 9.8 x lo3 N/m3; n = 0.2; v = 0.1; 
G = lo7 N/m2; Bw = 5.0 x lo-'' N/m2 and H = 2.5 m. A non-uniform finite element mesh 
sketched in Figure 1 is also employed. A uniform vertical grid-size of Av = 2.5 m is chosen. 
Horizontal grid-size values Ar are smaller near the well, and gradually increase toward the infinite 
boundary. At r = rw = 0-3 m, a constant flux across the pumping section of the well is specified. 
The soil is assumed to be restrained from any lateral movement; however, it is free to move 
vertically at the well boundary. The top boundary is treated as previous and free to move 
horizontally and verically. The bottom boundary is treated as impervious and is presumed to 
have no vertical movement; however, the soil is free to move horizontally. At r = R, the soil is 
assumed to be free to move both vertically and horizontally. The unsaturated hydraulic proper- 
ties of the aquifer will be considered when the pore pressure P becomes negative. The mathemat- 
ical relationships between the relative hydraulic conductivity K,, degree of saturation S, and 
suction head Y = P / p g  = 4 - z employed in the simulation may be expressed as6 

K , =  { l  + ( a I Y l ) b } - a  

s , = - +  1- -  {1+(p1YI)y}-= 0, ( ::) 
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where 0, is the residual moisture content of soil, 0, is the saturated moisture content and a, b, a, 
and y are parameters that characterize the properties of soil. The unsaturated hydraulic 

conductivity may be expressed as K .  K,. Those curves of K, versus I Y I and S ,  versus 1 'f' 1 shown 
in Figure 5(a) are utilized for the simulation. Values of those unsaturated soil parameters in 
equation (16) are 0, = 0.031, 0, = 0.2, a = 1.0, /? = 0.017, y = 2.5, a = 0.066 and b = The 
change in body force is taken into consideration when the moisture content changes in the 
dewatering zone. The system of equations, which are in terms of P, u, and uz, 

8~0.03 1 a= 1 .OOO - 1 .O 

o = O M 6  y=2.500 
e,-o.zoo p-0.017 . 
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Figure 5. (a) Relationships between the relative hydraulic conductivity K,, degree of saturation S,, and suction head I + 1; 
spatial distribution of (b) the hydraulic head 4, (c) horizontal displacement u,, and (d) vertical displacement u, after 

continuous pumping from an unconfined aquifer for 4.08 h 
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becomes non-linear when aquifers are in an unsaturated condition. The Picard iterative 
method” is utilized to solve this non-linear system. At each time step, the iterations are 
terminated when all the absolute incremental values of the pressure head and displacements are 
smaller than m. 

Results of simulations after continuous pumping for 4.08 h are demonstrated in Figure 5. The 
predicted values of hydraulic head 4, horizontal displacement u, and vertical displacement u, 
versus horizontal distance are shown in those figures by indicating the different position in 
vertical co-ordinate and chosen horizontal boundary range R. The magnitudes of horizontal 
displacement are found to vary along the vertical positions. The maximum one occurs at the top 
surface in magnitude of 0.253 cm when R = 1000-3 m is chosen. The maximum magnitude of the 
vertical displacement is predicted to occur at the top surface of the well in magnitude of 0.600 cm 
when R = 1000.3 m. 

The prediction results are also demonstrated by dashed lines in Figure 5 for R = 100.3 m. Both 
the horizontal and vertical displacements can be seen here to be significantly overestimated, 
although the pressure decline deviates slightly from the estimations when choosing R = 1000.3 m. 
This apparently indicates again that choosing inappropriate horizontal boundary values will 
affect the estimated values of displacements, as mentioned in the previous studies. It is interesting 
to note that similar to the phenomena shown in Figure 5(b) when R = 100-3 m, the magnitude of 
horizontal displacement in Safai and Pinder6 is found to increase with the distance r from the 
well. Such a problem is also found in their simulations of pumping from a confined a q ~ i f e r . ~  Our 
simulation results indicate that horizontal displacements increase after the start of pumping and 
tend to decrease beyond a distance of 50 m from the well after continuous pumping for 4.08 h 
when R = 1000.3 m. 

Horizontal boundary range values larger than 1000.3 m were also chosen for simulations. The 
results, not shown here, were in very close agreement with the one when R = 1000.3 m as shown 
in Figure 5. It is worth noting that the values chosen for R in the simulations of Safai and Pinder 
might be not large enough. 

BOUNDARY EFFECT PROBLEM 

Previous studies in model verification and prediction have shown that the simulation results 
yielded by the proposed finite element model are apparently affected by the choice of boundary 
range values for aquifers with infinite domain. Appropriate boundary range values should be 
chosen based on the maximum duration of simulation, the aquifer properties and the location 
where the estimation of displacements is required. Methods of boundary elements and infinite 
elements have been proposed recently to deal with the problems in unbounded domains. 
Methods coupling finite elements with boundary elements” or infinite elementsz3- 24 appear to 
be well suited to modelling physical systems with infinite space. The analysis of boundary 
elements may be formulated based on the fundamental solutions from the governing differential 
equation or at least the differential operator. The method of boundary elements has the virtue of 
reducing the calculation domain and, consequently, needs less computing time and storage 
requirement. The boundary element approximation was employed by Liggett and L i d s  to solve 
flow problems for porous media. The analysis of infinite elements may extend finite elements to 
infinity by multiplying the basis function of finite elements with decay functions or by mapping 
a finite domain onto an infinite domain using the mapped infinite elements. This approach retains 
the same advantages of banded stiffness matrix and numerical integration procedures as the finite 
element method has. Furthermore, it may be easily implemented into finite element programs and 
saves substantial computing and time and storage space.26* ’’ It is probably the most economical 
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means of dealing with the unbounded domain from the standpoint of computation.28 This 
approach was utilized by Honjo and PokharelZ6 for seepage analysis and also employed by 
Simoni and Schrefler’’ to simulate the problems of soil consolidation due to loading. 

It is valuable to note that chosen boundary range values may be smaller when using a finite 
element method coupled with boundary elements or infinite elements. Nevertheless, the analysis 
of boundary elements may fail to solve the problems for aquifers that are partially saturated 
and/or heterogeneous in formation because the fundamental solution in the formulation is 
unavailable. The accuracy of finite element solution may be substantially improved when 
coupling with infinite elements. However, proper selection of the decay functions or mapping 
functions requires extensive experience. Those functions should be related to the physical systems 
of interest and will differ in different cases. Moreover, solution by the infinite element method may 
not represent the true behaviour in the infinite field where the aquifer properties are heterogen- 
eous.26 The effects of boundary range selection may still appear after long periods of pumping 
and simulation. 

DISPLACEMENT MECHANISM PROBLEM 

All of the previous simulation results indicated that horizontal displacement peaks at some 
distance from the pumping well and then tends to decrease beyond that distance. This phenom- 
enon may be explained by the analytical solutions for regional cases where a single well pumps 
from a confined or an unconfined aquifer. A diagram illustrating forces acting on the media in 
a radial plane is shown in Figure 6. Where a:, and are the incremental total stresses in radial 
and tangential directions, respectively. The relationship between the stresses and the fluid 
pressure, equation (3), may be then rewritten by the incremental quantities of superscript (. as 
o:j = a:; - P‘dij with i ,  j = r,  8, z in cylindrical co-ordinates. Note that r&, ozj, Eie, and Eej may 
vanish due to axisymmetry when i, j # 0. The incremental total stresses in two regional cases may 

\g+ Y 

Pumping Well 

Figure 6. Illustrated diagram for incremental total stresses acting on media in a radial plane 
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r's M -o.l-o'v " ' " " 

be derived based on the analytical solutions of drawdown and displacements.18 Those are then 
obtained in confined aquifers as 

U 
a:, = a:: - P' = a:: + pgs = - p g Q w ~ 9 ( ~ )  = - 2G'= - 2 G ~ e e  

8nT r 

au 
K ~ ' ( u )  = - 2Gf = - ~ G E  rr 

PgQw 

a:, = a;z - P' = a:: + pgs = 0 

( 17a) a& = a; - P' = a; + pgs =- 
8nT or 

and in unconfined aquifers as 

- 0 5 ' . . . .  . I . .  . . I S  --i 
lb 1's 2( 

(1 7b) 
pgQw( I - 2)~9'(~) = - 2 G 2  au = - ~ G E , ,  
8nT ar 

= a; - P' = a; + pgs = - 

a:, = a;z - P' = a;z + pgs = - ___ PgSyQw W ( u )  = - pgs,s 
4n T 

where a:, is the incremental total stress in the vertical direction; a;; = 2Geii + j s  with i = r, 8, z; 

e-"/u + l/u; 9 ' ( u )  = W(u)  + e-"/u - l/u; and W ( u )  is the well function. Equation (17a) with 
u = r2/4C,t and equation (17b) with u = r2/4t(Sy/T + l/C:)- represent the mathematical rela- 
tions of those incremental total stresses for confined and unconfined cases, respectively, where 
C, = K/pg(nPw + l / (A + G)) and C: = K/pg(n/?., + ( 1  + Sy /2 ) / (L  + G ) ) .  

By employing the data in previous regional cases, the values of incremental total stresses versus 
horizontal distance after continuous pumping for 3 yr are shown in Figure 7. Initially, the values 

$, = aur/ar; tBB = ur/r; E,,  = au,/az; E = Err + EBB + E , ~ ;  K = G/(L  + G); ~ ( u )  = w(U) - 
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Figure 7. Spatial distribution of incremental total stresses after continuous pumping for 3 yr from (a) a confined aquifer 
and (b) an unconfined aquifer 
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of a& are positive and gradually decrease along the distance r and become negative beyond 
approximately 8.6 and 1.7 km from the well, respectively, in confined and unconfined cases. 
Finally, those negative values approach zero when the horizontal distance approaches infinity. 

The media as shown in Figure 6 will be forced to move horizontally toward the pumping well 
as a result of the incremental total stress in the radial direction a:; decreasing with distance r,  i.e. 
a:, + (da:;/dr)dr < a:, as indicated in Figure 7. It may be seen from equation (17) that the 
horizontal movement of media toward the pumping well may also be caused by the positive 
incremental total stress in the tangential direction a&. Note that 6o&,/68 vanishes here due to 
axisymmetry. Contrarily, the horizontal movement of media against the pumping well may occur 
when the value of & becomes negative. Accordingly, the changes of a& from positive values to 
negative ones shown in Figure 7 may clarify that the horizontal displacement in regional cases 
have peak values at distances of approximately 8.6 and 1.7 km from the pumping well, respect- 
ively, as indicated in Figures 2 and 3. Similar phenomena for horizontal displacements are 
indicated in the analytical solution by Tarn and L u ' ~  as shown in Figure 4. It is also demon- 
strated in Figure 5(c) for cases in unsaturated media. 

It is intersting to find that the incremental total stress in the vertical direction a:, in equation 
(17) is equal to zero for the confined case and is equivalent to the change in body force in the 
dewatering zone for the unconfined case. Apparently, the value of a:, under confined conditions is 
unchanged when pumping from aquifers and has no influence on the horizontal and vertical 
displacements. On the other hand, the value of a:, in unconfined aquifers changes with the drop of 
the water table and affects the horizontal and vertical displacements. This finding indicates that 
the change in body force in unconfined aquifers should be considered. Otherwise, if the change in 
body force is neglected, the value of a:, in equation (17b) becomes zero and the second term in the 
brackets of a:, and ale in equation (17b), which includes S, and is introduced by the change in 
body force, will vanish. The resulting displacement behaviour may be the same as that of 
a confined aquifer. 

CONCLUDING REMARKS 

A multidimensional numerical model employing the Galerkin finite element method has been 
developed to simulate land displacements due to pressure decline in aquifers. The model has been 
verified by comparing its simulation results with known analytical solutions in three simplified 
cases. The simulation results of displacements due to pressure decline in unsaturated porous 
media has also been performed. The ability of the model to simulate the non-linear problems 
involving land displacement in variably unsaturated media has then been demonstrated with 
such an example. When problems with infinite domain are simulated, the values of boundary 
ranges should be chosen based upon the maximum duration of simulation, the aquifer properties, 
and the location where the estimated displacements is required. Results of numerical simulations 
indicate that the boundary ranges should be extended to where the drawdown in response to the 
pumping is rather small if aquifers with infinite domain are pumped. It has also been demon- 
strated that agreement between numerical and analytical solutions is excellent when the values of 
the boundary ranges are chosen adequately. The change in body force in the equilibrium equation 
should be considered once an unconfined aquifer has been pumped. Otherwise, the horizontal 
and vertical displacements will be, respectively, overestimated and underestimated. Displace- 
ments occurring in unconfined aquifers are induced not only by the drop of the water table but 
also by the change in body force in the dewatering zone. Also, the changes in total stresses were 
found to be an important factor that affects the land displacement behaviour when pumping 
aquifers. Simulation results showed a good agreement with the assumption that no variations in 
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the horizontal displacement would be present along the vertical direction when formulating the 
regional problem. 
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APPENDIX 1 

Coefficient matrices in Cartesian co-ordinates 
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R 1 ,  = J - VN,.K.Vzdxdydz + Nln.K.V$dT + N,qdxdydz J J 
R2. = N, f:dxdydz + Nx[a:,n, + CT:,~, + CJ:,~,]  d r  I I 

s I 
I I 

R 3 .  = N a C  dx dydz + N, [c@, + aFYny + aFZnz3 dT 

R4, = N,f,’ dx dy dz + Nl [&n, + aSyny + & n z l  d r  

Coefficient matrices in cylindrical co-ordinates 

Cl l zp  = 5 N z ( n s  + nSWBw Nprdrdz 

C12.p = I NISw[$r + N,]drdz 

) 

K 
= VNl.--.VNprdrdz I PY 

1 2Na 2Np + - L-r drdz C Z Z l p  = 5 [:(A + 2N)-r + TANp + N,A- + (A + 2N)- aN, 

1 aN1 
C Z l l p  = [ - 7 S , N p r  - NIS,Np drdz 

SNp dN, 
dr or ar r az aZ 
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C41ap = -- S,N8 r dr dz J ’2 
drdz 1 

R 1 ,  = - VN,.K.Vzrdrdz + N,n.K.V+dT + N,qrdrdz 

R2, = N,f,’rdrdz + N,r[a:,n, + a:,n,]dT 

J 1 I 
i 1 
I 1 

R3. = 0 

R4. = Nafi’ r dr dz + Nar[a:,n, + a:,n,] dT 

where x and r co-ordinates are set to be equal. 

APPENDIX I1 
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{k,} = {Rz)i  + CC2tIr=O{P)t=o 

{Ru,) = (R3)r + CC3lIr=O{P)r=O 
{Ru,) = IR4)r + CC41lr=0{P)r=o 

where [ . I f  = o  is the coefficient matrix [.I evaluated at the initial time and 8 is the time weighting 
factor. For the Crank-Nicholson scheme, 8 = 0.5, and for the backward difference scheme, 8 = 1. 
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