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Applying Output Feedback Integral Sliding Mode Controller to Uncertain 

Time-Delay Systems with Mismatched Disturbances 
 

Huan-Chan Ting, Jeang-Lin Chang, and Yon-Ping Chen 

 

Abstract: For time-delay systems with mismatched disturbances and uncertainties, this paper develops 

an integral sliding mode control algorithm using output information only to stabilize the systems. An 

integral sliding surface is comprised of output signals and an auxiliary full-order compensator. The 

proposed output feedback sliding mode controller can satisfy the reaching and sliding condition and 

maintain the system on the sliding surface from the initial moment. When two specific algebraic Ricca-

ti inequalities have solutions, our method can guarantee the stability of the closed-loop system and sa-

tisfy the property of robust disturbance attenuation. Moreover, the design parameters of controller and 

compensator can be simultaneously determined by solutions to the algebraic Riccati inequalities. Final-

ly, two numerical examples illustrate the applicability of the proposed scheme. 
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1. INTRODUCTION 

 

Time-delay phenomenon means that parts of system 

states, inputs, or outputs affect the systems after a fixed 

time or random but finite period. This phenomenon 

exists in various practical systems, such as chemical 

processes, electrical networks, nuclear reactors, 

biological systems, economic models, etc. Since time 

delays frequently induce the system instability and bad 

performance, the analysis and control of time-delay 

systems, whether state, input, or output delays, have been 

interesting topics over the past decades. Focusing on the 

state-delay systems, researchers [1-9] have presented 

many effective state feedback control methods to various 

system models. Xia and Jia [1] carried out a robust 

control method comprising of the sliding mode control 

and linear matrix inequality (LMI) technique for 

uncertain time-delay systems with matched disturbances. 

Lee et al. [6] developed a control method based on the 

receding horizon concept to stabilize the closed-loop 

system and to satisfy the H∞ norm bound from the 

disturbance to the controlled output. For a continuous 

linear state-delay system involving a class of integral 

terms, Santos and Mondié [7] proposed an iterative 

procedure to complete their state feedback controller 

design. Wang et al. [8] designed a state feedback control 

law of time-delay systems with system uncertainties and 

matched unknown nonlinear terms; they combined the 

LMI technique and adaptive parameter searching law to 

the controller design ensuring the stability of the closed-

loop system. Chen and Chen [9] presented an LMI-based 

state feedback controller and a disturbance observer to 

stabilize linear state-delay systems with uncertainties and 

matched disturbances. 

When the system states are partly obtainable, both 

state observers [10-14] and output feedback controllers 

[15-21] are feasible schemes to stabilize time-delay 

systems. In the field of state observers, Darouach [14] 

has developed an observer methodology to estimate 

states of linear time-delay systems with noises and 

mismatched disturbances. On the other hand, in the field 

of output feedback control methods, Fridman and Shaked 

[15] described explicitly a significant H∞ control method 

using the descriptor system transformation for time-delay 

systems with mismatched external disturbances and 

measurement noises. The descriptor system transform-

ation can simplify the analysis of time-delay systems and 

perform effectively the disturbance attenuation. Niu et al. 

[16] extended an observer-based sliding mode control 

using the LMI technique to regulate uncertain time-delay 

systems. Yan et al. [19] applied an effective sliding-

mode design technique using outputs only to control the 

time-delay systems with disturbances. Pai [21] proposed 

a Luenberger observer-based output feedback controller 

for a class of nonlinear uncertain state-delay systems 

with matched uncertainties and disturbances. This 

controller was comprised of integral sliding-mode 

technique and solutions to LMI, which parameters of 

switching gain are calculated by adaptation laws. 

There exists two difficulties in the design of output 

feedback sliding mode control. The first difficulty is a 

synthesis problem. Synthesizing a control law using the 

outputs only is significant since the derivative of the 
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sliding surface is always involved with the unmeasured 

system states. For resolving the synthesis problem, a 

normal strategy is to add an extra constraint on the 

controller parameters. The existence of controller 

parameters is constrained by the extra constraint 

simultaneously. The other difficulty is to solve an LMI 

which is necessary, complicated, and with large 

dimensions for determining the feedback gain stabilizing 

the closed-loop system. In this paper, an output feedback 

integral sliding mode controller combining with a full-

order compensator is proposed to improve these two 

difficulties for time-delay systems with mismatched 

disturbances and uncertainties. Since mismatched 

disturbances cannot be eliminated completely even the 

system is in the sliding mode, the robust disturbance 

attenuation technique [22-24] can reduce the effect of 

disturbances acting on a system to an acceptable level. 

H∞ robust control method for the disturbance attenuation 

is a successful strategy to minimize the gain from 

external disturbances to the controlled output over all 

frequencies. Introducing the H∞ robust control method 

into the proposed controller can guarantee the robust 

stability of the closed-loop system and accomplish the 

property of robust disturbance attenuation. Moreover, the 

solutions to two algebraic Riccati inequalities determine 

the design parameters of the integral sliding surface and 

controller. 

This paper is organized as follows. The description of 

time-delay systems and the problem formulation are 

given in next section. Section 3 is divided into three parts. 

In Subsection 3.1, the integral sliding surface is designed 

and the output feedback sliding mode control law is used 

to satisfy the reaching and sliding condition. Subsection 

3.2 designs the full-order compensator and subsection 

3.3 presents that the solutions to two algebraic Riccati 

inequalities guarantee the robust stability once the 

system is in the sliding mode. The feasibility of the 

proposed method is illustrated in Section 4 with 

numerical examples. Conclusions are given in Section 5. 

 

2. PROBLEM FORMULATION 

 

Consider a continuous-time time-delay system de-

scribed by the state-space form as 

( ) ( ( )) ( ) ( ( )) ( )

          ( ( ) ( , , )) ( ),

( ) ( ),

( ) ( ), [ ,0],

d d
t t t t t

t t t

t t

t t t

τ

φ τ

= + ∆ + + ∆ −

+ + +

=

= ∈ −

x A A x A A x

B u f x u Ed

y Cx

x

�

 (1) 

where n

∈x �  is the system state vector, l
∈y � is the 

system output vector, m
∈u � is the control input vector, 

and p
∈d �  is the mismatched disturbance vector. The 

function ( , , ) m

t ∈f x u �  represents the unknown matched 

uncertainty. The constant τ is an unknown delay time but 

bounded by a known constant τ*, where τ≤ τ
*. The vector 

( )tφ  is a continuous initial function. The real constant 

matrices A, Ad, B, E, and C are known and have appro-

priate dimensions with .l m≥  The structure uncertain-

ties ( )t∆A  and ( )
d
t∆A  satisfy ( ) ( )t t∆ = ΦA D H  and 

( ) ( ) ,
d d d d
t t∆ = ΦA D H  where D, Dd, H, and Hd are 

non-unique known constant matrices with appropriate 

dimensions. Moreover, the matrices Ф(t) and ( )
d
tΦ  are 

unknown, satisfying ( ) ( )T
t tΦ Φ ≤ I  and ( ) ( )T

d d
t tΦ Φ  

≤ I  for all t, respectively. The controlled plant (1) can 

be rewritten as 

( ) ( ( ) ) ( ) ( ( ) ( , , ))

         ( ( ) ) ( ) ( ),

( ) ( ).

d d d d

t t t t t

t t t

t t

τ

= + Φ + +

+ + Φ − +

=

x A D H x B u f x u

A D H x Ed

y Cx

�

 (2) 

Suppose that (A, B, C) is completely controllable and 

observable. Edwards and Spurgeon [25] have shown that 

there exists a stable static output feedback sliding mode 

controller if 

(C1) rank( ) rank( ) ,m= =CB B  

(C2) ( , , )A B C is minimum phase. 

In the case of time-delay systems satisfying conditions 

(C1) and (C2), Castanos and Fridman [26] mentioned the 

state-dependent integral sliding surface design for linear 

systems with mismatched disturbances to ensure the ro-

bust disturbance attenuation. Niu et al. [16] proposed the 

observer-based sliding mode controller involving a syn-

thesis condition to stabilize uncertain time-delay systems. 

Since the output is the only available signal, this paper 

presents the output-dependent integral sliding surface 

applying the full-order compensator in which the pro-

posed control algorithm can guarantee the performance 

bound of robust disturbance attenuation [22, 23] once the 

system is in the sliding mode. The control algorithm in-

volving the information of outputs and the compensator 

is designed to satisfy the reaching and sliding condition 

and to perform the controlled system entering the sliding 

mode without any synthesis condition. Before introduc-

ing main results, the following three assumptions are 

fulfilled throughout this paper. 

Assumption 1: The matched term ( , , )tf x u  and 

mismatched disturbance d(t) are norm-bounded as 

( , , ) ( , ) ( )t t tη χ≤ +f x u y u  and ( ) ,t d≤d  

where 0 1,χ≤ < ( , ),tη y  and d  are known positive 

constants, respectively. The symbol •  denotes the 2-

norm of .•  

Assumption 2: ( , , )A B C is minimum phase. 

Assumption 3: rank( ) rank( ) .m= =CB B  

 

3. INTEGRAL SLIDING MODE 

CONTROLLER DESIGN 

 

In this section, the controller using the output only is 

first designed to force system (2) in the sliding mode 

from the initial moment. Then the output feedback 

integral sliding mode controller is proposed by 

employing the full-order compensator. Once the system 

is in the sliding mode, the proposed algorithm can 

guarantee the stability of the closed-loop system and 



Huan-Chan Ting, Jeang-Lin Chang, and Yon-Ping Chen 

 

 

1058

sustain the nature of robust disturbance attenuation when 

two algebraic Riccati inequalities have solutions. 

 

3.1. Integral sliding surface and sliding mode controller 

Since Assumption 3 holds, we design the output-

dependant integral sliding surface as 

1

0
( ) ( ) ( ( ) (0)) ( ) ,

t

t t q dq−

= − − ∫s GCB G y y v  (3) 

where m l×
∈G �  is chosen such that GCB is invertible 

and m

∈v �  is designed later. Substituting system (2) 

into the derivative of s(t) with respect to time can obtain 

(

)

(

)

( )

( ) ( ( ) ) ( ) ( )

( ( ) ) ( )

( ( ) ( , , )) ( )

( ( ) ) ( ) ( )

( ( ) ) ( ) ( )

, , ( ),

d d d d

d d d d

t t t t

t t

t t t

t t t

t t t

t t

τ

τ

= + Φ +

+ + Φ −

+ + −

= + Φ +

+ + Φ − +

+ −

s G A D H x Ed

A D H x

B u f x u v

G A D H x Ed

A D H x u

f x u v

�

 (4) 

where 1( ) .−

=G GCB GC  Referring to [28], define two 

regions Ω1 and Ω2 as 

{ }

{
}

1 1

2

2

( ) | ( ( ) ) ( ) ,

( ) | ( ( ) ) ( )

         ,

d d d d

t t t

t t t

σ

τ τ

σ

Ω = + Φ ≤ ⊂ Ω

Ω = − + Φ −

≤ ⊂ Ω

x G A D H x

x G A D H x  (5) 

where σ1> 0 and σ2> 0 are known and bounded constants, 

and the region n

Ω ⊂ �  is a neighborhood of the origin. 

Consider system (2) in 
1 2

Ω ×Ω  and design the control 

input as 

( ) ( ) ( ) ( ) ( ) ,t t t t tκ= −u v s s  (6) 

where 1

1 2
( ) (1 ) ( ( , ) ( ) ).t t t dκ χ σ σ η χ µ ψ

−

= − + + + + +y v  

The remaining parameters ψ = GE  and µ are also 

positive constants. Through straightforward calculations, 

we know that 

1 2

1 2

( ) ( ) ( ) ( , )

( ) ( , ) .

t t t t d

t t d

κ χκ χ σ σ η ψ µ

χ σ σ η ψ µ

= + + + + + +

≥ + + + + +

v y

u y

 

Substituting (6) into (4) can attain the following reaching 

and sliding condition: 

(

)

(

)

( ) ( ) ( ) ( ( ) ) ( ) ( )

( ( ) ) ( )

( , , ) ( ) ( )

( ) ( ( ) ) ( ) ( )

( ( ) ) ( )

( , , ) ( )

T T

d d d d

d d d d

t t t t t t

t t

t t t

t t t t

t t

t t

τ

κ

τ

κ

= + Φ +

+ + Φ −

+ −

≤ + Φ +

+ + Φ −

+ −

s s s G A D H x GEd

G A D H x

f x u s

s G A D H x GEd

G A D H x

f x u

�

 

(

)

1 2

( ) ( ) ( , )

( ) ( ) ( )

( ( ) ( ) ) ( )

( ) ,

t t t y d

t t t

t t t

t

α β τ η ψ

χ κ

α β τ σ σ µ

µ

≤ + − + +

+ −

≤ + − − − − ×

≤ −

x x

u s

x x s

s

 

where ( ( ) )tα = + ΦG A D H  and ( ( )
d d d

tβ = + ΦG A D  

) .
d

H  Since (0) ,=s 0  the control input (6) can 

guarantee the following identities: 

( ) ( )t t= =s s 0�   0.t∀ ≥  

Therefore, the design of integral sliding surface (3) can 

shorten the transient time such that the system entered 

the sliding mode efficiently. Subsequently, this paper 

focuses on the stability analysis when the system is in the 

sliding mode. 

From (4), once the system is in the sliding mode, 

( ) ( ) ,t t= =s s 0�  the corresponding equivalent control 

[25] is given by 

( ) ( , , ) ( ( ( ) ) ( )

(( ( ) ) ( )

( ))) ( ).

eq eq

d d d d

t t t t

t t

t t

τ

+ = − + Φ

+ + Φ −

+ +

u f x u G A D H x

G A D H x

Ed v

 (7) 

Deriving the closed-loop system dynamics in the sliding 

mode from substituting (7) into system (2) can obtain 

( ) ( ( ) ) ( ) ( , , )

( ( ) ) ( ) ( )

( , , ) ( ( ) ) ( )

( ( ) ) ( )

( ) ( )

( )(( ( ) ) ( ) ( )

( ( ) ) ( )) ( )

( ( ) ) ( )

eq

d d d d

eq

d d d d

n

d d d d

t t t t

t t t

t t t

t t

t t

t t t

t t t

t t

τ

τ

τ

= + Φ +

+ + Φ − +

− − + Φ

− + Φ −

− +

= − + Φ +

+ + Φ − +

= + Φ +

x A D H x Bf x u

A D H x Bv

Bf x u BG A D H x

BG A D H x

BGEd Ed

I BG A D H x Ed

A D H x Bv

N A D H x N

�

( ) ( )

( ( ) ) ( ),d d d d

t t

t t τ

+

+ + Φ −

Ed Bv

N A D H x

 (8) 

where .

n
= −N I BG  Since ,= −NA A BGA  we have 

the following relationship: 

[ ]

[ ] .

n n

n

n

n

s s

s

 − = − + 

 
= −  

 

I NA B I A BGA B

I 0
I A B

GA I

 

Since the pair (A, B) is controllable, rank([ ])
n

s −I A B  

=n for ,s∈�  the controllability of (NA, B) can be 

guaranteed by 

( )rank [ ]

rank [ ]

n

n

n

n

s

s n

−

  
= − =  

  

I NA B

I 0
I A B

GA I

 



Applying Output Feedback Integral Sliding Mode Controller to Uncertain Time-Delay Systems with Mismatched... 

 

1059

for .s∈�  It implies that the pair (NA, B) is also con-

trollable. Referring to [22,23], the next step for the ro-

bust disturbance attenuation correlated with system (8) is 

to design v(t) such that the system is stable and satisfies 

the following inequality: 

2

0 0
( ) ( )

t t
T T Tdq dqγ+ ≤∫ ∫y y v Rv d d    0,t∀ ≥  (9) 

where 0 γ≤ < ∞  and R > 0 is a weighting matrix. Next 

subsection will utilize a full-order compensator to 

complete the design of v(t) fulfilling the robust 

disturbance attenuation. 

Remark 1: In [26], the integration term in the sliding 

manifold can be thought as a trajectory of the system in 

the absence of perturbations and in the presence of the 

nominal control, i.e., as a nominal trajectory for a given 

initial condition. In this paper, adding the integration 

term v(t) into the sliding surface (3) can compensate the 

degree of freedom to attenuate the effects of disturbances 

and uncertainties in the closed-loop system. Involving 

the integrator is also helpful to analyze the stability and 

robustness of the closed-loop system. 

Remark 2: The assumption of upper bounds for 

sufficient conditions (5) is a conventional issue for 

output feedback sliding mode controller designs. It 

causes the local reaching and sliding condition. For 

reducing the corresponding conservatism, an adaptation 

law or a filter can estimate a bound of norm of some 

unknown states to release conditions (5) and satisfy the 

global reaching and sliding condition, if the delay time τ 

is known. 

 

3.2. Full-order compensator 

Before designing the compensator, define matrices as 

( ) ( ( ) ),

,

( ) ,

l

n

l

+ +
= − + −

= +

Γ = + −

U B CB Y I CB CB

M I UC

L I CU MAU

 

where 1( ) (( ) ) ( ) ,T T+ −
=CB CB CB CB

n l×
∈Y � is an 

arbitrary matrix, and L is a gain matrix designed later. 

Notice that the product of MB is given by 

( ) ( ( ) )+ +

= +

= − + − =

MB B UCB

B B CB CB Y CB CB CB CB 0
 

and rank( ) n m= −M  from Assumption 3. Then the 

function v(t) is generated from the following full-order 

dynamic compensator: 

( ) ( ) ( ) ( ) ( ),

( ) ( ( ) ( )),

t t t

t t t

ξ ξ

ξ

= − + + Γ −

= − −

MA LC F FU y

v K Uy

�

 (10) 

where nξ ∈�  is an available vector of auxiliary states. 

Moreover, m n×

∈K �  and n n×

∈F �  are gain matrices 

decided later. According to (10) and MB = 0, the 

dynamics of error vector ξ= −e Mx  can be given by 

( )( ) ( ( ) ) ( ) ( )

( ( ) ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ( ) ) ( ) ( )

( ) ( ) ( ) ( )

( ( ) ) ( )

( ( ) ) ( )

( )

d d d d

d d d d

d d d d

t t t t

t t

t t

t t

t t t

t t t t

t t

t t

τ

ξ

ξ

τ

τ

= + Φ +

+ + Φ −

− − + − Γ −

= − − −

+ + Φ − +

− + Φ +

= Φ −

+ + Φ −

+ − +

e M A D H x Ed

A D H x

MA LC F FU y

MA LC Mx MA LC

M A D H x Fe

Fx MD Hx MEd

MD H F x

M A D H x

MA LC F e

�

( ) ( ).t t+MEd

 (11) 

On the other hand, v(t) can be rewritten as 

( ) ( ) ( ).t t t= − +v Kx Ke  (12) 

Substituting (12) into (8) can obtain the system dynamics 

in the sliding mode as 

( ) ( ( ( ) ) ) ( ) ( )

( ( ) ) ( ) ( ).
d d d d

t t t t

t t tτ

= + Φ − +

+ + Φ − +

x N A D H BK x BKe

N A D H x NEd

�

 (13) 

Combining (11) with (13), the overall closed-loop 

system is shown as below: 

( )

( )

( )

( )

( )

( )
( )

( )

( )

( )

( )

            

       .

d d d d

d d d d

t t

t t

t

t

t

t t

t t

τ

τ

   − + Φ
=  

− + Φ  

   
+   − +    

 + Φ   − 
+    

+ Φ −   

x NA BK ND H

e F MD H

xBK NE
d

eMA LC F ME

NA ND H 0 x

MA MD H 0 e

�

�

 (14) 

Moreover, to represent the term T T
+y y v Rv  in (9), we 

define the controlled output l m+
∈z �  as 

( ) ( ) ( )

      ( ) ( )

      ( ) ( ) ( ) ( ) ,

T T

v

T T T T T

v v

T T

v w

t t t

t t

t t t t

   = +   

   = − +   

 = + =  

z C 0 x 0 C v

C K C x 0 K C e

Cx C e C x e

 (15) 

where T

v v
=C C R  and

T

w
T

v vv

   
= =   −    

C C 0
C

C K C KC

. 

The auxiliary matrix C
v
 is implicit and does not appear in 

the controller, but T

v v
C C  is defined as the matrix R 

which is the weighting gain of v(t). Next subsection will 

design matrices K, L, and F, and analyze the robust 

stability of the closed-loop system (14). 

 

3.3. Robust disturbance attenuation 

Define a quadratic energy function as 

1 2

1

2

( , ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ,

T T

n

t
T

t

t
T

t

E t t t t

d

d

τ

τ

α α α

α α α

−

−

= +

+

+

∫

∫

x e x P x e P e

x Q x

e Q e

 (16) 
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where the matrices P1 > 0, P2 > 0, Q1 > 0, and Q2 > 0 are 

determined later. Then define the Hamiltonian function 

as 

2[ ] ,T T

n
H dE dtγ= − +d z z d d  (17) 

where 
n

dE dt  is the derivative of E
n
 along the trajecto-

ry of the closed-loop system (14). A sufficient condition 

satisfying the robust disturbance attenuation is that 

[ ] 0,H <d  for all 
2
[0, ),L∈ ∞d  (18) 

where L2 is a Hilbert space of matrix-valued (or scalar-

valued) function and consists of all functions d(s) such 

that 
0
trace ( ) ( )T

s s ds
∞

  < ∞ ∫ d d  is bounded. Since (18) 

holds, E
n
(x,e) is a strict radially unbounded Lyapunov 

function of the closed-loop system (14), and hence the 

robust stability can be guaranteed [22]. Notice that (18) 

is equivalent to 
2

sup [ ] 0.
L

H

∈

<

d

d  As ( ) ( ) ( ),
v

t t t= +z Cx C e  

(17) can be rewritten as 

2

1

1 2

1

2

[ ] ( )( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

2(( ( ) ) ( )) ( )

2( ( )) ( ) 2 ( ) ( )

2( ( ( ) ) ( )) ( )

2(( ( ) ) ( )) ( )

2(( ) (

T T T T

T T T T

T

T T

T

d d d d

T

H t t t t

t t t t

t t t

t t t t

t t t

t t t

t

γ

τ

= + −

− +

+ − + Φ

+ +

+ + Φ −

+ Φ −

+ − +

d x C C K RK x d d

x K RKe e K RKe

NA BK ND H x P x

BKe P x e P MEd

N A D H x P x

MD H F x P e

MA LC F e
2

2

1 1

2 2

1

)) ( )

2( ( ( ) ) ( )) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( ).

T

T

d d d d

T T

T T

T

t

t t t

t t t t

t t t t

t t

τ

τ τ

τ τ

+ + Φ −

+ − − −

+ − − −

+

P e

M A D H x P e

x Q x x Q x

e Q e e Q e

x P NEd

 

Based on the above equation, the worst case of 

2

sup [ ]
L

H

∈d

d  occurs when 

2

1 2
( ) ( ( ) ( ))T T T
t t tγ

−

= +d E N P x M P e  

and it follows that 

1

1

1

2

2

[ ] ( )( ) ( )

2 ( ) ( ) ( ) ( )

2(( ( ) ) ( )) ( )

2( ( )) ( )

2( ( ( ) ) ( )) ( )

2(( ( ) ) ( )) ( )

2(( ) ( )) ( )

2( ( ( ) )

T T T

T T T T

T

T

T

d d d d

T

T

d d d d

H t t

t t t t

t t t

t t

t t t

t t t

t t

t

τ

≤ +

− +

+ − + Φ

+

+ + Φ −

+ Φ −

+ − +

+ + Φ

d x C C K RK x

e K RKx e K RKe

NA BK ND H x P x

BKe P x

N A D H x P x

MD H F x P e

MA LC F e P e

M A D H
2

1 1

( )) ( )

( ) ( ) ( ) ( )

T

T T

t t

t t t t

τ

τ τ

−

+ − − −

x P e

x Q x x Q x

 (19) 

2 2

2

1 1

2

2 1

2

2 2

( ) ( ) ( ) ( )

+ ( ) ( )

2 ( ) ( )

( ) ( ).

T T

T T T

T T T

T T T

t t t t

t t

t t

t t

τ τ

γ

γ

γ

−

−

−

+ − − −

+

+

e Q e e Q e

x P NEE N P x

e P MEE N P x

e P MEE M P e

 

 

The following lemma is introduced to obtain the bound 

of the uncertainty variations in (19) by known quantities. 

Lemma [17]: Given real matrices D, Ф(t), and H of 

appropriate dimensions, suppose ФT(t)Ф(t) ,≤ I  for any 

positive scalar ρ, then 

1( ) ( ) .T T T T T
t t ρ ρ

−

Φ + Φ ≤ +D H H D DD H H  � 

According to the previous lemma, inequality (19) can 

be rewritten as 
 

1 1

1

2

1 1 1

2 1 1

1 1

1 3

2

2

2

[ ] ( )(( ) ( )) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( )

( )(( ) ) ( )

( )( ) ( )

( ) ( ) ( )

( )( ) (

T T

T T T

T T T T

T T T

d d

T T

T T

T

T T

H t t

t t

t t

t t

t t

t t

t t

t

γ ρ

ρ

ρ ρ

−

− −

≤ − + −

+ + +

+ +

+

+ +

+ − +

+ − +

+ +

d x NA BK P P NA BK x

x C C K RK Q x

x P N EE DD N P x

x P ND D N P x

x H H x

e MA LC F P e

e P MA LC F e

e K RK Q e

2

2 3 2

4 2 2

1

2 2

2

2 1

1

2

1

2

)

( ) ( ) ( )

( ) ( )

2 ( ) ( ) 2 ( )( ) ( )

2 ( ) ( ) ( ) ( )

2 ( ) ( )

2 ( )( ) ( )

2 ( )( ) ( )

( )((

T T T T

T T T

d d

T T T T

T T

T T T

T T

d

T T

d

T

t

t t

t t

t t t t

t t t t

t t

t t

t t

t

γ ρ

ρ

τ τ

γ

τ

τ

τ ρ

−

−

−

+ +

+

− +

− − − −

+

+ −

+ −

+ −

e P M EE DD M P e

e P MD D M P e

e K RKx e BK P x

e P Fx e Q e

e P MEE N P x

x NA P x

x MA P e

x
1

4 1

11 12

12 22

1 1

1

2

1 1

2 4 1

2

) ) ( )

( )

( )

( )

( )

( )

( )
         ,

( )( )

( )

T

d d

T

T

T T T T

d d

d

d

T

d d

t

t

t

t

t

t

t

t

t

ρ τ

τ

τ

τρ ρ

τ

−

− −

+ − −

Π Π 
  Π Π =  −
 

−    

  
  
  
  −+ −
  

− −   

H H Q x

x

e

x A N P A M P

e 0 0

P NA 0 x

P MA 0 e

xH H Q 0

e0 Q

 

where 

11 1 1

2

1 1 2 1

1 1

1 1 3

( ) ( )

( )

( ) ,

T

T T T T

d d

T T T

γ ρ ρ

ρ ρ

−

− −

Π = − + −

+ + +

+ + + + +

NA BK P P NA BK

P N EE DD D D N P

C C K RK Q H H
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22 2 2

2

2 3 4 2

2

( ) ( )

( )

,

T

T T T T

d d

T

γ ρ ρ
−

Π = − + + − +

+ + +

+ +

MA LC F P P MA LC F

P M EE DD D D M P

K RK Q

 

2

12 1 2 1 2
.

T T T T
γ
−

Π = − − +P BK K RK F P P NEE M P  

Notice that 
i

ρ  are positive constants, 1, ,4.i = �  The 

sufficient condition satisfying the robust disturbance 

attenuation, 
2

sup [ ] 0,
L

H

∈

<

d

d  is altered to fulfill the fol-

lowing matrix inequality: 

11 12 1

212 22

1 1

1 2 41 2

2

 
( ( ) )

d

T
d

TT T T T
d dd d

ρ ρ
− −

Π Π 
 

Π Π 
 − − +
 

− 

PNA 0

P MA 0

Q H H 0A N P A M P

0 Q0 0

 0.<  (20) 

Moreover, the following theorem transfers (20) into two 

algebraic Riccati inequalities using Schur decomposition 

and demonstrates the designs of K, L, and F which guar-

antee the robust disturbance attenuation. 

Theorem 1: Consider system (8) with the full-order 

compensator (10). Given Q1 > 0, Q2 > 0, and ρi > 0, 

1,2, ,4,i = �  if there exists matrices P1 > 0 and P2 > 0 

satisfying the following algebraic Riccati inequalities 

1

1 1 1 1 1

1 1 2

1 3 1 1

1 1 2 1 1

1 1 1

2 4 1 1

( ) ( )

( )

( )

(( ) ) 0,

T T T

T T T

T T T

d d d

T T T

d d d

ρ ρ γ

ρ ρ

ρ ρ

−

− − −

− − −

+ − + +

+ + +

+ + −

× + − <

NA P P NA PBR B P C C Q

H H PNEE N P

P N DD D D N P PNA

H H Q A N P

 (21) 

1

2 2 1 1

2

2 2 3 2

4 2 2 2

1 1 1

2 4 1 2

( ) ( )

( )

(( ) ) 0,

T T

T T T T

T T

d d d

T T T

d d d

λ γ ρ

ρ

ρ ρ

−

−

− − −

+ + + +

− + + +

+ −

× + − <

MA F P P MA F PBR B P

C C Q P M EE DD M P

P MD D M P P MA

H H Q A M P

 (22) 

where ρ2 > 0 and ρ4 > 0 are designed such that Q1–
1 1

2 4
( ) 0,T

d d
ρ ρ
− −

+ >H H  then robust disturbance 

attenuation (9) can be guaranteed. Furthermore, matrices 

K, L, and F are given by  

1

1

1

2

1 1 1

2 4 1 1

2

1

,

2,

(( ) )

     .

T

T

T T T

d d d d

T T

λ

ρ ρ

γ

−

−

− − −

−

=

=

= − + −

+

K R B P

L P C

F MA H H Q A N P

MEE N P

 

Proof: Since the condition 1 1

2 4 1
( ) T

d d
ρ ρ
− −

+ <H H Q  

holds, by Schur decomposition, inequality (20) is equiva-

lent to 

11 12

12 22

0,
T

 
< 

 

J J

J J

 (23) 

where 

11 1 1

2

1 1 2 1

1 1

1 1 3

1 1 1

1 2 4 1 1

( ) ( )

( )

( )

(( ) ) ,

T T

T T T T

d d

T T

T T T

d d d d

γ ρ ρ

ρ ρ

ρ ρ

−

− −

− − −

= − + − +

+ + +

+ + + +

− + −

J NA BK P P NA BK K RK

PN EE DD D D N P

C C Q H H

PNA H H Q A N P

 

2

12 1 2 1 2

1 1 1

1 2 4 1 2
(( ) ) ,

T T T T

T T T

d d d d

γ

ρ ρ

−

− − −

= − − +

− + −

J P BK K RK F P P NEE M P

P NA H H Q A M P
 

22 2 2

2

2 3 4 2

1 1 1

2 2 4 1 2

2

( ) ( )

( )

(( ) )

.

T

T T T T

d d

T T T

d d d d

T

γ ρ ρ

ρ ρ

−

− − −

= − + + − +

+ + +

− + −

+ +

J MA LC F P P MA LC F

P M EE DD D D M P

P MA H H Q A M P

K RK Q

 

Design 

1

1

1

2

,

2,

T

T
λ

−

−

=

=

K R B P

L P C

 

1 1 1

2 4 1 1

2

1

(( ) )

,

T T T

d d d d

T T

ρ ρ

γ

− − −

−

= − + −

+

F MA H H Q A N P

MEE N P
 

then substituting them into (23) can attain 

1

11 1 1 1 1 1

2

1 1 1

1 1

2 1 1 1 3

1 1 1

1 2 4 1 1

( ) ( )

( )

( )

(( ) ) ,

T T T

T T T

T T T

d d

T T T

d d d d

γ ρ

ρ ρ ρ

ρ ρ

−

−

− −

− − −

= + − + +

+ +

+ + +

− + −

J NA P P NA PBR B P C C Q

PN EE DD N P

PND D N P H H

PNA H H Q A N P

 

12
,=J 0  

1

22 2 2 1 1

2

2 3 2

4 2 2 2

1 1 1

2 2 4 1 2

( ) ( )

( )

(( ) ) .

T T

T T T T

T T

d d

T T T

d d d d

λ γ ρ

ρ

ρ ρ

−

−

− − −

= + + + +

− + +

+ +

− + −

J MA F P P MA F PBR B P

C C P M EE DD M P

P MD D M P Q

P MA H H Q A M P

 

Therefore, if there exists P1 > 0 and P2 > 0 such that 

11
0<J  and 

22
0,<J  it implies to 

2

sup [ ] 0
L

H

∈

<

d

d  and 

to guarantee the robust disturbance attenuation. The 

proof of this theorem is completed.  � 

 

Remark 3: Generally, for any γ for which a solution 

to (21) exists (which is used for the state feedback gain), 

we can find a λ large enough such that a solution to the 

inequality (22) exists. It means that a high gain 

compensator can be used to accomplish the work. 

Besides, LMI technique [1] can be used to solve the two 

inequalities (21) and (22). Finally, we summarize the 

output feedback integral sliding mode controller: 

1

0

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ( ) (0))

          ( ( ) ( )) ,

( ) ( ( ) ( )) ( ) ( ) ( ) .

t

t t t

t t

q q dq

t t t t t t

ξ ξ

ξ

ξ κ

−

= − + + Γ −

= −

+ −

= − − −

∫

MA LC F FU y

s GCB G y y

K Uy

u K Uy s s

�
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4. NUMERICAL EXAMPLES 

 

The following examples are simulated to verify the 

proposed controller design. 

Example 1: Consider a nonlinear uncertain state-delay 

system [28] within the following form 

( ) ( ) ( ( )) ( )

( , ( ), ( ( ))) ( , ( ), ( ( ))),

d
t t t t u t

f t t t t t t t t

τ

τ τ

= + − +

+ − + −

x Ax A x B

B x x d x x

�

 

( ) ( ),t t=y Cx  

where 

10 1 0

1 0 0 ,

0 1 5

− 
 =  
 − 

A

0 0 0

1 0 1 ,

0 0 0

d

 
 = − 
  

A [0=B  

1 0] ,
T

−

0 0 1
,

0 1 0

 
=  
 

C  and delay time ( ) 2 sin .t tτ = +  

The unknown matched disturbance is bounded as 

4 2

2 1
( ) ( )sin ( ( )),f y t y t tτ≤ −i  

where 
1 2

( ) [ ( ) ( )] .Tt y t y t=y  The mismatched disturb-

ance ( )d i  is set as 
1 3

( ) [ ( ) 0 ( )]Td d=d i i i  where 

1 1 1

2 1

( ) 2 ( , ( ), ( ( ))) ( )

( , ( ), ( ( ))) ( ( )),

d t t t t x t

t t t t x t t

β τ

β τ τ

= −

+ − −

x x

x x

i

 

3 1 3

2 3

( ) ( , ( ), ( ( ))) ( )

( , ( ), ( ( ))) ( ( )),

d t t t t x t

t t t t x t t

β τ

β τ τ

= −

+ − −

x x

x x

i

 

1 2 3

2

1 2 1

2 2

2 1 1 2

( ) [ ( ) ( ) ( )] ,

( ) ( ) sin ( ( )) ,

( ) ( ( )) sin ( ) ( ).

T
t x t x t x t

y t y t t

y t t y t y t

β τ

β τ

=

≤ −

≤ − +

x

i

i

 

Notice that ( , , )A B C  has an invariant zero –10 and 

rank( ) 1.=CB  For solving algebraic Riccati inequalities 

(21) and (22) of this example, select parameters as 

0.53,γ = 100,λ = 0.02,R =
1 3

2 ,=Q I  and Q2=0.002I3. 

Then solutions to (21) and (22) are 

1

0.1044 0.0048 0.0006

0.0048 0.2727 0.0401 ,

0.0006 0.0401 0.3776

− 
 = − 
 − − 

P  

2

3.8994 0.2369 1.4494

0.2369 9.8705 0.1304 .

1.4494 0.1304 3.6444

− − 
 = − − 
 − − 

P  

Hence, we construct the full-order compensator as 

9.6135 2.4036 9.8159

( ) 0 5.0809 0.3574 ( )

0.0297 3.2985 23.7214

25.4447 2.8451

0.7149 0 ( ),

39.8163 3.6560

t t

t

ξ ξ

− − 
 = − − 
 − 

 
 +  
  

y

�

 

[ ]

( ) [0.2408 13.6335 2.0045] ( )

         1.7638 13.6335 ( )

v t t

t

ξ= −

+ y
 

and design the sliding surface as 

0
( ) [1 1]( ( ) (0)) ( ) .

t

s t t v q dq= − − − ∫y y  

Moreover, in order to avoid the chattering problem, the 

term ( ) ( )s t s t  is replaced with the saturation function, 

and the new version of controller is given by 

1

1 2 1
( ) ( ) (1 ) ( ( , )

          ( ) )sat( ( ), ),

u t v t t

v t s t

χ σ σ η

χ µ ε

−

= − − + +

+ +

y
 

where 
1 2

3.75,σ σ= =
4

1 2
( , ) ( ),t y tη =y 0,χ = 1,µ =  

and sat( )i  denotes the saturation function with ε =0.002. 

In comparison with [28], the controller in [28] was de-

signed as 

2
( ) ( , ( ), ( ( )))sat( ( ), ),u t k t t t t y tτ ε= −x x  

where 

( )

( )
( ) ( )

2 2

1 2 2 1

2

2 1 1

2 2

2 1 1 2

4 2

2 2 1

( ) 10.0499 ( ) ( ( ) 5 ( ))

2 ( ) sin ( ( )) ( )

( ( )) sin ( ) ( )

( ( )) ( )sin ( ) .

k y t y t y t

y t y t t t

y t t y t y t

t t y t y t t

µ

τ µ

η τ

µ τ τ

= + + −

+ − +

+ + − +

× + − + −

y

y

i

 

The related parameters are designed as 
1 2

2,µ µ= =  

and η2=1.  

Figs. 1-5 show the comparison results using the initial 

state (0) [ 2 2 3]T= −x  in the local regions (5) and 

ξ(0)= 0. The time responses of system states are shown 

in Figs. 1 to 3. All system states underlying these two 

methods converge to zero quickly. The comparison of 

responses of sliding function in the sliding layer is 

depicted in Fig. 4. For highlighting the difference we 

only chart sliding functions in one second. In our 

proposed method, the trajectory of sliding function 

indeed starts from zero and is bounded consistently in the 

sliding layer from the initial moment. The responses of 

the control inputs are given in the last figure. We also 

depict control forces in one second for highlighting the 

difference. The control input of our proposed method is 

smaller in the transient time and without chattering 

phenomena due to the replacement of saturation function. 

In contrast, our proposed control force in the transient 

time does not cause a high-speed switching behavior 

which exceeds the capability of most manipulators. Figs. 

1-4 present that the integral sliding mode technique can 

suppress the effect of matched disturbances strongly. 

Although there exists the state-delay term and 

uncertainties in the nominal system, the system outputs 

asymptotically converge to zero. The simulation results 

demonstrate that the proposed controller design can 

guarantee the robust disturbance attenuation to outputs as 

the system in the sliding mode. 
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Fig. 1. The time responses of the state variable x1(t). 
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Fig. 2. The time responses of the state variable x2(t). 
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Fig. 3. The time responses of the state variable x3(t). 
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Fig. 4. The time responses of sliding function in the 

sliding layer. 
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Fig. 5. The time responses of control signal. 

Example 2: Consider an unstable example modified 

from the real example of chemical reactor system [6] 

within the corresponding form of system (2) with delay 

time τ =1 as 

4.93 1.01 0 0

3.20 0.3 12.8 0
,

6.40 0.347 32.5 1.04

0 0.833 11.0 3.96

− − 
 − − =
 − − −
 

−  

A  

1 0

0 1
,

0 0

0 0

 
 
 =
 
 
  

B  

1 0 0.2 0
,

0 1 0 0.1

− 
=  
 

C  [ ]1 0 1 0 ,
T

=E  

and diag(1.92,1.92,1.87, 0.724).
d
=A  Note that (A, B, 

C) has an unstable eigenvalue 0.4153, invariant zeros –

4.4463 and –33.377, and rank( ) 2.=CB  The known 

parts of uncertainties in the system are given by 

0.47 1.01 0 0

0.22 0.17 1.21 0
,

0.63 0.347 0.91 1.04

0 0 0.14 0.96

− 
 − − =
 −
 

−  

D  

0.55 0.02 0 0

0.78 0.35 0 0
,

0 0.72 0.49 0

0 0.33 0.54 0.39

− − 
 − =
 − −
 

− −  

H  

diag(0.47, 0.26, 0.85,1.53),
d
= −D  

diag( 1.11, 0.21,1.26, 0.47).
d
= − −H  

The external disturbances and unknown parts of 

uncertainties for system (2) are set as 
1 4

( ) ( ) ,t r tΦ = I  

2 4
( ) ( ) ,

d
t r tΦ = I

0.001( ) sin 2 ,t
d t e t

−

=  and 

1 2 1

1 2 2

0.12 sin 0.08 cos1.3 0.2sin
( , , ) ,

0.07 cos3 0.03 sin5 0.3cos

u t u t x

t

u t u t x

+ + 
=  + + 

f x u  

where 
1 2

[ ] ,
T

u u=u  r1(t) and r2(t) are different random 

functions with values between –1 and 1. 

For solving algebraic Riccati inequalities (21) and (22) 

of this example, select parameters as 0.53,γ = 10,λ =  

2
0.02 ,=R I

1 4
2 ,=Q I

2 4
0.002 ,=Q I

1
0.333,ρ =

2
ρ =1, 

ρ3=0.6, and ρ4=5 such that 1

1 2
(ρ−

> +Q
1

4
) .T

d d
ρ
−

H H  

Then solutions to (21) and (22) are 

1

0.3493 0.0274 0.0731 0.0453

0.0274 0.3308 0.0096 0.0028
,

0.0731 0.0096 0.1228 0.1475

0.0453 0.0028 0.1475 0.3863

− − − 
 − =
 −
 
−  

P  

2

1.8870 0.0822 0.1077 0.4531

0.0822 2.0885 0.0778 0.2438

0.1077 0.0778 4.0664 0.3196

0.4531 0.2438 0.3196 0.3283

 
 − =
 − −
 

−  

P . 
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Hence, we construct the full-order compensator as 

 

1.2852 0.0760

0.0178 0.0706
( ) ( )

6.4260 0.3802

0.1780 0.7062

5.8010 0.1534 5.4216 0.0241

0.6640 2.4837 1.0249 0.0067
+ (

5.4708 0.3417 31.8148 0.0781

7.4909 0.8308 10.0792 2.3331

t tξ

ξ

− 
 − =
 −
 
−  

− − 
 − − − − 
 − −
 

−  

y�

),t

 

 

and design the sliding surface as 

 

0

0

17.4651 1.3691
( ) ( ) (0)

1.3691 16.5404

3.6532 2.2646
          ( )

0.4786 0.1376

17.4651 1.3691
          ( ) .

1.3691 16.5404

t

t

t t

q dq

q dq

ξ

−
= − −  −


− − 

− 
−  − 

∫

∫

s y y

y

 

 

In order to avoid the chattering problem, the term 

( ) ( )t ts s  in the controller (6) is replaced with the 

saturation function [27], and the new version of the 

controller is given by 

 

( )

1

1 2

17.4651 1.3691
( ) ( ) (1 )

1.3691 16.5404

( , ) ( ) sat( ( ), )

17.4651 1.3691 3.6532 2.2646
( ),

1.3691 16.5404 0.4786 0.1376

t t

t t d t

t

χ

σ σ η χ ψ µ ε

ξ

−

− 
= − − − 

× + + + + +

− 
+  − − − 

u y

y v s  

 

where 
1 2

5,σ σ= = ( , ) 2,tη =y 0.8,χ ψ= = 1,d = µ =  

2.5,  and 0.002.ε =  Figs. 6-10 chart the simulation 

results of the new version of controller using the initial 

state (0) [2 3 4 1]T=x  and (0) .ξ = 0  The time 

responses of system outputs are shown in Fig. 6. Figs. 7 

and 8 show s(t) and ( ) ,ts  respectively. In Fig. 8, the 

controlled system can maintain in the sliding layer the 

whole time. Fig. 9 depicts that the trajectories of e(t) are 

bounded around zero and do not converge to zero 

because of the mismatched disturbance. The responses of 

control inputs u(t) are given in Fig. 10. The replacement 

of the saturation function eliminates the chattering 

phenomenon. Although there exists an unstable root, a 

state-delay term, and a mismatched disturbance in the 

nominal system, the system outputs y(t) are finally 

bounded around zero in Fig. 6. The simulation results 

demonstrate that the proposed controller design can 

guarantee the robust disturbance attenuation to outputs 

y(t) once the system is in the sliding mode. 

0 1 2 3 4 5 6 7 8
-0.5

0

0.5

1

1.5

2
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Time (s)
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Fig. 6. System outputs. 
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Fig. 7. Sliding surfaces. 
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Fig. 8. Response of ( ) .ts  
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Fig. 9. Trajectories of e(t). 
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Fig. 10. System inputs. 
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5. CONCLUSIONS 

 

This paper has presented the output feedback integral 

sliding mode controller for a class of time-delay systems 

with structure uncertainties and mismatched disturbances. 

The auxiliary full-order compensator added into the 

design of the integral sliding surface can improve the 

synthesis problem of static output feedback sliding mode 

control. This paper utilizes the disturbance rejection 

condition in H∞ theory to derive two algebraic Riccati 

inequalities comprised of parameters of the system, 

controller, and compensator. When two algebraic Riccati 

inequalities have solutions, both the stability of the 

closed-loop system and the condition of robust 

disturbance attenuation can be guaranteed. Moreover, the 

designed controller can maintain that the system is 

always in the sliding mode from the initial moment. 

Finally, the simulation results of the real chemical 

reactor example demonstrated the feasibility of the 

propose control scheme. 
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