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Abstract: Nonpolar (100) m-plane n-ZnO/p-GaN light-emitting-diodes 
(LEDs) were grown by chemical vapor deposition on p-GaN templates 
which was grown by metalorganic chemical vapor deposition on 
LiAlO2(100) substrate. Direct current (DC) electroluminescence (EL) 
measurements yielded a peak at 458nm. The EL peak position was 
independent of drive current and a full width of half maximum (FWHM) of 
21.8 nm was realized at 20mA. The current-voltage characteristics of these 
diodes showed a forward voltage (Vf) of 6V with a series resistance of 2.2 × 
105 Ω. 
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The current commercial technology for III-nitride-based and ZnO based LEDs employs films 
grown in the polar c direction [1,2]. However, conventional c-plane III-nitride-based and ZnO 
based LEDs suffer from the quantum-confined Stark effect [3,4] due to the existence of 
piezoelectric and spontaneous polarization [5]. The growth of nonpolar (Al, Ga, In)N and 
ZnO have attracted great interest for its potential use in the fabrication of nonpolar electronic 
and optoelectronic devices [6,7]. The built-in electric fields along the c-plane direction cause 
spatial separation of electron and holes that in turn gives rise to restricted carrier 
recombination efficiency, reduced oscillator strength and red-shifted emission [8–21]. In the 
last few years, a lot of research group have also attempted different approaches to avoid the 
built-in electric field by using non-polar QW [8–12], c-plane QW with larger optical matrix 
element [13–21], valence subband rearrangement [22–25] approaches in III-Nitride 
semiconductors. 

In this study, we report on the growth and electronic and luminescence characteristics of 
CVD-regrown nonpolar m-plane n-ZnO/m-plane p-GaN hetreojunction LEDs using 
MOCVD-grown p-GaN/LiAlO2(100) template. In particular, the effect of emission 
wavelength and linewidth in the electroluminescence (EL) emission spectra were investigated. 
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The LED structure, as shown in Fig. 1(A), was regrown by CVD on p-GaN/LiAlO2 
template fabricated by metal organic vapor phase deposition (MOCVD). GaN epilayer with p-
type dopant were grown on LAO (1 0 0) substrates in a Thomas Swan MOCVD system. This 
system used a 3 × 2” Close- Coupled Showerhead reactor. TMGa, CP2Mg, and NH3 were 
used as the sources of Ga, Mg, and N, respectively. Before growth, the substrate loaded in the 
growth chamber was initially treated at 1000°C for 120 s for further out-gassing in N2 
ambient. A two- step growth method was then applied to grow p-GaN epilayer. First, an AlN 
nucleation layer was grown on the LAO substrate at 660, 680, and 700°C in N2 ambient at 200 
mbar for 30 s. The ambient was then changed to H2 and the substrate temperature and pressure 
were changed to 1050 °C and 100 mbar, respectively, to grow a 0.6-mm-thick p-GaN layer at 
a growth rate of 1 μm/h [26]. In situ normal incidence reflectance was measured throughout 
the growth process by illuminating the samples with a tungsten lamp. Light reflected through 
a spectrometer was collected by a photodiode [27]. The regrowth of ZnO, carried out in a 
horizontal CVD reactor, Zinc shots(99.9999%) were placed in a quartz boat as the Zn source 
in the center of a quartz tube in a furnace. The quartz tube was kept at 1 atmosphere pressure 
by flowing high purity Ar (99.99%) with a flow rate of 100 sccm and heated up to 800°C. 
When the temperature was reached up to 800°C, high purity oxygen (99.9999%) was 
introduced with a flow rate of 5 sccm for the growth of the ZnO films. The thickness of n-
ZnO layer is independent of the amount of Zn shots because we do believed that the Zn were 
evaporated in a very short time when the saturated vapor pressure reached. The morphology 
of the as grown ZnO film on GaN/LiAlO2 template was examined by a JEOL JSM-7000F 
field emission scanning electron microscopy (SEM). X-ray diffraction (XRD) experiments 
were carried out on a Bede triple-axis diffractometer system, using Cu Kα1 (λ = 1.5406 Å) 
radiation. Photoluminescence (PL) was measured with a continuous wave He-Cd 325 nm laser 
with power density incident on the samples ~1 W/cm2. The carrier concentration of n-ZnO is 
5 × 1019 cm−3 and mobility of n-ZnO is 12 cm2/(V-s), which were measured by Hall 
measurement system (Bio-Rad HL5500PC). Diode mesas were defined by reactive ion 
etching (ICP). Ni and Cr/Au were used as n-ZnO and p-GaN contacts, respectively. The 
electrical and luminescence characteristics of the diode were measured by on-wafer probing 
of the devices. The I-V measurements were performed with Agilent 4156C semiconductor 
parameter analyzer. 

Figure 1(B) shows photoluminescence spectra measured at 10 K of the m-plane ZnO 
regrown on m-GaN/LiAlO2 template. A near band-edge emission at 370.5 nm with a full 
width at half maximum (FWHM) of 6.5 nm without green emission was observed. This 
implied that the crystal quality of n-ZnO/p-GaN/ LiAlO2 were good and intrinsic defects and 
oxygen vacancy inside are low. Figure 1(C) and Fig. 1(D) show the top view and cross section 
view of SEM images of n-ZnO thin film regrown on p-GaN template under 800°C by CVD 
with growth time is 1 hour, respectively. As shown in the Fig. 1(C), the n-ZnO thin film 
showed a smooth surface with roughness is around 16 nm, which is measured by AFM. As 
shown in Fig. 1(D), the thickness of n-ZnO thin film is around 100 nm, which is so thin and 
the defect density in the interface between the regrown n-ZnO and p-GaN template is high 
that the EL intensity will become lower when the driving current excess than 20 mA which 
will cause some heat in the interface. 
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Fig. 1. (A) Schematic of m-plane n-ZnO/m-plane p-GaN/LiAlO2 heterostructure LEDs, (B) 
Room-temperature PL spectra of ZnO thin film on m-plane p-type GaN, (C) Top-view FE-
SEM image of as-grown ZnO thin films on m-plane p-GaN film, (D) Cross-sectional FE-SEM 
image of as-grown ZnO films on p-GaN film. 

Figure 2 shows the XRD θ/2θ scan results of the n-ZnO/p-GaN/LiAlO2 heterojunction 
structure. The XRD result of the p-GaN/LiAlO2 template exhibits only one diffraction peak 
corresponding to the m-plane (100) p-GaN. For the n-ZnO regrown on m-plane p-GaN 
template, two distinct diffraction peaks were observed. One diffraction peak corresponds to 
(100) m-plane GaN, the other diffraction peak corresponds to the n-ZnO layer, which is (100) 
m-plane n-ZnO, respectively. Hence, the n-ZnO layer was grown with a relationship of (100) 
n-ZnO∥ (100) p-GaN. The rocking curve data of m-plane n-ZnO thin films with full width at 
half-maximum (FWHM) of 504 acrsec was also shown in Fig. 2. The rocking curve data of 
m-plane p-GaN on LAO substrate is larger than c-plane p-GaN on sapphire, so, unexpected 
defects are present. Compared to the results of the nonpolar n-ZnO film grown on r-plane 
sapphire [22], the FWHM of rocking curve was about 1000 arcsec. The nonpolar n-ZnO 
grown on (100) p-GaN had better crystal quality because the ZnO and GaN have a very low 
lattice mismatch (1.8%). 
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Fig. 2. Left: XRD pattern of as-grown nonpolar ZnO. Right: X-ray rocking curve of nonpolar 
ZnO. 

The RT I–V characteristics of the n-ZnO/p-GaN heterojunction were shown in Fig. 3. The 
forward current is approximately 12uA at 10 V, and the turn-on voltage is 6 V. The break 
down voltage of our result is much smaller than the reported value, the reason should because 
the high defect density in the interface between regrown n-ZnO and p-GaN template, which 
might cause some leakage current when applied even small reversed voltage. The turn-on 
voltage and power consumption exceed those of conventional LEDs, the relatively low 
forward and reverse threshold voltages are probably due to the existence of interface defects 
[28,29]. 

 
Fig. 3. Current-voltage characteristics of m-plane n-ZnO/m-plane p-GaN/LiAlO2 
heterojunction LED at room temperature. 

The EL spectra of the devices were studied as a function of the dc drive current, as shown 
in Fig. 4. Emission spectra were measured at drive currents ranging from 10, 20, and 40mA, 
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respectively. The devices emitted in the violet spectral range at 458 nm for all drive currents 
with minimal linewidth broadening. For our samples, the blue emission located at around 458 
nm nearly merges with the UV emission peak, showing a broad emission band. Jin et al 
suggest that the broad blue luminescence is due to radiative defects related to the interface 
traps existing at the ZnO grain boundaries [30]. The absence of blueshift in the emission peak 
with increasing drive current is in contrast to the commonly observed phenomenon of 
blueshift in c-plane LEDs [31]. We believed the absence of blueshift emission is because of 
the absence of polarization-induced electric field in the nonpolar m-ZnO thin films [32]. The 
EL intensity will become lower when the drive current is exceed than 20 mA, this should 
because the defect density in this device are so high so when the drive current increased, the 
junction temperature of this device in the interface between n-ZnO and p-GaN template will 
increase apparently [33]. 

 
Fig. 4. EL spectra of nonpolar ZnO /p-GaN heterostructure at various drive DC current at 10, 
20, and 40mA, respectively. 

In conclusion, nonpolar m-plane n-ZnO thin films were grown on m-plane p-GaN 
templates by chemical vapor deposition (CVD) without employing a catalyst. The ZnO thin 
film has a heteroepitaxial relationship of (100)n-ZnO∥(100)p-GaN. The p-GaN/n-ZnO 
heterojunction, the forward turn-on and reverse breakdown voltages was: ~6V and ~-6V, 
respectively. The relatively low forward and reverse threshold voltages are probably due to 
the existence of interface defects, as shown in the SEM image in Fig. 1(D). Under forward 
bias, the EL peak at 458 nm could be attributed to radiative recombination at defects related to 
the interface traps existing at the ZnO grain boundaries. 
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