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Abstract – The effect of the electromagnetic environment on the dynamics of quasi-particles,
Cooper pairs and phase particles in one-dimensional arrays of small Josephson junctions is
investigated experimentally and theoretically. It is found that the environment enhances the phase
ordering and thus suppresses quasi-particle tunneling at high temperature and localization of
Cooper pairs at low temperature. The dynamics is studied in the context of phase-charge duality,
and the experimental results are quantitatively analyzed in both charge-ordered and phase-ordered
regimes. Based on these analyses, a low-temperature phase diagram as well as a finite-temperature
crossover phase diagram are constructed and compared to the experimental diagrams.

Copyright c© EPLA, 2011

The competition between phase-order and charge-order
in superconducting systems containing small grains has
been a long-standing yet fascinating subject of inter-
est [1–6]. Strong inter-grain Josephson coupling locks the
phase difference, and the system is in the phase-order
regime. Conversely, strong Coulomb interaction suppresses
inter-grain charge tunneling, and the system is in the
charge-order regime. Upon cooling from high tempera-
ture, the competition results in a continuous evolution
from superconducting to quasi-reentrant [7] and to insulat-
ing regimes provided that the strength of the Josephson
coupling is comparable to that of the Coulomb interac-
tion. However, the Josephson coupling and the Coulomb
interaction are affected by the presence of external para-
meters such as quasi-particles [8] and electromagnetic
environment [3]. Recent theoretical [9–12] and experi-
mental [13–15] advances revealed the important role of
the electromagnetic environment on the fluctuations of

(a)E-mail: wucs@cc.ncue.edu.tw

phase and charge particles. In the phase-order regime,
the electromagnetic environment can be considered to
produce dissipation to the phase fluctuations and to
support global superconductivity [16], which can eventu-
ally lead to dissipative-phase transition [17]. In the charge-
order regime, it provides electromagnetic energy needed
for virtual tunneling in the Coulomb blockade regime and
promotes charge transport [18]. A system consisting of
lithographically made small Josephson junctions [19,20]
provides a paradigmatic model for studying this competi-
tion because here the charging energy can be designed
precisely while the Josephson coupling energy can be
controlled independently. The one-dimensional Josephson
junction array (1D JJA) is an ideal system in which
each junction is virtually decoupled from the measure-
ment leads. The superconductor-insulator (SI) transition
in 1D arrays of small Josephson junctions was previously
explored [21] where the transition is controlled by tuning
the Josephson coupling strength. Here, in addition to that,
we show that the SI transition can also be tuned by
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changing the impedance of the electromagnetic environ-
ment. This is of particular interest as it provides a direct
test of the theory of dissipative-phase transition [17].
Using the 1D JJA as an example, in this work we study

the effects of a two-dimensional electron gas (2DEG)
environment [22,23] on the quasi-reentrant behavior,
which reflects directly the dynamics of quasi-particles,
phase particles and Cooper pairs. Experimentally, the
Josephson coupling strength is varied by an applied
magnetic field while the environment strength, which is
inversely proportional to the impedance of the under-
neath 2DEG sheet, is controlled by a pair of side-gates.
Being able to tune both the Josephson coupling and
the environment strength independently, we mapped
out a low-temperature quantum phase diagram [24] in
which the region for the quasi-reentrant behavior is
identified. The quasi-reentrant behavior is characterized
by two resistance turnover temperatures which divide
the temperature dependence into three distinct regimes:
from low temperature, they are charge-order regime,
phase-order regime and quasi-particle dominating regime.
Lowering the environment impedance will decrease the
upturn temperature and increase the downturn temper-
ature, suggesting enhancement of phase ordering. This,
in turn, brings about the suppression of quasi-particle
tunneling at high temperature and Cooper-pair blockade
at low temperature. By modeling the environment as
an ensemble of harmonic oscillators, the two turnover
temperatures are calculated as a function of environ-
ment and Josephson coupling strengths. Performing the
calculations in both charge and phase presentations
yields consistent results. Based on these calculations,
the low-temperature phase diagram is extended to finite
temperatures. This diagram agrees quantitatively with
the diagram extracted from the experiment.
1D arrays comprising 100 aluminum SQUIDs (see

inset of panel (A2) in fig. 1) are made on the top of
a GaAs/AlGaAs hetero-structure, about 100 nm above
the 2DEG sheet. Each SQUID consists of two parallel
Josephson junctions with a junction area of 80× 180 nm2,
corresponding to a sum junction capacitance C of about
1.5 fF [25] and a charging energy ECP ≡ 4e2/2C of about
212µeV. The arrays are fabricated by standard e-beam
lithography and tilted-angle evaporation techniques
as addressed in the previous works [19,21]. While the
two arrays (denoted as A and B) present here have
the same junction area, the junction resistances are
different because of the difference in the tunnel barrier
thickness. The Josephson coupling energy EJ0 can be
determined by using the Ambegoakar-Baratov relation-
ship, EJ0 ≡ (∆/2)(RQ/RN ). Here, RQ ≡ h/4e2 ≈ 6.45 kΩ
is the quantum resistance, RN (6.75 kΩ for A and 7.7 kΩ
for B) is the measured normal state resistance of each
SQUID (i.e. two parallel junctions) and ∆= 200µeV
is the superconducting energy gap. The normal state
resistance can be controlled by the oxidation time of
the bottom Al electrode before evaporation of the top
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Fig. 1: (Color online) Measured I-Vb characteristics of two
arrays A and B. Panels (A1) and (B1) show the effects of
suppression EJ (from top traces) by the magnetic field when
α was tuned to 70, whereas panels (A2) and (B2) illustrate
the influence of decreasing α (from top traces) by the gate
field when the EJ/ECP ratio was tuned to 0.26 and 0.29,
respectively. The inset in panel (A2) is an optical microscope
image of the measurement circuit. The inset in panel (B2)
shows the quasi-reentrant behavior measured for array B with
EJ/ECP = 0.29 and α= 5.

Al electrode. Accordingly, EJ0 of the SQUIDs in arrays
A and B is 96.3µeV and 83.8µeV, respectively. The
2DEG sheet possesses a carrier concentration of about
5× 1011/cm2, yielding a sheet resistance R� of about
80Ω at 80mK. The 1D arrays are placed at the center of
a pair of side-gate electrodes which confines the under-
neath 2DEG sheet into a long strip. The capacitance
C 0 between each superconducting island and 2DEG is
estimated to be ∼ 0.47 fF. The 2DEG structure is similar
to that in ref. [23] except that in this work the backgate
is replaced by a pair of metal side gates. The two ends of
the strip are connected to Au pads via Ohmic contacts for
measuring the 2DEG resistance. Through these Ohmic
contacts, the zero-bias resistance of the 2DEG strip could
be measured using a separated AC lock-in circuit. The
gap between the two side-gates is about 5µm whereas
the width of the 1D SQUID arrays is 1µm. The electrons
in the strip were depleted by application of a negative
voltage on the side-gates, causing an exponential increase
in the 2DEG sheet resistance. The arrays were placed in
a compartment in a dilution refrigerator equipped with
a superconducting magnet, and the electric characteriza-
tion was performed by using a symmetrical source-meter
circuit to minimize any possible pick-up of common
mode noises. The zero-bias resistance of the arrays
was extracted from the current-voltage (I -Vb) traces
taken at varying magnetic fields, side-gate voltages, and
temperatures. A perpendicularly applied magnetic field B
threading the SQUIDs with loop area A could reduce the
Josephson coupling energy to EJ =EJ0 cos(πB×A/Φ0);
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here Φ0 ≡ h/2e is the flux quantum. The magnetic field
corresponding to a flux quantum in the loop is about
42.5Gs. The side-gate field has no measurable effect on
the arrays themselves with similar EJ0 and ECP values;
this was confirmed separately on other 1D arrays made
on bulk silicon chips. For a quantitative analysis, the
strength of the environment is defined by a dimensionless
conductance, α≡RQ/R2DEG.
Figure 1 illustrates the similarity between the effects

of changing EJ and α on the I-Vb characteristics at low
temperatures: decreasing EJ and α tends to suppress the
critical current and to enhance the Coulomb blockade of
Cooper-pair tunneling. However, it is noticed that the
influence of α is prominent when the device EJ/ECP
value is tuned to be between 0.2 and 0.3 where both
phase and charge fluctuations are significant. The small
difference in the switching currents shown in panel (B1) is
an indication of the uniformity of the junction parameters
in the 1D arrays. The inset in fig. 2(a) shows a low-
temperature phase diagram for array A with borders
determined by the trend of R0(T ) at T = Tmin (Tmin ≈
100mK in the experiment). The phase diagram is largely
divided into superconducting region I (dR0/dT | T=Tmin >
0) and insulating regions II and III (dR0/dT | T=Tmin < 0).
However, here we are interested in region II in which
the R0(T ) characteristics exhibit a downturn at Th and
then an upturn at Tl upon cooling. As shown in the
inset in panel (B2) of fig. 1, array B also exhibits a
similar behavior. The upturning between Tl and Tmin
is a characteristic known as quasi-reentrant behavior,
as shown in fig. 2(a). Figure 2(b) displays the I -Vb as
well as the differential conductance (Gd ≡ dI/dVb) vs. Vb
curves at Th, Tl and Tmin. We note a clear evolution
from governing Josephson tunneling at Th to onset of
Coulomb blockade of Cooper-pair tunneling at Tl and then
to strong localization of Cooper pairs at Tmin. Figure 2(a)
also shows the R0(T ) at different α. As α is increased,
R0 at all temperatures decreases; this is attributed to
the suppression of phase fluctuations (in the phase-order
regime) as well as enhanced higher-order tunneling (in the
charge-order regime). Moreover, we find that Th increases
and Tl decreases with increasing α.
For a quantitative analysis of the quasi-reentrant behav-

ior, Th and Tl are calculated theoretically. The Lagrangian
of the system comprises items for an 1D JJA, a 2DEG
sheet and the interaction between them and is given
by [17,26]

Ltotal = LJJA+L2DEG+Linteraction =

1

2

∑
ij

Qi

[(
Ĉ−1
)
ij
+

(
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4e2
3π

32∆Rt,ij

)
ij

]
Qj

+
∑
〈i,j〉
EJ [1− cos (ϕi−ϕj)]+ 1

2

∑
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(mnẋ
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Fig. 2: (Color online) (a) Quasi-reentrant R0(T ) traces at
increasing α values for array A with EJ/ECP = 0.23. The
arrows denote three temperature points, Th, Tl and Tmin, and
the dashed curves mark α-dependences of Th (blue) and Tl
(orange). The error bars are large for low resistance values
and small for high resistance values; shown in the plot are
the maximum and minimum error bars. The corresponding α
values are indicated in the inset in accordance with the color of
the R0(T ) traces. The experimental data are presented as dots
in the R0(T ) traces and as crosses in the inset. (b) Differential
conductance as a function of bias voltage at T = Th (blue), Tl
(orange) and Tmin (green). The inset shows I-Vb curves at the
corresponding temperatures.

On the right-hand side, the first term describes the array
charging energy for Cooper pairs including the renormal-
ization correction to the Cooper-pair Coulomb interaction
due to the presence of quasi-particles. The capacitance
matrix [18] includes the junction capacitance and the
capacitance to the 2DEG strip for diagonal elements and
the junction capacitance for off-diagonal elements. In this
way, the long-range Coulomb interaction enters automat-
ically. The second term describes the Josephson coupling
genergy [26]. The 2DEG environment is represented by an
ensemble of harmonic oscillators with resonant (Matsub-
ara) frequencies ωn = 2πnkBT [17]. In the last term, λin
describes the coupling strength between superconducting
island i and environment oscillator n. For simplicity, we
model the 2DEG sheet as an Ohmic environment [27] by
applying a constraint [26,28],

∑
n

πλ2in
2mn

δ (ω−ωn) =R−12DEG. (2)
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This model is applicable for frequencies below the junction
plasma frequency, which is about 300GHz (or 14K in
temperature).
In the charge presentation, the EJ (i.e. the 2nd) term

is treated as a perturbation to the charge states and
the environment (the 3rd and 4th) terms are taken into
account by the P(E ) theory [18]. The tunneling rates for
Cooper pairs (CPs) and quasi-particles (QPs) are given
by the Fermi-Golden rule approximation [18]:

γCP =
π

2�
E2J P̃ (δ Ech,CP ), (3a)

γQP =
1

e2Rt

∫ ∞
−∞
dE

∫ ∞
−∞
dE′N (E)N(E′)f(E)[1−f(E′)]

×P (δEch,QP +E′−E); (3b)

here P̃ (E) is the probability function describing
the exchange of energy E between environment and
Cooper-pairs tunneling. For quasi-particles, this prob-
ability function is denoted as P(E ). N(E) =Θ (|E| −
∆) |E|/√E2−∆2 is the BCS density of states with a
superconducting gap ∆ and f(E) is the Fermi-Dirac
distribution. δEch,CP and δEch,QP are the energy changes
associated with the tunneling of the Cooper pairs and
quasi-particles, respectively. Although γCP and γQP
are the tunneling rates for a single junction in the 1D
array, the charge statuses of all islands in the array
enter via the arguments δEch,CP and δEch,QP . In this
way, the net tunneling rate Γ for a junction is affected
by the tunneling in the rest of the junctions and a
correlation in the tunneling events is automatically
established. Based on these two equations, the net
tunneling rates at varying α and T can be calculated
using the Monte Carlo technique and the result for
�ΓCP −

←
ΓCP , �ΓQP −

←
ΓQP are displayed in figs. 3(a) and

(b), respectively. Details of the calculation technique are

given in ref. [29]. �ΓCP −
←
ΓCP and �ΓQP −

←
ΓQP represent

the net tunneling rates for right-moving Cooper pairs
and quasi-particles, which can be converted to current by
simply multiplying the corresponding Coulomb charges.
In panel (a), the temperatures corresponding to the

maximum �ΓCP −
←
ΓCP are marked by vertical arrows and

are identified as Tl. Below Tl, �ΓCP −
←
ΓCP decreases due

to the Coulomb blockade of the Cooper-pair tunneling.

Above Tl, �ΓCP −
←
ΓCP is suppressed due to the thermal

fluctuations of the island superconducting phase which
follows a coth(1/T )-dependence [18] as addressed in the
P(E ) theory. It is noted that the reentrant behavior exists
even in the absence of quasi-particle tunneling (see the
black dotted curve). The introduction of quasi-particle
tunneling would affect the Cooper-pair tunneling in
two ways (cf. the blue solid curve): Firstly, it would
reduce the Cooper-pair tunneling rate because CP and
QP tunneling are two competing processes as far as the
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Fig. 3: (Color online) Tunneling rates and zero-bias resistance
calculated based on eqs. (3a) and (3b). Temperature depen-
dence of a right-moving Cooper pair tunneling rate (a) and
quasi-particle tunneling rate (b) calculated for a 20-junction
array with the same junction parameter as array A. The blue
and red curves are for α= 5 and α= 0.7, respectively. The black
dotted curve in (a) is obtained by setting γQP = 0 and α= 5.
Three downward arrows in (a) mark the Tl values correspond-
ing to the maximum Cooper-pair tunneling rate. The two verti-
cal dashed lines in (b) corresponding to a sharp increase in the
quasi-particle tunneling rate identify the Th values. (c) Calcu-
lated R0(T ) curves for different α. The two dashed lines mark
the Tl and Th values. To compare with the quasi-reentrant
behavior shown in fig. 2(a), the EJ/ECP value is set to 0.23.

charging effect is concerned. Secondly, it gives rise to
an additional dissipation to the phase fluctuations [30]
and decreases Tl. On the other hand, since α represents
dissipation to the phase fluctuations, reducing α would
raise Tl, as indicated by the red arrow. Regarding the
downturn dependence at high temperature, Th can be
identified as the temperature at which a sharp increase
in the quasi-particle tunneling rate appears, as shown
in fig. 3(b). Above Th, thermally assisted tunneling of
quasi-particles gains importance and the transport is
described by a simple activation behavior. The effect of
the environment on Th can be understood through the
Cooper-pair tunneling rate by comparing the blue and red
curves in fig. 3(a). Fast Cooper-pair tunneling, as in the
case of large α, would suppress quasi-particle tunneling
and raise the Th value. Based on these calculations, the
array resistance at varying temperatures for different α
is obtained and displayed in fig. 3(c), which exhibits a
good agreement with the measurement results shown in
fig. 2(a).
In the phase presentation, the Lagrangian is analyzed in

the context of phase localization in the Josephson poten-
tial well [31]. Similar to the Ginzburg-Landau mean-field
theory for 2D and 3D junction arrays [32], the 1D JJAs
are identified to be in the insulating phase when the phase
correlation vanishes: 〈EJ cosϕij〉= 0. The presence of the
environment (i.e. α �= 0) introduces an effective reduction
to ECP by a factor of

√
1+αECP /2πωn. For T → 0, as

47004-p4
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Fig. 4: (Color online) (a) Theoretical and (b) experimental
crossover phase diagrams. The border surfaces are presented
by different colors: blue for Tl, red for Th and green for Tm.
The border surfaces divide the diagram into 4 regions: super-
conducting (S), insulating (I), resistive (R) and conductive
(C). Insets in (a) are schematic curves illustrating typical I-Vb
characteristics in S, I and R/C regions. The projection of the
intercept between Tl and Th border surfaces onto the (EJ/ECP ,
α)-plane is identical to the blue dashed border shown in the
inset of fig. 2(a).

α increases, the effective EJ/ECP value is increased and
can be brought across a critical value (EJ/ECP )

∗. This
gives rise to an insulator-to-superconductor transition,
as illustrated by the red border in the low-temperature
phase diagram shown in the inset of fig. 2(a). This is in
quantitative agreement with the predication [28] that for
T → 0 the border follows the relations (EJ/ECP )∗α= 2
for α	 1 and (EJ/ECP )∗ = 0.5 for α
 1. In the T → 0
plane of the diagram, the SI phase transition is driven
by changing EJ (along the EJ/ECP direction) and by
changing the dissipation (along the α direction). For T > 0,
it is found that 〈EJ cosϕij〉= 0 has a double root for
(EJ/ECP , α) located in a region which coincides with the
quasi-reentrant region II defined in the low-temperature
phase diagram. The two roots are identified as Th and Tl.
When plotted as a function of (EJ/ECP , α), Th and Tl
form a curled border surface, as displayed in fig. 4(a).
This surface indicates the crossover between different

regions: a high-temperature resistive region, an inter-
mediate superconducting region and a low-temperature
insulating region. For a comparison, fig. 4(b) shows an
experimental crossover phase diagram. This diagram can
also be understood in charge presentation: For T > Th,
the increased quasi-particle tunneling suppresses the phase
correlation and the array is pushed toward the resistive
region. For T < Tl, Cooper pairs are more localized, result-
ing in strong fluctuations of phase and the array is thus
moved toward the insulating region.
Outside the quasi-reentrant region, we show an addi-

tional horizontal crossover surface (shown in green), which
is referred to as Tm. This surface separates the diagram
into a low-temperature “insulating” region and a high-
temperature “conductive” region. The experimental crite-
rion for Tm is the appearance of a dip structure in the
differential conductance (Gd ≡ dI/dVb) vs. Vb curve at
the zero-bias point; see, e.g., orange and green traces in
fig. 2(b). Within our measurement resolution, Tm seems to
overlap with the Tl surface. The Tm surface as a function
of EJ/ECP and α can also be calculated in the charge
presentation addressed above and the result is shown
in fig. 4(a). The calculated Cooper-pair current shows a
power-law dependence on V b as I ∼ V ab at low bias volt-
ages, and a border given by a= 1 separates the regions
of bound charges (a> 1) and free charges (a� 1) [31],
which correspond to the insulating and conductive regions,
respectively.
In summary, the effect of electromagnetic environment

on the dynamics of charge and phase particles is studied by
analyzing the quasi-reentrant behavior. By modeling the
environment as an ensemble of harmonic oscillators, we
calculated a finite-temperature crossover phase diagram,
which agrees quantitatively with the experimental results.
This study provides a leap toward understanding the effect
of the electromagnetic environment on the phase-charge
duality.
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