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Abstract-1mplementing a belief propagation (BP) based
LDPC decoder requires high degrees of parallelism using many
com ponent soft-in soft-output (SISO) decoding units to perform
message passing from variable nodes to check nodes or vice
versa. An obvious complexity-reduction solution is to serialize
the decoding process, i.e., dividing a decoding iteration into
several serial sub-iterations in which a sub-iteration performs
only part of the complete parallel message-passing operation. The
group horizontal shuffled BP (GHSBP) and vertical shuffled BP
(GVSBP) algorithms respectively partition the check and variable
nodes of the code graph into groups to perform group-by-group
message-passing decoding. This paper proposes new techniques
to improve three key elements of a GHSBP decoding algorithm,
namely, the grouping method, the decoding schedule and the
log-likelihood updating formulae. The (check nodes) grouping
method and decoding schedule optimize certain design criterion.
The new normalized min-sum updating formula with a self­
adjustable correction (scaling) factor offers better nonlinear ap­
proximation. Numerical performance of new GHSBP algorithms
that include part or all three new techniques indicate that the
combination of the proposed grouping and decoding schedule
yields a faster convergence rate and our modified min-sum
algorithm gives performance superior to that of the conventional
min-sum and normalized min-sum algorithm and is very close
to that of the sum-product algorithm.

I. INTRODUCTION

The belief propagation (BP) [4] or sum-product algorithm
(SPA) is an efficient inference algorithm on trees and has
demonstrated empirical success in numerous applications that
involve loopy networks including LDPC codes and turbo
codes. The algorithm is naturally suited for parallel processing
but, except for short codes, hardware implementation of a
parallel decoder requires large memory, high computational
complexity and complicated interconnection. A more practical
alternative is to partition either the variable nodes or the
check nodes of the corresponding bipartite code graph into
several groups and perform group-wise parallel decoding in
a serial manner. Depending on which class of nodes are
partitioned, these two parallel-serial approaches are referred
to as the (group) horizontal shuffled BP (GHSBP) [10] [11]
and the (group) vertical shuffled BP (GVSBP) algorithms [6]­
[9], respectively. The group shuffled BP algorithms have the
advantage of passing more reliable messages earlier for subse­
quent iterative decoding. As a result, they reduce the number
of iterations needed to achieve a predetermined performance.

The min-sum algorithm (MSA) [12], which
replaces the nonlinear check node operation,

-In tanh [Ei -In tanh (IXil/2) /2], by a single rmrnmum
operation, was introduced to reduce the complexity of
the standard BP algorithm at the cost of a noticeable
degradation in the decoding performance. Some modifications
are therefore proposed [13]-[15]. The normalized min­
sum algorithm (NMSA) and the offset min-sum algorithm
multiplies and adds a constant correction factor in the check­
to-variable updating of MSA. They offer performance near
that of the standard BP algorithm but with lower complexity.

In this paper we introduce a partition-dependent parameter
that measures the average degree of variable nodes in a group
and present a new grouping method which has better average
connection measure, i.e., it results in an increase of the average
number of check nodes connected to a variable node in a
group. This is achieved by allowing a check node to be in
different groups whereas for the conventional grouping is a
partition such that each check node belongs to one group
only. An associated (group) decoding schedule that makes each
subiteration to use most recently updated messages as soon as
possible is proposed as well. The combination of grouping
and scheduling enables our algorithm to outperform the stan­
dard BP and GHSBP algorithm with the same computation
complexity.

Besides new grouping and scheduling methods, we also
propose a modified version of the normalized min-sum al­
gorithm (M-NMSA) that takes into account the effect of the
magnitude summation of variable-to-check messages on the
nonlinear function mentioned above. The new approximation
induces a self-adjustable correction factor in the corresponding
node updating formula.

The paper is organized as follows. In Section II, we present
some properties of the LDPC codes. In Section III, the new
grouping method and the corresponding decoding schedule are
presented. In Section IV, we describe our modified normalized
min-sum algorithm and Section V provides some simulated
numerical results about the performance of the proposed
algorithms. Finally, conclusion remarks are drawn in Section
VI.

II. SOME PROPERTIES OF THE LDPC CODES

A regular binary (N, K) (dv , de) LDPC code C is a linear
block code described by an M x N parity check matrix H
which has d; ones in each column and de ones in each
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row. H can be viewed as a bipartite graph with N variable
nodes corresponding to the encoded bits, and M check nodes
corresponding to the parity-check functions represented by the
rows of H. The code rate of C is given by R == K / N.

Let N(m) be the set of variable nodes that participate in
check node m and M(n) be the set of check nodes that are
connected to variable node n in the code graph. N(m)\n is de­
fined as the set N(m) with the variable node n excluded while
M(n)\m is the set M(n) with the check node m excluded.
We further define W(m) as the union of M(n*), where
n* E N(m), i.e., W(m) == Un*EN(m) M(n*), and similarly,
we define U (m) as the set of variable nodes that participate in
the check ~odes in W(m), i.e., U(m) == Um*EW(m) N(m*).
The following four properties on the cardinalities of W (m)
and U(m) associated with a regular binary (N, K) (dv, de)
LDPC code C are needed in our subsequent discourse.

Property 1: For any check node m ofC, IW(m)1 ::; (dv ­

1) . de+ 1.
Property 2: If m is a check node of C which is not involved

in any cycle of length 4, then IW(m)1 == (dv - 1) . de+ 1.
Using the above two properties, we further obtain
Property 3: If the girth of C is greater than 4, then

IW(m)1 == (dv - 1) . de + 1 for every check node m.
and
Property 4: For every check node m ofC, IU(m)1 ::; (dv ­

1) . (d~ - de) + de.

III. GROUPING CHECK NODES AND DECODING SCHEDULE

The conventional GHSBP and HSBP algorithms partition
the check nodes into groups of equal cardinalities according
to their natural order, that is, M checks of a codeword are
divided into G groups, and each group contains M / G == N;
checks (assuming G == 0 mod N for simplicity). Therefore,
check nodes i N; to (i + l)Ne - 1 belong to the ith group,
i == 0,1, ... ,G - 1.

Let Yi(P) be the ith group of check nodes resulted from
a given partition P, then the uniform partition of the conven­
tional GHSBP algorithm Peon yields Yi(Peon) == {ml(iNe <
m ::; (i + l)Ne -I}. Although for an uniform partition, each
check node belongs to a group only, and the variable nodes
are likely to be connected to check nodes in more than one
Yi(Peon).

When G == 1, the GHSBP algorithm becomes the standard
BP algorithm, and if G == M, the GHSBP algorithm becomes
the horizontal shuffled BP (HSBP) algorithm. The HSBP
algorithm allows the more reliable (most recently updated)
messages to be used as soon as they become available at the
cost of a larger decoding delay due to its fully sequential
nature. The GHSBP algorithm reduces the decoding delay with
a parallel-serial message-passing approach but may lead to
performance inferior to that of the HSBP algorithm.

We denote the set of variable nodes that participate the
check nodes in Yi(P) by No.. i.e., N gi == Um*Eg.(p) N(m*),
where we have omitted the dependence of the ~ets No. on
the partition P for the sake of notational brevity. The ratio
~~~I represents the average number of check nodes connected
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TABLE I

MACKAY (504,252) REGULAR CODE, dv = 3, de = 6

I Grouping Method Ec

New N; == 13 1.2187
Conventional N; == 12 1.0368
Random N; == 12 1.0438
Random N; == 13 1.0494
Random N e == 14 1.0545

TABLE II

MACKAY (816,408) REGULAR CODE, dv = 3, de = 6

I Grouping Method Ec
New N; == 13 1.1996
Conventional N; == 12 1.0021
Random N; == 12 1.02615
Random N; == 13 1.02973.
Random N e == 14 1.03209.

to a variable node in Yi(P). Hence, a larger ~~~I means,
on the average, the variable nodes in No. receivemessages
from more check nodes and more reliable message will be
forwarded from the variable nodes in Ngi . Define the average
check number (ACN) for a given partition P as

C-l

Ec(P) = ~ L Nc·dc

G i=O INgil
A. A New Grouping Method

Let Pnew be the partition1(grouping) such that

Ym(Pn ew ) == W(m), 0::; m < M - 1 (2)

Such a grouping method results in M groups with duplicate
member nodes, i.e., a check node may belong to several
groups.

Property 3 immediately tells us that, for the above grouping
method, N; == (dv - 1)de + 1 if the girth of the code is
larger than 4. Table I and Table II list the ACN's (Ec (P))
for different grouping (partition) methods where the random
grouping method refers to the method that select N; check
nodes randomly for each group. The group sizes N; of other
methods are chosen to be close to (dv - 1) . de + 1 for
fair comparison. The results indicate that the new grouping
method offer ACN's larger than other grouping methods. This
is partially due to fact that for the proposed grouping method
INgi I == IU(m) I is upper-bounded (see Property 4) while for
other methods INgi I may be larger than (dv-l)(d~ -de) +de.

B. A New Decoding Schedule

Having determined the grouping of check nodes, we now
consider the associated group-decoding schedule. In order

1Such a "partition" is not really a partition anymore, whence to avoid
abusing the term we will refer to it as grouping henceforth.
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Initialization: Let 1/J == {lll ::; l ::; M - 1}, O(l) == 0 for
o ::; l ::; M - 1. Set i == 1 and maximum number of iterations
to IM a x . For each m, n, set Zn---+m == L(n).
Step 1: For j == 1 : M - 1

that more reliable messages be used as soon as they become
available, we schedule the group message-passing order in an
iteration by 0(0) ----* 0(1) ----* ••• ----* O(M - 1), where O(j)
defined by (3) is the jth group to be processed. That is, having
selected the 0 (j - 1)th group to be processed, we assign
the one which has not been processed and whose connecting
variable nodes set U (0 (j)) has the largest intersection with
U (0 (j - 1)) as the next group to be processed. Note that
the indexes for the check node groups induced by a grouping
method say, (2), and those associated with a decoding schedule
is very likely to be different.

Assume a codeword C == [co, Cl, ... , CN-l] is BPSK-
modulated and transmitted over an AWGN channel with noise
variance (J"2. Let R == [ro, rl, ... , r N-1] be the corresponding
received sequence and L(n) be the log-likelihood ratio
(LLR) of the variable node n with the initial value given by
L(n) == ;2rn. Cm---+n denotes the check-to-variable message
from check node m to variable node nand Zn---+m denotes
the variable-to-check message from variable node n and to
check node m. z~i) represents the a posteriori LLR of the
variable node n at the ith iteration. The proposed algorithm
with the new grouping method and new scheduling of groups
is carried out as follows.

Step 2: For k == 0 : M - 1

Step 4: Hard decision and stopping criterion test:

I Vertical UpdatingMethod I Horizontal Updating

TABLE III

COMPARISON OF NORMALIZED UPDATING COMPLEXITIES

a) Create n(i) == [d6i
) , dii ) , ... , dW-l] such that d~) == 0 if

z~i) ~ 0 and d~) == 1 if z~i) < o.

b) If n(i)HT == 0 or I M a x is reached, stop decoding and
output n(i) as the decoded codeword. Otherwise, set i ==
i + 1 and go to Step 2.

C. Computation Complexity

For the proposed algorithm, each decoding iteration consists
of M subiterations and the number of check nodes in a
group depends on d., d.; and the girth of the code. The
GHSBP algorithm requires lM / NcJ < M subiterations with
no overlapping check node updating in an iteration while the
BP algorithm processes all node updatings in parallel.

Table III shows the numbers of normalized (by the degrees
of the nodes of concern) updatings per iteration for different
algorithms. When the girth of C is larger than 4, the inequali­
ties in Table III will become equalities. Although the proposed
algorithm has higher per-iteration computation complexity
because of the overlapped grouping, its convergence speed and
performance, as will be shown in Section V, are superior to
those of the other two algorithms such that it outperforms BP
and GHSBP with identical computation complexity constraint.

BP M N
GHSBP M N
New ::; M . (d v - 1) . de + M ::; N . (d v - 1) . de + N

(3)argmax(IU(O(j -1)) nU(l)I),
lE'ljJ

~ 1/J \ O(j)

O(j)

1/J

(7) used in (8) brings about some performance degradation, hence
several improved approximations were suggested. The normal-

where sgn(x) is equal to the sign of the argument x and

¢(x) == ¢-1 (x) == -In tanh(x/2) (5)

b) Vertical Step: V n E U(O(k + 1)) if k < M - 1 or
n E U(O(O)) if k == M - 1, and each m E M(n)

IV. MODIFICATIONS OF MIN-SUM ALGORITHM

(8)

(9)

{ II sgn(zn,---+m)}
n'EN(m)\n

X min IZn'---+ml.
n'EN(m)\n

Cm---+n

¢ { L ¢(Izn,---+ml)} ~ min IZn'---+ml
n'EN(m)\n n'EN(m)\n

The approximation

A. Min-Sum Algorithm and Normalized Min-Sum Algorithm

For conventional BP or SPA, the horizontal updating, (4),
(5), involves some nonlinear operations which can be sim­
plified by approximating the composite nonlinearity in the
horizontal step. The min-sum algorithm (MSA) is perhaps the
most common simplification which replaces (4) by

(4)

(6)Zn---+m == L(n) + L Cm'---+n
m'EM(n)\m

a) Horizontal Step: V m E W(O(k)), n E U(O(k))

Cm---+n {II sgn(zn,---+m)} X

n'EN(m)\n

¢ { L ¢(Izn,---+ml)}
n'EN(m)\n

Step 3: V 0::; n ::; N - 1,

z~i) == L(n) + L Cm'---+n
m'EM(n)
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Fig. I. FER performance of Mackay's (504,252) regular LDPC code using
GIISBP, and New-SPA and fully-parallel BP decodings.

ized min-sum algorithm (NMSA) scales (8) by a factor 0::

Cm-+ n = 0: { II sgn(zn,-+m)}
n'E.N(m)\n (10)

x min IZn' -+ml.
n ' E.N(m )\n

where 0 < 0: ::::; 1.

B. Modified Normalized Min-Sum Algorithm

Let X ,Y be two sets of positive numbers with the same
cardinality J and assume x* and y* are the smallest number in
X and Y, respectively. Since ¢(x) is a monotonic decreasing
function for positive x, we have

(11)
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where ,8 > 0 is an empirical scalar that ensures 0 < 0: ::::; 1.
The resulting updating formula called the modified NMSA (M­
NMSA), will have a variable correction factor that depends on
Zsum and Zmin.

It can be shown that if x* = y* and X sum < Ysum then the
following inequality holds with high probability.

¢ (~ ¢(Xi)) < ¢ (~ ¢(Yi)) < x* = y* (13)

V. SIMULATION RESULTS

A. Notations and assumptions

The frame error rate (FER) and the bit error rate (BER) per­
formance of various combinations of the grouping/scheduling
method and the message-updating formula in decoding
Mackay's (504,252) regular LOpe code [16] with de = 6,
dv = 3 are examined. The frame duration is assumed to
be equal to the codeword length, hence FER is actually the
same as the codeword error probability. To distinguish these
combinations we use the following shorthands. GHS-MSA,

B. Numerical examples

Fig. I depicts the FER and BER performance of the stan­
dard BP algorithm, the GHSBP algorithm and the algorithm
using the proposed grouping and scheduling. With the same
computation complexity, our algorithm is about 0.23 dB better
than the standard BP algorithm at the FER ~ 10- 4 and
outperforms the GHSBP algorithm with N e = 12 (G = 21)
by about 0.1 dB at the FER = 10- 5 . Our algorithm provides
better performance but requires less decoding delay because
N e = 13. Performance curves in Fig. 2 show that New-MSA
is about 0.25 dB better than MSA at the FER = 10- 4 and
outperforms GHS-MSA 0.12 dB at the FER = 10- 5 .

Fig. 3 compares the FER performance of the MSA, the
NMSA, the M-NMSA and the standard BP algorithm. [13]
suggested 0: = 0.8 for the code with dv = 3 and de = 6
as the best scaling factor and we set ,8 = 1.1 for M­
NMSA. The simulation results shows that M-NMSA gives
FER performance better than that of NMSA and MSA under
the same computation complexity constraint.

Fig. 4 compares the FER performance of the proposed
algorithm using min-sum and its variations, i.e., performances
of New-MSA, New-NMSA, New-M-NMSA and New-SPA are

New-SPA, New-MSA, New-NMSA, and New-M-NMSA stand
for the group horizontal shuffled min-sum algorithm and
the GHS algorithm using the proposed grouping/scheduling
method with SPA, MSA, NMSA and M-NMSA, respectively.
If a shorthand contains no prefix, e.g., SPA, MSA, NMSA, M­
NMSA, then the simulated decoding is assumed to be carried
out with regular fully parallel processing.

The simulation results reported in this section assume
I M a x = 50 for the proposed algorithms. In order to have a fair
performance comparison with the conventional BP algorithm
and the GHSBP algorithm under the same computation com­
plexity, we set I M a x = 650 for the standard BP algorithm, the
GHSBP algorithm, the min-sum algorithm and the GHS-MSA
because of the complexity multiplicity (dv - 1) . de + 1 = 13
shown in Table 111.

(15)

(16)

(14)

(12)

Zm in
0: =1 - ,8·--

Zsum

X sum = LXi, Ysum = LYi
i i

Zmin = min IZn'-+ml
n ' E.N(m )\ n

Zsum = L IZn' -+ml
n ' E.N(m)\n

(13) and the fact that only the minimum value Zmin is con­
sidered in (8) and (10) implies that in many cases when MSA
and NMSA cannot distinguish between two sets of variable­
to-check messages, Zsum can provide the information about
their relative magnitudes of updating messages computed at a
check node. (13) then suggests that we modify the factor 0: in
(10) as
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Fig. 4. FER performance of Mackay 's (504 ,252) regular LDPC code using
New-MSA, New-N MSA, and New-M-NMSA and New-SPA.

given. f3 = 1.1 is used in New-M-NMSA. The simulation
curves indicate that NMSA is not suitable for use in conjunc­
tion with the proposed grouping and scheduling and New-M­
NMSA outperforms New-NMSA by about 0.12 dB at the FER
~ 5 x 10- 5 .

VI. CONC L USIO N

We have presented several new techniques to improve the
performance of SPA and GHSBP algorithm for LDPC codes.
The new grouping method is based on the ACN that measures
the average degree of variable nodes within a group while
the corresponding decoding schedule tries to use the newly
updated messages as soon as they become available. Although
the proposed grouping method results in multiple nodes­
to-nodes message subiteration updates within each iteration,
numerical results show that the increased complexity is more
than compensated for by improved performance when used
in conjunction with the proposed decoding schedule. That is,
better performance is obtained with the same complexity.

To reduce the decoding complexity with minimum or no
performance degradation, we also propose a modifi cation
of the normalized min-sum algorithm with a self-adjustable
correction factor that take into account the information pro­
vided by the sum of variabl e-to-check messages. Simulated
performance indicate that the new updating formula gives the
FER performance almost as good as that of the classic SPA.
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Fig. 2. FER performance of Mackay (504 ,252) regular LDPC code using
the decod ing algorithm s: GHS-MSA, New-MSA and fully parallel MSA.

Fig. 3. FER performance of Mackay 's (504 ,252) regular LDPC code using
the decod ing algorithm s: MSA, NMSA, M-NMSA, and BP.
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