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This article examines an M[x]/G/1 queueing system with an unreliable server and a repair, in which the server
operates a randomised vacation policy with multiple available vacations. Upon the system being found to be
empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon
returning from a vacation, the server will be activated for service. Otherwise, if no customers are waiting for
service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation
with probability 1� p. When one or more customers arrive when the server is idle, the server immediately starts
providing service for the arrivals. It is possible that an unpredictable breakdown may occur in the server, in which
case a repair time is requested. For such a system, we derive the distributions of several important system
characteristics, such as the system size distribution at a random epoch and at a departure epoch, the system size
distribution at the busy period initiation epoch, and the distribution of the idle and busy periods. We perform a
numerical analysis for changes in the system characteristics, along with changes in specific values of the
system parameters. A cost effectiveness maximisation model is constructed to show the benefits of such a
queueing system.

Keywords: batch arrival queue; cost effectiveness; randomised vacation; supplementary variable technique;
reliability

1. Introduction

We consider an M[x]/G/1 queueing system in which an
unreliable server operates a randomised vacation
policy with multiple vacations; the term unreliable
server refers to a server which is typically subject to
unpredictable breakdowns. The randomised vacation
policy presented in this article is as follows: when the
system is empty, the server immediately takes a
vacation. If there is at least one customer found
waiting in the queue upon returning from a vacation,
the server will be activated for service. Otherwise, if no
customers are waiting for service at the end of a
vacation, the server remains idle in the system with
probability p and leaves for another vacation with
probability 1� p. In practical applications, there are
instances where the server may suffer from unpredict-
able breakdowns which interrupt service (such as
power outages or when the server actually breaks
down) during busy periods or where it must perform
secondary (vacations) tasks during idle periods.

The modelling analysis for vacation queueing
models has been undertaken previously by a number
of researchers and has successfully been used in various
applied problems, such as production/inventory

systems, communication systems and computer net-

works (Doshi 1986). A comprehensive study on vaca-
tion models can be found in Levy and Yechiali (1975)

and Takagi (1991). Past work regarding the vacation

queueing models may be divided into two parts,

depending on whether the server is reliable or
unreliable. We will first look at the work which deals

with a reliable server. Baba (1986) studied the M[x]/G/1

queueing system with multiple vacations. The first

study on vacation models with a control policy was
done by Kella (1989). Madan (2001) dealt with a

single-server queue with two-stage heterogeneous ser-

vice and deterministic server vacations. Variations and
extensions of these vacation models with control

policies have been studied by numerous authors

(Lee, Lee, Park, and Chae 1994; Lee, Lee, and Chae

1995; Ke 2001; Hur, Kim, and Kang 2003; Tadj 2003;
and Ke 2008). Lee et al. (1994, 1995) analysed batch

arrival queues with the N-policy under single and

multiple vacations. Ke (2001) examined the control

policy of an M/G/1 queueing system with server
startup and two vacation types. Hur et al. (2003)

optimised the operating cost of an M/G/1 queueing

system using the Min(N,T) policy. They derived the
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steady-state system size distribution, established a cost
function to reveal the characteristics of the cost
function and determined the optimal operating
policy. The T policy for the M/G/1 quorum queueing
system was first proposed by Tadj (2003), who
obtained the probability-generating function (PGF)
of the number of customers in the system, the expected
length of the idle period, busy period and busy cycle,
and the determination of the optimum value T. Later,
Ke (2008) examined the two thresholds of a batch
arrival M[x]/G/1 queueing system under a modified
T vacation policy with startup and closedown. The
developments and applications on the optimal control
of vacation queueing models with different consider-
ations are rich and varied (Tadj and Choudhury 2005).
Choudhury and Madan (2005) and Choudhury and
Paul (2006) investigated the behaviour of batch arrival
queues with an additional second optional service
under the N-policy where all of the arrivals demand the
first essential service, whereas only some of them
demand the second ‘optional’ service. In addition,
Takagi (1991) first proposed the concept of a variant
vacation (a generalisation of single and multiple
vacations) for the single arrival M/G/1 regular
system. Zhang and Tian (2001) treated the discrete
time Geo/G/1 system with variant vacations, wherein
the server takes a random maximum number of
vacations after serving all customers in the system.
Ke and Chu (2006) examined the variant policy for an
M[x]/G/1 queueing system using a stochastic decom-
position property. Ke (2007) recently used the supple-
mentary variable technique to study an M[x]/G/1
queueing system with balking under a variant vacation.
As for the second category, when the server is
unreliable, Wang and Ke (2002) dealt with three
parametric control policies (N, T and Min(N,T)) for
a single removable and unreliable server M/G/1
queueing system. Ke (2003a) investigated Kella’s
(1989) system by considering vacations and startup of
an unreliable server. Ke (2003b) examined the optimal
strategy policy for an unreliable server M[x]/G/1
queueing system with multiple vacations. Ke (2005)
studied a variant T policy for an unreliable server
M/G/1 queueing system. The NT policy for an
unreliable server M/G/1 queueing system with server
startup and closedown was investigated by Ke (2006a),
who derived the explicit formulae for various system
performance measures such as the expected number of
customers in the system, the expected waiting time in
the queue, the expected lengths of the idle, busy and
breakdown periods, as well as the expected length of
the busy cycle. Ke (2006b) proposed a hierarchical
vacation policy for an unreliable server M/G/1 queue-
ing system with an early startup. Ke (2007) studied two
vacation policies for an unreliable server M[x]/G/1

queueing system with startup and closedown times.
Yang, Wang, Ke, and Pearn (2008) analysed the
optimal control of a hT, pi policy of an unreliable
server M/G/1 system with second optional service and
startup. We should note that, in the above-listed
works, there are immediately available repair services
when a server breaks down. However, in many real-life
situations it may not be feasible to start the repairs
immediately due to non-availability of the server or if
the system is turned off. Choudhury and Tadj (2009)
recently investigated the steady-state behaviour of an
unreliable M/G/1 queue with an additional second
phase of optional service and delayed repair.
Choudhury, Ke, and Tadj (2009) proposed the
N-policy for an unreliable server M[x]/G/1 queueing
system with delayed repair and two phases of service.

The existing literature on queueing problems has
focused on vacation policies that depend on queue size
or time. To date, very few authors have studied
vacation queueing systems where an unreliable server
takes a sequence of randomised vacations in the idle
time and the repair is requested. This motivates us to
develop a randomised vacation policy for an M[x]/G/1
queueing system where the unreliable server operates a
randomised vacation policy when the system is empty.
Conveniently, we represent this randomised vacation
system as an M[x]/(G1,G2)/1/VAC(1) queueing
system, where G1 and G2 represent the service time
and repair time, respectively, and VAC(1) implies that
there is no limit to the number of vacations. Our study
is also motivated by some real-world problems. For
example, the proposed model can be applied to wafer
fabrication problems. Specifically, the wafer fabrica-
tion process consists of a series of operations such as
epitaxy, oxidation, diffusion, ion implantation, etching
and photolithography that build layers of circuitry on
a wafer of silicon or gallium arsenide. Depending on
the function of the product, the manufacturing process
is composed of 200–500 steps. The wafer fabrication
problem has received a lot of research attention due to
the diverse characteristics of the process, especially in
the photolithography process (Uzsoy, Lee, and
Martin-Vega 1992, 1994). The photolithography pro-
cess uses masks/reticules to transfer circuit patterns
onto a wafer, and the etching process forms tangible
circuit patterns onto the wafer chip. With the required
number of processes in the photolithography, inte-
grated circuitry products with preset functions are
developed on the wafer (Toktay and Uzsoy 1998).
From the concept of the theory of constraints (TOC)
proposed by Goldratt and Cox (1992), the perfor-
mance of a system is determined by the bottleneck
resource in that system. In the wafer fabrication
photolithography area, the stepper machine (which
can be referred to as the server) used to process a wafer
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lot is the most expensive machine in a wafer fabrication
factory and usually has the highest utilisation rate;
hence, the photolithography workstation is a critical
resource in the wafer fabrication process.
Consequently, optimised photolithography capacity
allocation is very important in the process. There are
three main methods used for investigating capacity
allocation problems: simulation-based, mathematical
and hybrid. Under the mathematical method, a math-
ematical model, such as linear programming, or
queueing theory is utilised. Notably, several important
system characteristics are derived in this article, such as
the system size distribution or busy cycle, which can be
helpful for better understanding the impact of the
machine loading balance problem.

In the photolithography process, the arrival of jobs
at the workstation can be modelled as a compound
Poisson process. The service/process time of each job
(provided by a stepper machine) is a random variable
with a general distribution. Each job enters the queue
of a prescribed machine within the workstation of the
photolithography area based on the load allocation
(Toktay and Uzsoy 1998). Whenever all jobs are
completed and no new jobs arrive, the service is
stopped and the stepper machine takes a vacation
immediately (to execute preventive maintenance). The
primary goal of preventive maintenance is to prevent
the breakdown and failure of equipment before it
actually occurs. As mentioned above, the photolithog-
raphy workstation is a critical resource in the wafer
fabrication process, so in order to ensure the perfor-
mance of the system, the machine in the photolithog-
raphy workstation should utilise idle periods to
undertake a sequence of preventive maintenance
(such as minimal repairs, overhaul, etc.) to prevent
failures. So, when the machine finishes the primary
preventive maintenance and returns to the worksta-
tion, finding that there are no jobs needed to be
processed (perhaps the jobs have been processed by the
previous workstation), the machine will either remain
idle in the workstation or leave for another vacation
(to execute another type of preventive maintenance).
Moreover, the machine may be interrupted due to
some unpredictable events. When the unpredictable
events occur, it is repaired immediately. The ser-
vice of jobs will start again when the interruption is
resolved.

The objectives of this article are as follows: first, we
develop the PGF of the number of customers present
in the system at a random epoch and at a departure
epoch; second, we derive other system characteristics
such as the system size distribution at a busy period
initiation epoch, and the busy and idle period distri-
butions; third, we deduce reliability indices such as
availability and failure frequency of the server; fourth,

the effect of parameters on the system characteristics is
studied numerically and finally, a cost effectiveness
maximisation model is developed to illustrate the
benefits from the investment.

2. The system

We consider an M[x]/G/1 system with an unreliable
server and a repair, in which the server operates a
randomised vacation policy when all customers have
been served. The detailed description of the model is
given as follows: customers arrive in batches according
to a compound Poisson process with an arrival rate �.
Let Xk denote the number of customers belonging to
the kth arrival batch, where Xk, k¼ 1, 2, 3, . . . , are with
a common distribution.

PrðXk ¼ nÞ ¼ �n, n ¼ 1, 2, 3, . . .

The service time provided by a single server is an
independent and identically distributed random vari-
able S with distribution function SðtÞ and Laplace–
Stieltjes transform (LST) S�ð�Þ. Arriving customers
who join the system form a single waiting line based on
the order of their arrival; that is, they are queued
according to the first-come, first-served (FCFS) disci-
pline. The server can serve only one customer at a time
and the service is independent of the arrival of the
customers. If the server is busy or on vacation, arrivals
in the queue must wait until the server is available.
Whenever the system becomes empty, the server
deactivates and leaves for a vacation of random
length V. If at least one customer is found waiting in
the queue upon returning from the vacation, the server
is immediately activated for service. Alternatively, if no
customers are found in the queue at this time, the
server either remains idle in the system with probability
p or leaves for another vacation with probability �p
ð¼1� pÞ. The vacation time V has distribution func-
tion VðtÞ and LST V �ð�Þ. The server is subject to
breakdowns at any time with a Poisson breakdown
rate � when it is working. As soon as the server fails, it
is sent for repair during which time the server stops
serving the arriving customers and waits for the repair
to begin. The repair time of the malfunctioning server
is an independent and identically distributed random
variable R with a general distribution function R(t) and
LST R�ð�Þ. A customer who arrives and finds the
server busy or broken down must wait in the queue
until the server is available. Although no service occurs
during the repair period of a broken server, customers
continue to arrive according to a compound Poisson
process. In the case where the server breaks down while
serving a customer, the server is sent for repair and
the customer who is currently being served waits for
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the server to return to complete the service.
Immediately after the server is fixed, it starts to serve
customers until the system is once again empty.
Notably, the various stochastic processes involved in
the system are independent of each other.

Define G as the generalised service time random
variable representing the completion of a customer
service, which consists of both the service time of a
customer and the repair time of a server. The LST of G
can be expressed as follows:

G�ð�Þ ¼

Z 1
0

X1
n¼0

e��tð�tÞn

n!
e��t R�ð�Þ½ �

ndSðtÞ

¼ S� � þ � 1� R�ð�Þð Þð Þ: ð1Þ

From (1), we obtain the first moment of G,

E ½G� ¼ �
d

d�
G�ð�Þ½ �j�¼0 ¼ E ½S � 1þ �E ½R�ð Þ, ð2Þ

where E ½S � ¼ � d
d� ½G

�ð�Þ�j�¼0 is the mean service time
and E ½R� ¼ � d

d� ½R
�ð�Þ� �¼0j is the mean repair time.

3. The analysis

We first develop the steady-state differential-difference
equations for the M[x]/(G1,G2)/1/VAC(1) queueing
system by treating the elapsed service time, the elapsed
repair time and the elapsed vacation time as supple-
mentary variables. Then we solve the system equations
and derive the PGFs of various server states at a
random epoch.

3.1. System size distribution at a random epoch

In the steady state, let us assume that SðtÞ ¼ 0, for
t � 0, Sð1Þ ¼ 1; RðtÞ ¼ 0, for t � 0, Rð1Þ ¼ 1 and
VðtÞ ¼ 0, for t � 0, Vð1Þ ¼ 1, and these distribution
functions are continuous at t ¼ 0, so that �ðtÞdt ¼
dSðtÞ
1�SðtÞ can be interpreted as the probability density
function of the remaining service time, given that the
elapsed time is x. �ðtÞdt ¼ dRðtÞ

1�RðtÞ and !ðtÞdt ¼
dVðtÞ
1�VðtÞ can

be referred to the corresponding repair and vacation
probabilities, respectively.

The following random variables we define are used
for the development of M[x]/(G1,G2)/1/VAC(1)
queueing system:

N(t) the number of customers in the system,
S�(t) the elapsed service time,
R�(t) the elapsed repair time,
V�j ðtÞ the elapsed time of the jth vacation.

We introduce the following random variable for
further development of the randomised vacation

queueing model:

DðtÞ ¼

0, if the server is idle in the system at time t

1, if the server is busy at time t

2, if the server is under repair at time t

3, if the server is on the 1st vacation at

time t

..

.

jþ 2, if the server is on the jth vacation

at time t

..

.

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

Thus, the supplementary variables S�ðtÞ, R�ðtÞ and
V�j ðtÞ are introduced in order to obtain a trivariate
Markov process fNðtÞ,DðtÞ, �ðtÞg, where �ðtÞ ¼ 0 if
DðtÞ ¼ 0, �ðtÞ ¼ S�ðtÞ if DðtÞ ¼ 1, �ðtÞ ¼ R�ðtÞ if
DðtÞ ¼ 2, and �ðtÞ ¼ V�j ðtÞ if DðtÞ ¼ jþ 2 ð j ¼ 1, 2, . . .Þ.

Furthermore, let us define the following
probabilities:

P0ðtÞ ¼ Pr NðtÞ ¼ 0, �ðtÞ ¼ 0
� �

,

Pnðx, tÞdx ¼ Pr NðtÞ ¼ n, �ðtÞ ¼ S�ðtÞ;
�

x5S�ðtÞ � xþ dx
�
, x4 0, n � 1,

Qnðx, y, tÞdx ¼ Pr NðtÞ ¼ n, �ðtÞ ¼ R�ðtÞ;
�

y5R�ðtÞ � yþ dyjS�ðtÞ ¼ x
�
,

ðx, yÞ4 0, n � 1,

�j,nðx, tÞdx ¼ Pr NðtÞ ¼ n, �ðtÞ ¼ V�ðtÞ;
�

x5V�j ðtÞ � xþ dx
o
,

x4 0, n � 0, j ¼ 1, 2, . . .

In the steady state, we can set the following limit
probabilities:

P0 ¼ lim
t!1

P0ðtÞ; PnðxÞ ¼ lim
t!1

Pnðx, tÞ;

Qnðx,yÞ ¼ lim
t!1

Qnðx,y, tÞ and �j,nðxÞ ¼ lim
t!1

�j,nðx, tÞ:

According to Cox (1955), the Kolmogorov forward
equations that govern the system under steady-state
conditions can be written as follows:

�P0 ¼ p
X1
j¼1

Z 1
0

�j,0ðxÞ!ðxÞdx, ð3Þ

d

dx
PnðxÞ þ �þ �þ �ðxÞ½ �PnðxÞ

¼ �
Xn�1
k¼1

�
k
Pn�kðxÞ þ

Z 1
0

Qnðx, yÞ�ð yÞdy,

x4 0, y4 0, n � 1, ð4Þ
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d

dy
Qnðx, yÞ þ ½�þ �ð yÞ�Qnðx, yÞ

¼ �
Xn�1
k¼1

�
k
Qn�kðx, yÞ, x4 0, y4 0, n � 1, ð5Þ

d

dx
�j,0ðxÞ þ �þ!ðxÞ½ ��j,0ðxÞ ¼ 0, x40, j¼ 1, 2, . . . ,

ð6Þ

d

dx
�j,nðxÞ þ �þ !ðxÞ½ ��j,nðxÞ

¼ �
Xn�1
k¼1

�
k
�j,n�kðxÞ, x4 0, n � 1, j ¼ 1, 2, . . .

ð7Þ

We solve the above equations by means of the

following boundary conditions at x ¼ 0.

Pnð0Þ ¼
X1
j¼1

Z 1
0

�j,nðxÞ!ðxÞdxþ

Z 1
0

Pnþ1ðxÞ�ðxÞdx

þ ��
n
P0, n � 1, ð8Þ

�1,nð0Þ ¼

Z 1
0

P1ðxÞ�ðxÞdx, n ¼ 0,

0, n � 1:

8<
: ð9Þ

�j,nð0Þ ¼
�p

Z 1
0

�j�1,nðxÞ!ðxÞdx, n¼ 0, j¼ 2, 3, . . .

0, n� 1, j¼ 2, 3, . . .

8<
:

ð10Þ

and at y ¼ 0 and fixed values of x

Qnðx, 0Þ ¼ �PnðxÞ, x4 0, n � 1, ð11Þ

and the normalisation condition

P0 þ
X1
n¼1

Z 1
0

PnðxÞdxþ

Z 1
0

Z 1
0

Qnðx, yÞdxdy

( )

þ
X1
j¼1

X1
n¼0

Z 1
0

�j,nðxÞdx

" #
¼ 1: ð12Þ

We define the PGFs for f�ng, fPnð�Þg, fQnð�Þg and

f�j,nð�Þg, as follows:

XðzÞ ¼
X1
n¼1

zn�n, jzj � 1, Pðx;zÞ ¼
X1
n¼1

znPnðxÞ, jzj � 1,

Qðx, y; zÞ ¼
X1
n¼1

znQnðx, yÞ, jzj � 1,

�j ðx; zÞ ¼
X1
n¼0

zn�j,nðxÞ, jzj � 1, j ¼ 1, 2, . . .

Now multiplying (4) by zn ðn ¼ 1, 2, 3, . . .Þ and then

adding the equations up term by term, we obtain

@Pðx; zÞ

@x
þ aðzÞ þ �ðxÞ þ �½ �Pðx; zÞ

¼

Z 1
0

�ð yÞQðx, y; zÞdy, ð13Þ

where aðzÞ ¼ �ð1� XðzÞÞ.
Similarly, proceeding in the usual manner with

(5)–(8), we have

@Qðx, y; zÞ

@y
þ aðzÞ þ �ð yÞ½ �Qðx, y; zÞ ¼ 0, ð14Þ

@�j ðx; zÞ

@x
þ aðzÞ þ !ðxÞ½ ��j ðx; zÞ ¼ 0, ð15Þ

and

Pð0; zÞ ¼
X1
j¼1

Z 1
0

�j ðx; zÞ!ðxÞdx

þ
1

z

Z 1
0

Pðx; zÞ�ðxÞdxþ �XðzÞP0

�
X1
j¼1

�j ð0; zÞ � �P0, ð16Þ

where x4 0.
Solving the partial differential Equations (13)–(15),

we obtain

Pðx; zÞ ¼ Pð0; zÞ 1� SðxÞ½ �e�AðzÞx, ð17Þ

Qðx, y; zÞ ¼ Qðx, 0; zÞ 1� Rð yÞ½ �e�aðzÞ y ð18Þ

and

�j ðx; zÞ ¼ �j ð0; zÞ 1� VðxÞ½ �e�aðzÞx, j ¼ 1, 2, . . . ,

ð19Þ

where AðzÞ ¼ aðzÞ þ � 1� R� aðzÞð Þð Þ:
Solving the differential Equation (6) yields

�j,0ðxÞ ¼ �j,0ð0Þ 1� VðxÞ½ �e��x, j ¼ 1, 2, . . . ð20Þ

Now, (20) is multiplied by !ðxÞ on both sides and

integrating with over x from 0 to 1; we then haveZ 1
0

�
j,0
ðxÞ!ðxÞdx ¼ �j,0ð0Þ	0

, ð21Þ

where 	
0
¼ V �ð�Þ. Using (21) and (10), we can recur-

sively obtain

�j,0ð0Þ ¼ ð �p	0Þ
j�1�1,0ð0Þ, j ¼ 2, 3, . . . ð22Þ
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Using (22) in (3), and after doing some algebraic
manipulation, we have

�1,0ð0Þ ¼
�P0ð1� �p	0Þ

p	0
: ð23Þ

From (22) and (23), we finally obtain

�j ð0;zÞ ¼�j,0ð0Þ ¼ ð �p	0Þ
j�1 �P0ð1� �p	0Þ

p	0
, j¼ 1,2, . . .

ð24Þ

Integrating (20) with respect to x from 0 to 1, we
obtain

�j,0 ¼ �j,0ð0Þ

Z 1
0

½1� VðxÞ�e��xdx ¼
1

�
�j,0ð0Þð1� 	0Þ:

ð25Þ

Equations (24) and (25) yield

�j,0 ¼ ð �p	0Þ
j�1P0ð1� �p	0Þð1� 	0Þ

p	0
, j¼ 1, 2, . . . ð26Þ

Note that �j,0 represents the steady-state probabil-
ity that there are no customers in the system when the
server is on the jth vacation. Let �0 be the probability
that no customers appear in the system when the server
is on vacation. We then have

�0 ¼
X1
j¼1

�j,0 ¼
P0ð1� 	0Þ

p	0
: ð27Þ

Substituting (17), (19) and (24) into (16), we get

Pð0; zÞ ¼
�P0V

� aðzÞð Þ

p	0
þ
Pð0; zÞS� AðzÞð Þ

z

þ �XðzÞP0 �
X1
j¼1

�j,0ð0Þ � �P0: ð28Þ

Solving Pð0; zÞ from (28) and using (24) yields

Pð0; zÞ ¼
�P0z

V � aðzÞð Þ�1
p	0

� 1þ XðzÞ
� �

z� S� AðzÞð Þ
: ð29Þ

It follows from (17) and (29) that

Pðx;zÞ ¼
�P0z

V� aðzÞð Þ�1
p	0

� 1þXðzÞ
� �
z�S� AðzÞð Þ

� 1�SðxÞ½ �e�AðzÞx,

ð30Þ

which leads to

PðzÞ ¼

Z 1
0

Pðx; zÞdx

¼
�P0z

V � aðzÞð Þ�1
p	0

� 1þ XðzÞ
� �

z� S� AðzÞð Þ
�

1� S� AðzÞð Þ

AðzÞ
:

ð31Þ

Inserting (18) with the boundary conditions (11),

Qðx, 0; zÞ can be expressed as

Qðx, 0; zÞ ¼ �Pðx; zÞ, ð32Þ

Inserting (17) and (32) into (18) yields

Qðx, y; zÞ ¼ �Pð0; zÞ 1� SðxÞ½ �e�AðzÞx 1� Rð yÞ½ �e�aðzÞ y:

ð33Þ

Inserting (29) into (33) we obtain

Qðx, y; zÞ ¼
��P0z

V � aðzÞð Þ�1
p	0

� 1þ XðzÞ
� �
z� S�ðAðzÞÞ

� 1� SðxÞ½ �e�AðzÞx 1� Rð yÞ½ �e�aðzÞ y, ð34Þ

Calculating the double integral
R1
0

R1
0 Wðx,

y; zÞdxdy and
R1
0

R1
0 Qðx, y; zÞdx dy we finally obtain

QðzÞ ¼
�P0z

V � aðzÞð Þ�1
p	0

� 1þ XðzÞ
� �

z� S�ðAðzÞÞ
�

1� S�ðAðzÞÞ

AðzÞ

�
� 1� R� aðzÞð Þ½ �

aðzÞ

¼ PðzÞ �
� 1� R� aðzÞð Þ½ �

aðzÞ
: ð35Þ

Using (19) and (24) results in

�j ðzÞ ¼ ð �p	0Þ
j�1P0ð1� �p	0Þ V

� aðzÞð Þ�1ð Þ

p	0 XðzÞ�1ð Þ
, j¼ 1,2,3, . . .

ð36Þ

The unknown constant P0 can be determined

by using the normalisation condition (12), which

is equivalent to P0 þ Pð1Þ þQð1Þ þWð1ÞþP1
j¼1 �j ð1Þ ¼ 1. Thus, we obtain:

P0 ¼
1� 


H

1þ �E ½V �
p	0

, ð37Þ

where 

H
¼ 
ð1þ �E ½R�Þ and 
 ¼ �E ½X �E ½S �.

Note that Equation (37) represents the steady-state

probability that the server is idle but available in the

system. Also from Equation (37), we have 

H
5 1,

which is the necessary and sufficient condition under

which steady-state solution exists.
Let �ðzÞ ¼ P0 þ PðzÞ þQðzÞ þ

P1
j¼1 �j ðzÞ be the

PGF of the system size distribution at a stationary

point of time, we then have

�ðzÞ ¼
ð1� 


H
ÞS� AðzÞð Þðz� 1Þ

z� S�ðAðzÞÞ

�
V �ðaðzÞÞ � 1ð Þ þ XðzÞ � 1ð Þ p	0
�E ½V � þ p	0ð Þ XðzÞ � 1ð Þ

: ð38Þ
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Remark 1: By setting p ¼ 1 and � ¼ 0, our model can

be simplified to the M/G/1 queueing system with single
vacation. �ðzÞ can be rewritten as

ð1� 
Þð1� zÞS� aðzÞð Þ

S� aðzÞÞ � zð Þ

� �
1� V � aðzÞð Þ þ 	

0
1� XðzÞð Þ

1� XðzÞð Þ �E ½V � þ 	
0

� 	
 !

,

which confirms the results in Section 6 of Choudhury’s
(2002) system. œ

3.2. The expected number of customers in the system
and the expected waiting time

In (38), we evaluate d
dz�ðzÞjz¼1 by using L’hopital’s rule

which leads to the expected number of customers in the
system, which Ls is given by

Ls¼ 
H
þ
�E XðX�1Þ½ �E ½G�þ �E ½X � 1þ�E ½R�ð Þð Þ

2E ½S2�

2ð1�

H
Þ

þ
� �E ½X �ð Þ

2E ½R2�E ½S �

2ð1�

H
Þ

þ
�2E ½X �E ½V2�

2 �E ½V �þp	0ð Þ
: ð39Þ

By using Little’s formula, we obtain the expected
waiting time in the queue, Wq, which is given by

Wq ¼
� E ½D� þ E ½R�ð Þ

�

þ
E XðX� 1Þ½ �E ½G � þ � E ½X � 1þ �E ½R�ð Þð Þ

2E ½S2�

2E ½X �ð1� 

H
Þ

þ
��E ½X � E ½R2�E ½S �

� 	
2ð1� 


H
Þ

þ
�E ½V2�

2 �E ½V � þ p	0ð Þ
: ð40Þ

Remark 2: Suppose that we have p ¼ 1 and � ¼ 0;
then if we set Pr(X¼ 1)¼ 1, our model can be reduced
to the ordinary M/G/1 queueing system with a single
vacation. It follows from (40) that the expected waiting
time in the system is given by

�Ws ¼
�E ½V2�

2 �E ½V � þ 	
0

� 	þ �E ½S2�

2ð1� 
Þ
,

which is in accordance with Takagi’s system (1991,
sec. 2.2, p. 126).

Remark 3: Allowing for p ¼ 0 and � ¼ 0, our model
reduces to the ordinary M[x]/G/1 queueing system with
multiple vacations. From (40), we have the expected

waiting time in the system as

�Ws ¼
�E ½V2�

2�E ½V �
þ
�E ½X �E ½S2�

2ð1� 
Þ
þ
E XðX� 1Þ½ �E ½S �

2E ½X �ð1� 
Þ
,

which agrees with those of Takagi’s system (1991), or
Ke and Chu’s system (2006) for multiple vacations

(i.e. J ¼ 1).

3.3. Queue size distribution at a departure epoch

We derive the PGF of the steady-state distribution of
the number of units in the queue at a departure epoch
for the M[x]/(G1,G2)/1/VAC(1) queueing system.
Following the arguments by Wolff (1982), we state
that a departing customer will see l customers in the
queue just after a departure if and only if there were
ðlþ 1Þ customers in the queue just before the depar-
ture. Thus we may write

�þl ¼ K0

Z 1
0

�ðxÞPlþ1ðxÞdx, l ¼ 0, 1, . . . , ð41Þ

where �þl ¼ Pr ðA departing customer will see l
customers in the queueÞ, and K0 is the normalising
constant. The PGF of �þi is given by

�þðzÞ ¼ K0�
�P0

V� aðzÞð Þ�1
p	0

� 1þXðzÞ
� �

S� AðzÞð Þ

z�S� AðzÞð Þ
: ð42Þ

Using the normalisation condition �þð1Þ ¼ 1
results in

K0 ¼
1� 
H

�P0E ½X � 1þ
�E ½V �
p	0

� �, ð43Þ

which leads to the PGF of the departure point queue
size distribution as

�þðzÞ ¼
ð1� 
HÞ

V �ðaðzÞÞ�1
p	0

� 1þ XðzÞ
� �

S�ðAðzÞÞ

E ½X � 1þ �E ½V �
p	0

� �
z� S� AðzÞð Þð Þ

: ð44Þ

From (44), it is obvious that �þðzÞ can be
decomposed into two independent terms:

�þðzÞ ¼
1� XðzÞ

E ½X �ð1� zÞ
��ðzÞ: ð45Þ

It should be noted that the departure point queue
size distribution given by Equation (45) can be
decomposed into two independent random variables:
one (the first term) is the number of customers placed
before a tagged customer in a batch in which the
tagged customer arrives and the other (the second
term) is the stationary system size of the M[x]/(G1,G2)/
1/VAC(1) queueing system.

Remark 4: Suppose we let p ¼ 1 and � ¼ 0 in (44).
Our system can then be reduced to the M[x]/G/1 queue
with single vacation. Equation (44) can be rewritten as

�þðzÞ ¼
1� V �ðaðzÞÞ þ V �ð�Þ 1� XðzÞð Þ

E ½X � �E ½V � þ V �ð�Þð Þð1� zÞ

� �

�
ð1� 
Þð1� zÞS�ðaðzÞÞ

S�ðaðzÞÞ � z

� �
¼ �ðzÞ�þ z;M½x�=G=1

� 	
,
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where

�ðzÞ ¼
1� V �ðaðzÞÞ þ V �ð�Þð1� XðzÞÞ

E ½X �ð�E ½V � þ 	
0
Þð1� zÞ

,

and

�þðz;M½x�=G=1Þ ¼
ð1� 
Þð1� zÞS�ðaðzÞÞ

S�ðaðzÞÞ � z

is the PGF of the stationary queue size distribution of
an ordinary M[x]/G/1 queue. This is in accordance with
the stochastic decomposition property demonstrated in
Choudhury’s (2002) system.

Remark 5: If we consider the ordinary M/G/1 system
with server breakdown without vacations (i.e.
Pr(X¼ 1)¼ 1 and Pr(V¼ 0)¼ 1), Equation (44) can
be reduced to

�þðzÞ ¼
ð1� 


H
Þð1� zÞS� AðzÞð Þ

S� AðzÞð Þ � z
,

which is consistent with Choudhury and Tadj (2009)
for no optional service and no delayed repair.

3.4. System size distribution at busy period
initiation epoch

First, we define ’n ðn ¼ 1, 2, . . .Þ as the steady-state
probability such that an arbitrary (tagged) customer
finds n customers in the system at the busy initiation
epoch (or completion epoch of the idle period). This
implies that tl ðl ¼ 0, 1, 2, . . .Þ are the initiation epochs
of the busy period andNðtl Þ is the number of customers
in the system at the time instant tl; then we have

’n ¼ lim
l!1

Pr Nðtl Þ ¼ nð Þ, n ¼ 1, 2, . . .

Conditional upon the number of customers who
arrive during the first vacation, from the concept of
Poisson Arrivals See Time Average (Wolff 1982), we
have the following steady-state equation:

’n ¼ 1þ �p	0 þ �p2 	20 þ � � �
� 	Xn

k¼1

	
k
�ðkÞ�n

þ pð	0 þ �p	20 þ � � �Þ�n,

¼
X1
m¼0

ð �p	0Þ
m
Xn
k¼1

	k�
ðkÞ�
n þ p

X1
m¼0

�pm 	mþ10

 !
�n, ð46Þ

where �ðkÞ�n ¼ PrðX1 þ X2 þ � � � þ Xk ¼ nÞ is the k-fold
convolution of �n, �

ð0Þ
n is defined to be 1 and 	k ¼

Pr ðk batches arrive during a vacation timeÞ.
Now multiplying (46) by appropriate powers of z

and summing over all possible values of n, we get the
PGF of f’ngg:

’ðzÞ ¼
V �ðaðzÞÞ � 	0

1� �p	0
þ

p	0
1� �p	0

XðzÞ, ð47Þ

which leads to

E ½’� ¼
�E ½X �E ½V �

1� �p	0
þ

p	0
1� �p	0

E ½X �: ð48Þ

Equation (47) represents the PGF of the number of
customers in the system at the completion epoch of the
idle period; this is equivalent to the PGF of the system
size distribution at the busy period initiation epoch.

Remark 6: Substituting p ¼ 1 and � ¼ 0 into (47),
our system can be reduced to the ordinary M[x]/G/1
single vacation policy queue. In this case, ’ðzÞ can be
rewritten as

’ðzÞ ¼ V � aðzÞð Þ þ 	0 XðzÞ � 1½ �,

which is in accordance with Choudhury’s (2002)
system.

Remark 7: As p ¼ 0 and � ¼ 0, our system can be
simplified to the M[x]/G/1 queue and with multiple
vacations. In this case, ’ðzÞ can be rewritten as

’ðzÞ ¼
V � aðzÞð Þ � 	0

1� 	0
,

which is consistent with Ke and Chu (2006) for J ¼ 1:

3.5. Expected length of the completion period and
idle period

Let H�ð�Þ and I �ð�Þ represent the LST of the comple-
tion period (including busy period and breakdown
period) and idle period for the M[x]/(G1,G2)/1/
VAC(1) queueing system. Utilising the arguments
by Takagi (1991, sec. 2.2) and Tang (1997), H�ð�Þ and
I �ð�Þ can be expressed as

H�ð�Þ ¼
V � � 1� X H�0ð�Þ

� 	� 	
 �
� 	

0

1� �p	0

þ
p	0

1� �p	0

� �
X H�0ð�Þ
� 	

, ð49Þ

and

I�ð�Þ ¼
V�ð�Þ �V�ð�þ �Þ

1� �pV�ð�þ �Þ
þ

pV�ð�þ �Þ

1� �pV�ð�þ �Þ

� �
�

�þ �

� �
,

ð50Þ

where H�0ð�Þ ¼ G�½� þ �� �XðH�0ð�ÞÞ� is the LST of the
completion period in the ordinary M[x]/G/1 queueing
model with an unreliable server.

Now, we further define the following:

E [H] the expected length of completion
period,

E [I ] the expected length of idle period,
E [C ] the expected length of busy cycle.
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Using (49) and (50), this elicits:

E ½H � ¼
�E ½V �

1� �p	0
þ

p	0
1� �p	0

� �
E ½X �E ½G�

1� 

H

� �
, ð51Þ

E ½I � ¼
E ½V �

1� �p	0ð Þ
þ

p	0
� 1� �p	0ð Þ

, ð52Þ

and

E ½C� ¼E ½H � þE ½I � ¼
�E ½V �

1� �p	0
þ

p	0
ð1� �p	0Þ

� �
�

1

�ð1�
HÞ
:

ð53Þ

Remark 8: Letting Pr(X¼ 1)¼ 1 and Pr(V¼ 0)¼ 1,
Equation (51) can be rewritten as

E ½H � ¼
E ½S �ð1þ �E ½R�Þ

1� 
H
,

which is in accordance with Choudhury and Tadj
(2009) for no optional service and no delayed repair.

4. Reliability indices

In this section, we develop two main reliability indices
of the presented model, namely, the system availability
and failure frequency under the steady-state condi-
tions. Let us define AvðtÞ as the system availability at
time t, that is, the probability that the server is working
for a customer, being on vacation or remaining idle in
the system. The steady-state availability of the server is
given by Av ¼ limt!1 AvðtÞ.

Theorem 1: The steady-state availability of the server
is given by

Av ¼ 
þ
1� 


H

1þ �E ½V �
p	0

: ð54Þ

Proof: We first consider the following equation:

Av ¼ P0 þ

Z 1
0

Pðx, 1Þdx ¼ P0 þ lim
z!1

PðzÞ,

then using Equations (31) and (37), we get the
result (54). œ

Theorem 2: The steady-state failure frequency of the
server is given by

Mf ¼ �
: ð55Þ

Proof: Following the argument by Li, Shi, and Chao
(1997), we obtain

Mf ¼ �

Z 1
0

Pðx, 1Þdx,

then using (31), we can get the result (55). œ

5. The cost effectiveness maximisation model

In this section, we develop the cost effectiveness, which
is defined as (availability)/(the expected out of pocket
cost rate) to be an alternative cost criterion which
reflects the efficiency per dollar outlay (Park and Park
1986). This criterion is useful for the effective alloca-
tion of available funds. That is, the availability is
evaluated under a given investment (restricted money).
This criterion is helpful for management/practitioner
in practical use such that benefits are obtained from
the investment.

Let Cr be the expected cost rate per busy cycle, then

Cr ¼
Cs

E ½C�
, ð56Þ

where Cs is the out of pocket cost per cycle. The cost
effectiveness is defined as

Ce ¼
Av

Cr
, ð57Þ

which represents the effective use for a given cost
(money). This is why we maximise Equation (57).

6. Numerical illustration

The first purpose of this section is to study the effects
of various parameters on the system characteristics
such as the expected number of customers/jobs in the
system and ( �Ls) the expected length of completion
period (E [H]). An example (as the wafer fabrication
scenario mentioned in Section 1) is provided to
visualise the numerical investigation:

. The jobs arrive in batches according to a
compound Poisson process with an arrival
rate of �¼ 0.4.

. The stepper machine may be interrupted due
to some unpredictable accident with a Poisson
breakdown rate of � ¼ 0:05.

. The number of jobs (X ) belonging to each
arrival obeys the Geometric distribution with
the parameter set to 0.5 (denoted by Geoð0:5Þ).

. The probability that the machine will go on
preventative maintenance when no jobs are
queued in the system at the end of a mainte-
nance routine is 1� p ¼ 0:5.

. The service/process time of the machine in the
workstation of photolithography area follows
a 4-stage Erlang distribution (denoted by E4

with a mean E ½S � ¼ 0:5).
. The time taken to perform the preventative

maintenance for the stepper machine is dis-
tributed according to an exponential distribu-
tion (denoted by M with a mean E ½V � ¼ 1:0).
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. The repair time of the broken-down machine

in the workstation of the photolithography

area has an exponential distribution (denoted

by M with a mean E ½R� ¼ 0:5).

In our first set of numerical investigations, we use

the above parameters, and vary � from 0.0 to 1.0 and

p from 0.0 to 1.0 to investigate the effects of different

values of p and � on �Ls and E ½H �. From Figures 1

and 2, we observe that (1) �Ls and E ½H � slowly decrease

as p increases for fixed �; and (2) �Ls and E ½H � increase

as � increases for fixed p. As expected, a larger p implies

that the number of jobs (in the system) and the

completion period become smaller, due to ongoing

preventative maintenance having a lower probability.

In addition, when the breakdown rate increases, the

server is often unable to provide service for the jobs,

which leads to the expected number of jobs in the

system becoming larger and the completion period

longer.
A second numerical investigation deals with the

effects of various service time distributions and differ-

ent service rates on �Ls. The service time distributions

considered are the exponential (M ), 2-stage Erlang

(E2), and 2-stage hyper-exponential (H2) distributions.

The effects of the service time distributions and

different service rates on �Ls are shown in Table 1.

From Table 1, the comparison of �Ls for M, E2 and H2,

shows the results of service rate changes in accordance

with the selected values 1.0, 5.0 and 10.0: (i) the three

service distributions ordered by their relative magni-

tudes on �Ls produce H2 4M � E2; and (ii) the

expected number of jobs increases as 1/E [S ] decreases.

This suggests that the larger the CVservice (coefficient of

variation of the service time), the larger �Ls becomes.
For the third set of numerical investigations, we

study the effects of changing the vacation time distri-

bution and the vacation rate on �Ls, the results of which

are summarised in Table 2. The comparison of �Ls for

the three vacation time distributions M, E2, and H2

shows the results when the vacation rate changes from

the selected values 1.0, 5.0 and 10.0: (i) the three

vacation distributions by their relative magnitudes on
�Ls yield H2 4M � E2; and (ii) the expected number of

jobs increases as 1=E ½V � decreases.

0
0.2

0.4 0.6
0.8

1

0

0.5

1
1

2

3

4

5

αp

L S

Figure 1. The expected number of customers in the system
for different values of p and �.

Table 1. System characteristics for different service time
distributions and service rates.

1=E ½S � S 	M S 	 E2 S 	 H2

1.0
�Ls 9.83 8.84 26.66

5.0
�Ls 0.53 0.53 0.83

10.0
�Ls 0.32 0.31 0.43

Notes: �¼ 0.4, �¼ 0.05, X 	 Geoð0:5Þ, p¼ 0.5, V 	M with
E ½V � ¼ 1, R 	M with E ½R� ¼ 0:5.

Table 2. System characteristics for different vacation dis-
tributions and vacation rates.

1/E [V ] V 	M V 	 E2 V 	 H2

1.0
�Ls 1.75 1.48 2.57

5.0
�Ls 1.34 1.33 1.40

10.0
�Ls 1.32 1.32 1.34

Notes: �¼ 0.4, �¼ 0.05, X 	 Geoð0:5Þ, p¼ 0.5, S 	 E4 with
E ½S � ¼ 0:5, R 	M with E [R]¼ 0.5.
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Figure 2. The expected lengths of completion period for
different values of p and �.
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For the fourth set of numerical investigations, we

examine the effects of various repair time distributions

and different repair rates on �Ls. The effects of the

different repair time distributions and repair rates on
�Ls are shown in Table 3. From Table 3, the compar-

ison of �Ls for the three repair time distributions M, E2

and H2, showed the results when the repair rate

changes from the selected values 1.0, 5.0 and 10.0: (i)

the three repair distributions ordered by their relative

magnitudes on �Ls produce H2 4M � E2 and (ii) the

expected number of jobs decreases as 1=E ½R�
increases. It is interesting that the larger CVrepair

(coefficient of variation of the repair time), the larger
�Ls becomes.

For the last set of numerical investigations, we

assume that E ½R� ¼ 1, and investigate the effect of

different values of p and vacation time distributions

on �Ls and Ws. Three vacation distributions with

E ½V � ¼ 0:5 are considered. Table 4 clearly shows that
�Ls and Ws decrease as p increases for the vacation time

distributions: M, E2 and H2. This also reveals that

when p changes from selected values 0.0, 0.5 and 1.0,

the three vacation time distributions ordered by their

relative magnitudes on �Ls and Ws produce

H2 4M4E2. This implies that the larger CVvacation

(coefficient of variation of the vacation time), the

larger �Ls becomes.
Our numerical investigations indicate that (i) when

all parameters are given, the impact of the service (or

vacation) distribution on the system characteristics is

not significant for large service rate (or vacation rate)

and (ii) the vacation time distribution of the stepper

machine has a much more significant effect on the

system characteristics than p does.
The second purpose of this section is to examine the

effects of various parameters on the cost rate and cost

effectiveness discussed in the previous section. For

convenience, the settings of system’s parameters are

given as follows:

. Cs¼ 100.

. Geometric batch size with a mean E ½X � ¼ 1:0.

. Exponential service time with a mean

E ½S � ¼ 0:5.
. Exponential repair time with a mean

E ½R� ¼ 1:0.

For illustrative purposes, an exponential distribu-

tion is considered as the vacation time with a vacation

rate of 2. The results of cost rate and effectiveness are

Table 4. The expected system sizes �Ls and expected waiting
time Ws for different values of p and different vacation
distributions.

p V 	M V 	 E2 V 	 H2

0.0 �Ls 2.97 1.97 4.65
Ws 3.71 2.46 5.81

0.5 �Ls 2.56 1.82 4.31
Ws 3.20 2.28 5.39

1.0 �Ls 2.31 1.74 4.03
Ws 2.89 2.18 5.04

Notes: �¼ 0.4, �¼ 0.05, X 	 Geoð0:5Þ, S 	 E4 with
E ½S � ¼ 0:5, R 	M with E ½R� ¼ 1.

Table 3. System characteristics for different delay time
distributions and repair rates.

1/E [R] R 	M R 	 E2 R 	 H2

1.0
�Ls 1.83 1.81 2.04

5.0
�Ls 1.71 1.71 1.74

10.0
�Ls 1.70 1.70 1.71

Notes: �¼ 0.4, �¼ 0.05, X 	 Geoð0:5Þ, p¼ 0.5, S 	 E4 with
E [S]¼ 0.5, V 	M with E [V ]¼ 1.
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shown, respectively, in Figures 3–7 for the following
five cases.

Case 1: We choose � ¼ 0:05, p¼ 0.5 and vary the
values of � from 0.0 to 1.8.

Case 2: We choose �¼ 0.6, p¼ 0.5 and vary the
values of � from 0.0 to 0.05.

Case 3: We choose �¼ 0.6, � ¼ 0:05 and vary the
values of p from 0.0 to 1.0.

Case 4: We choose �¼ 0.6, � ¼ 0:05 and vary the
values of the service rate ð1=E ½S �Þ from 0.0 to 1.0.

Case 5: We choose �¼ 0.6, � ¼ 0:05 and vary the
values of the vacation rate ð1=E ½V �Þ from 0.0 to 1.0.

Figure 3(a) and (b) reveals that (i) the cost rate first
increases (
H � 0:43) and then decreases (
H 4 0:43)
with increasing �; and (ii) the cost effectiveness first
decreases (
H � 0:33), and then increases slightly

(
H 4 0:33) with increasing � from 0.0 to 1.0.

One can also observe that the cost rate has a minimum

and cost effectiveness has a maximum when 
H closes

to 0.0 or 1.0. From practice aspects, the cost rate

reaches a minimum when the zero loading (
H ! 0) or

overloading (
H � 1) of the stepper machine occurs;

this is due to the busy cycle becoming longer. In

contrast, the cost effectiveness in a busy period is large

for the zero loading or overloading. One sees from

Figures 4 and 5 that the cost rate decreases as �
increases but increases as p increases from 0.0 to 1.0.

Moreover, we also observe that the cost effectiveness

increases as � or p increases from 0.0 to 1.0. It is

interesting that for a given cost, the larger � (or p), the

larger Ce. That is, when the cost per cycle is fixed, the

stepper machine has larger cost effectiveness in a busy

cycle for a larger breakdown rate (or maintenance

probability). From Figures 6 and 7, we observe that the
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Figure 7. Cost rate and cost effectiveness for various values
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cost rate increases as 1=E ½S �, or 1=E ½V � increases; on
the other hand, the cost effectiveness decreases as
1=E ½S �, or 1=E ½V � increases. This implies that the
stepper machine has a larger cost effectiveness in a
busy cycle for smaller service rates (or vacation rates)
when the cost is restricted.

7. Conclusions

In this article, we analysed an M[x]/(G1,G2)/1/VAC(1)
queueing system, in which the unreliable server applies
a randomised vacation policy with multiple vacations
in the idle period and a repair is requested when the
server breaks down. The distributions of some impor-
tant system characteristics for such a system were
derived. A cost effectiveness maximisation model was
also developed to demonstrate the efficiency per dollar
outlay. Some extensive numerical computations were
performed to study the effects of the system parameters
on the system characteristics. This research presents
an extension of the vacation model theory and the
analysis of the model will provide a useful performance
evaluation tool for more general situations arising in
practical applications, for example, the wafer fabrica-
tion problems in manufacturing systems presented in
Section 1.
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