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The Annals of Probability 
1996, Vol. 24, No. 1, 268-279 

ON STATES OF EXIT MEASURES 
FOR SUPERDIFFUSIONS' 

BY YUAN-CHUNG SHEU 

National Chiao Tung University 

We consider the exit measures of (L, a)-superdiffusions, 1 < a < 2, 
from a bounded smooth domain D in Rd. By using analytic results about 
solutions of the corresponding boundary value problem, we study the 
states of the exit measures. (Abraham and Le Gall investigated earlier 
this problem for a special case L = A and a = 2.) Also as an application of 
these analytic results, we give a different proof for the critical Hausdorff 
dimension of boundary polarity (established earlier by Le Gall under more 
restrictive assumptions and by Dynkin and Kuznetsov for general situa- 
tions). 

1. Introduction. A super-Brownian motion X = (Xt, P ) on Rd is a 
branching measure-valued Markov process describing the evolution of a 
random cloud. It is related (via Laplace transition functionals) to the equa- 
tion 

du 
(1.1) at ~~=~U _ua on R+ XRd, 

dat 

where A is the Laplace operator and 1 < a < 2. The process X can be 
obtained as a limit of branching Brownian particle systems by speeding up 
the branching rate, decreasing the mass of particles and increasing the 
number of particles. [We refer to Dynkin (1994) for more detail.] 

It is well known that if d < 2/(a -1), the states Xt of X are absolutely 
continuous (with respect to the Lebesgue measure on Rd), whereas in the 
case d 2 2/(a - 1) they are singular measures. [See, e.g., Dawson and 
Hochberg (1979), Dawson, Fleischmann and Roelly (1991) and Fleischmann 
(1988).] 

An enhanced model of superdiffusions (of which super-Brownian motion is 
a special case) was introduced by Dynkin (1993). For every open set D in Rd, 
as a special case of Dynkin's construction, there corresponds a random exit 
measure XD describing, before taking a limit, the mass distribution of the 
particle systems at the first exit time from D [see, e.g., Dynkin (1991)]. The 
exit measures XD play a role similar to that of random exit points from D in 
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EXIT MEASURES FOR SUPERDIFFUSIONS 269 

the diffusion theory. The exit measure XD is related to the boundary value 
problem 
(1.2) Lu = ua in D, 

u=v ondD, 
where L is a differential operator of the form (2.1) and v is a finite measure 
on the boundary SD of D. Problem (1.2) was investigated probabilistically by, 
for example, Dynkin (1991), Dynkin and Kuznetsov (1995) and Le Gall (1993, 
1994b). For analytic treatment of (1.2), we refer to Gmira and V6ron (1991) 
and Sheu (1994). 

In this paper we will study the states of the random exit measures XD for 
(L, a) superdiffusions. We observe that if d < (a + 1)/(a - 1), the states of 
XD are absolutely continuous with respect to the surface area on SD (see 
Theorem 3.3), whereas in the case d > (a + 1)/(a - 1), they are singular 
(see Theorem 4.3). [For the special case L = A and a = 2, the same results 
were obtained earlier by Abraham and Le Gall (1993).] Our approach depends 
on some analytic results about solutions of the problem (1.2). Also as an 
application of these analytic results, we establish in Section 5 that the critical 
Hausdorff dimension of the boundary polarity is d - (a + 1)/( a - 1), which 
confirms a conjecture stated in Dynkin (1994). [By using the relation between 
Hausdorff dimension and the Bessel capacity, Dynkin and Kuznetsov (1994) 
obtained the same results. The case L = A and a = 2 was also treated by 
Le Gall (1994a).] 

We write d(E, F) for the Euclidean distance between two subsets, E and 
F, of Rd. Moreover, if E is a Borel set, the notation M(F) stands for the set of 
all finite measures on E. If Y is a random variable on a probability space 
(H, Y P), PY is the expected value of Y with respect to the probability 
measure P. The notation c always denotes a constant which may change 
values from line to line. 

2. Diffusion and superdiffusion. Throughout this paper we consider a 
differential operator in Rd of the form 

d d d. d 

(2.1) L ~~ a ~ ax ba 
(.jL=E l dxi dxj E dx 

such that: 

1. The functions aij = aji and bi are bounded smooth functions in Rd. 
2. There exists a constant c > 0 such that 

d 

E aij(x)uiuj 2 cEu? for all x E Rd and all U1, U2, ..., Ud. 
i,J= 1 

Then there exists a continuous Markov process t = (i Hz) in Rd with the 
property that for every continuous function f with compact support, the 
function 

Ut(X) = Hxf( A) 
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270 Y.-C. SHEU 

is the solution of the initial-value problem: 

du 
= Lu in R? xRd 

At 
u -f as t -O. 

[See, e.g., Stroock and Varadhan (1979).] We call ( the L-diffusion. 
To every L of the form (2.1) and every a, 1 < a < 2, there corresponds a 

Markov process X = (Xe, Pa) in M(Rd) such that for every positive Borel 
function f on Rd and every tt E M(Rd), we have 

(2.2) PI exp{-K f, Xt} = exp{-K vt, )>}, 

where vt satisfies the equation 

(2.3) Vt(x) + HX ftVt s( js) ds = Hxf( (t) x E Rd 

[For every Borel function f on Rd and v E M(Rd), < f, v > denotes the integral 
of f with respect to v.] Moreover, for every open set D in Rd, there exists a 
random exit measure XD such that for every positive Borel function f and 
every /L E M(Rd), 

(2.4) PI exp{-K f, XD>} = exp{-K v, >1}, 

where v satisfies the equation 

(2.5) v(x) + HX v ( ds = HxAf( D) 

and TD is the first exit time of ( from D [see, e.g., Dynkin (1991)]. Following 
Dynkin, we call X = (Xt, XD, Pl) the (L, a) superdiffusion. Note that (2.4) 
and (2.5) imply 

(2.6) p<fXD)> = Hf ( TD). 

3. Absolutely continuous states of XD. From this point on we con- 
sider an (L, a) superdiffusion X = (Xt, XD, P,) and always assume that D is 
a bounded smooth domain in Rd. Let S(dz) be the surface area on the 
boundary SD of D. For every z E Rd and every e > 0, let Q,(z) be the cube in 
Rd with center z and edge length e. Denote by W(M(aD)) the u-algebra on 
M(dD) generated by f -- f, /,i> f 

E C(aD). To prove absolute continuity of 
XD, we need the following two lemmas. The first one is a modification of 
Lemma 3.4.2.2 in Dawson (1993). 

LEMMA 3.1. Let Y be a random measure defined on a probability space 
(41,S, P) with values in (M(dD), ?J(M(dD))). Assume that: 
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EXIT MEASURES FOR SUPERDIFFUSIONS 271 

(a) There exists a Borel subset N c SD of surface area zero such that for 
each z c SD \N, there is a sequence En(Z) ?*0 and as n -o, 

S(Qn( Z)) converges tor(z) weakly, 

where r(z) is a random variable with Pr(z) < oo. 
(b) P( f, Y > = faD f(z)P(z)S(dz), for all f C(ED). 

Then Y is almost surely an absolutely continuous measure [with respect to 
S(dz)] on SD. 

PROOF. With some suitable changes, the proof is the same as that of 
Lemma 3.4.2.2 in Dawson (1993). We use Wheeden and Zygmund [(1977), 
Corollary (10.50)] to replace the Lebesgue density theorem, quoted in Daw- 
son. We omit the proof and refer the reader to Dawson (1993) for more detail. 

El 

We replace (1.2) by an equivalent integral equation 

(3.1) u(x) + g(x, y)ua(y) dy = k (x, z)>(dz), x E D, 
D d~~~~D 

where g(x, y) is the Green function of L in D and k(x, z) is the Poisson 
kernel. Note that quotients of Green functions are uniformly bounded [see 
Hueber and Sieveking (1982)] and that there is a constant c depending only 
on L and D such that 

(3.2) k(x, z) < cp(x)II xZI-d, x E D and z Ec D, 
where p(x) = d(x, SD) and 1l I I1 is the Euclidean norm in Rd [see, e.g., Maz'ya 
(1972), Lemma 6, or Dynkin and Kuznetsov (1994)]. Therefore, the same 
arguments as that of Sheu [(1994), Lemmas 2.2 and 2.3] imply that if 
d < (a + 1)/(a - 1), for every A E M(dD), there exists a solution (which 
means a positive solution) of (3.1). 

LEMMA 3.2. Assume d < (a + 1)/(a - 1). Let Sn be a sequence of finite 
measures on SD and, for each n, let un be a solution of (3.1) with A replaced 
by S. If Aun converges weakly to A. in M(dD), then there exists a subsequence 
nk ?? oc such that unk converges pointwise to a function u. in D and u, 
satisfies (3.1) with A replaced by A. 

PROOF. We show that the family Ua is relatively weakly compact in 
L1(D, p(x) dx). By the Dunford-Pettis theorem [see, e.g., Dunford and 
Schwartz (1958), IV.8, Corollary 11] we need to prove that for any e > 0, it is 
possible to find 8 > 0 such that for any n and any measurable set E c D, 

(3.3) f p(x)dx < 8 implies u a(x)p(x) dx < e. 
E E~~~~~~~~~ 
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272 Y.-C. SHEU 

Note that for any E c D and a > 0, we have 

(3.4) U. (x)p(x) dx < a p(x) dx + Un(X)p(X)dx 
E E {un> a} 

and 

(3.5) Ln Ua u ( x) dx A d 

where pBn(A) = f{U> >}p(x) dx, A > 0. 
We estimate /3n(A). Set hn(x) = fdDk(x, z)u n(dz). By (3.1), we have U n < hn 

and so p3n(A) < yn(A), where yn(A) = f{hn > A} P(X) dx. Note that 

Ayn( A) <f hn(x)p(x) dx = n(dz)f k(x, z)p(x) dx 
{hn > A} D {hn > A} 

(3.6) < ?n(8D) sup f k(x, z)p(x) dx 
zE dD {hn>A} 

< c sup f k(x,z)p(x) dx, 
zE dD {hn>A} 

where c = supn t (dD) < oo, by assumption. Choose E e (a, (d + 1)/(d - 1)) 
and let z E dD. By Holder's inequality, we have 

(3.7) f k(x, z)p(x) dx < (A) /a (yn(A))l, 

where A = fDk(x, z)& p(x) dx and 1/& + 1/&' = 1. By (3.2), we have 

(3.8) A < cf p(x)&+ lx - ZI1-da dx ? cf lix - zlK&(dl)+l dx. 

Since D is bounded and & < (d + 1)/(d - 1), (3.8) implies that A is bounded 
for z E dD. Combining (3.6)-(3.8) we get Ayn(A) < cyn(A)l/&', and so 

(3.9) p3n(A) < yn(A) < cA-& 

for all A > 0. 
Since a < &, we have, by integration by parts and (3.9), 

f Aa d3n(A) = aaf3n(a) + afIn(A)A-ldA 

(3.10) ? cac- + af A-aldA 

< Caat-& 

Therefore the condition in (3.3) follows easily from (3.4), (3.5) and (3.10), and 
this implies that {ua} is relatively weakly compact. 
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EXIT MEASURES FOR SUPERDIFFUSIONS 273 

Assume we choose a subsequence nk 00 such that u converges to w 
weakly in L1(D, p(x) dx). Fix x E D. Since (g(x, y))/( p(y)) is bounded in y, 

fg(x, y)U U(y) dy | g(x, y)w(y) dy. 

Since sn converges to ,, h (x) converges to ho ,(X), where 

h.( x) = k ( x, y)ZO (dy). 
dD 

Passing to a limit in (3.1) with u = u and tt = Ank' we obtain u f(X) u.(x) 
and 

u.( x) + g(x, y)w(y) dy = h.(x). 

It remains to prove that ua = w. To do this, it suffices to show that U k 

converges weakly in L1(D, p(x) dx) to ua. Let f E L~(D, p(x) dx) and let K 
be an arbitrary compact set in D. Then 

(3.11) fU (x)f(x)p(x) dx - ua(x)f(x)p(x)dx <I+ J, 

where 

1= flkU'(x)f(x) p(x) dx - f u (x)f0x) px) dx| 

and 

J f U nk(x)f(x)p(x) dx + f U (x)f(x) p(x) dx 
D\K D\K 

Note that u_ < h and, by (3.2), h (x) < cJf1D p(x)I x - z II-d, n(dz) < c for all 
n and x E K. For fixed K, the bounded convergence theorem implies that 
I -O 0 as nk -? ?o. By Fatou's lemma, J ? csup, JD/Kua (x)p(x) dx. Since 
u satisfies condition in (3.3), J > 0 as K T D. Letting k -o and then 
K T D in (3.11), we get 

fnk(X)f(X)P() dx f dx, 

which completes the proof of Lemma 3.2. [D 

We write p. E MC(D) if p. E M(D) and tt has a compact support in D. 

THEOREM 3.3. Assume d < (a + 1)/(a - 1). If v E MC(D), then XD is, 
P.-a.s., an absolutely continuous measure on SD. 

PROOF. Fix v E MC(D) and let K be the support of v. It suffices to show 
that the random measure XD satisfies conditions Lemma 3.1(a) and (b). To 
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274 Y.-C. SHEU 

verify Lemma 3.1(a), we choose z E dD and let A > 0. For every e > 0, define 
a function f, on SD by 

f (y) = S(Qe(z)), for y E Q8(z) n SD, 

l0, for y 0 Q,(z) n dD. 
We have, by (2.4) and (2.5), 

P exp{-A<f8, XD)} =exp VA,, K}, 

where VA, satisfies (3.1) with pt(dy) replaced by Af8(y)S(dy). Clearly as 
e -> 0, Af8(y)S(dy) converges weakly to Ajz(dy). By Lemma 3.2, there exists 
a sequence En 0 such that VA, 

?n 
(X) -* VA(X) for all x E D and VA satisfies 

the equation 

(3.12) vA(X) + g(x y)vV(y) dy = Ak(x, z), x E D. 

Note that VA, eare uniformly bounded on K [see, e.g., Dynkin (1991), Lemma 
3.1 and Theorem 0.5]. We have, by the bounded convergence theorem, 
(VA, nV) -V (VAX v> and so 

P, exp{-A(fn, XD)} ' exp{-(VA,, V}. 

Thus, K (f, XD) converges weakly to some X(z) and 

(3.13) Pv exp{-A A (z)} = exp{-(KVA, v >}. 

Note that, by (3.12), we have 

(3.14) A k(x, z) _ 
g(Xy)VA(y)dy 

and 

(3.15) 0 < - g(x,y) Va(y)dy < Aa-1 g(x,y)ka(y,z)dy. 

We show JD g(x, y)ka(y, z)dy is bounded in x e K. Let 28 = d(K, dD) and 
set K, = {x C D, d(x, K) < 8}. Then it suffices to check that both A and B 
are bounded on K, where 

A = g(x, y)ka(y, Z) dy 

and 

B = g(x, y)k a(y, z) dy. 
D\K8 

By (3.3), on K8, k(y, z) is bounded and so 

A < c g( x, y) dy < c, x E K. 
D 
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EXIT MEASURES FOR SUPERDIFFUSIONS 275 

To estimate B, we fix x0 e K. Then there exists a constant c such that 
g(x0, y) < cp(y) for all y E D \K, [see, e.g., Dautray and Lions (1990), II.4, 
Property 4] and (g(x, y))/(g(x0, y)) < c for all x E K and y E D \ K, [see 
Doob (1984), 1 XII, Section 2]. Therefore (g(x, y))/p(y)) is bounded for x E K 
and y eD\KD . Thus if x eK, 

B < cf ka(y, z)p(y) dy, 

which, by taking a = a in (3.8), is bounded. Combining with (3.13)-(3.15), we 
obtain that 

(3.16) P '(z) = lim A, | k)(x_ , z)v(dx) 

Moreover, for every f E C(dD), by (2.6) and (3.16), 

PVKf, XD) fv(dx)k(x, z)f(z)S(dz) = PXf(z)f(z)S(dz), 

which completes the proof of the theorem. L] 

REMARK. Abraham and Le Gall (1993) obtained the same result for 
L = A\, a = 2 and v = 8x, Ex D. 

4. Singular state of XD. Let F be a subset of the boundary dD of D. 
Consider the following boundary value problem: 

(4.1) Lu = Ua in D, 
u = 0 on dD\F. 

[We write u = f on K c dD if for every z e K, limx z U(X) = f(z).] 

LEMMA 4.1. If u is a solution of the boundary value problem (4.1), then 

(4.2) u(x) < cd(x,F) W , xe D, 

where c is a constant depending only on L, a and D. 

PROOF. Our proof is a modification of that of step 1 for Sheu [(1994), 
Theorem 3]. We sketch only the main steps. Let u be a solution of (4.1). Put 
w(X) = u(X) - 1, x e D, and h(x) = g(W(X))1D\F(X) for all x e Rd, where 

(0, if r < 0, 
g(r) =tr2/2, ifO < r <, 

tr- 2 2 if r ? 1. 

On D, we have either w = u - 1 < 1 or h(x) = u(x) - 3/2. Since D is 
bounded, it suffices to show that 

(4.3) h(x) <cd(x,F) , xeD. 
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To prove (4.3), by Dynkin [(1991), Lemma 3.1 and Theorem 0.5], we need to 
check that 
(4.4) -Lh+ho<?O onRd\F. 

Note that in D, 
dw dw 

-Lh + hx = -g'(w) Lw - g (w) Eaj -d + ha 
dxi dxix 

< -g'(w)Lw + ha, 
where the last inequality follows from the assumptions on L. Then (4.4) 
follows from arguments similar to those of Sheu (1994). E 

Notation B8(Z) stands for the ball with radius e centered at z. 

LEMMA 4.2. Let K be a compact set in D. Then there exist two constants c 
and go (depending only on L, a, D and K) such that if u, is a solution of 
(4.1) with F = B8(z) n aD for some z E dD and e < go, then we have 

(4.5) u8(x) < ced-a+I)/(1), x E K. 

PROOF. By choosing e small enough we can assume d(K, AD) ? 28. Let 
u8 be a solution of (4.1) with F = B8(z) n dD for some z E AD. Let r= 
inf{t, 6t 4 D} and i-r = min{inf{t, (I - zll ? 2e}, r). Since Lu-ua = Lu - 
u-1u, we have 

(4.6) u8(x) = Hxu(r)exp{ 
U 

eua1(4~) ds}I x E K. 

[See, e.g., Wentzell (1981), Microtheorem 13.5.] Since u, = 0 on dD \ F, (4.6) 
implies that 

(4.7) u?(x) < r1[Ix >( 4), 'T <] 

On ? < T, we have, by Lemma 4.1, 

u>( a4) < cd adI F)-21(e- 1) < c8-2/(a- 

and so, by (4.7), 

(4.8) u8(x) < c87/ 1)x[ T8? < T]. 

The same arguments as in Abraham and Le Gall [(1991), Theorem 3.1] imply 
that for 8 sufficiently small, 

(4.9) Fx[T8 < T] < c1x1[ 4, E B58(z) N adD], x E K. 

By (4.9) and (3.2), we have Fl[H? < T] ? C -d 1 X Ex K. Our conclusion follows 
from the above inequality and (4.8). 0 

REMARK. It follows from Dynkin (1991) that solutions of Lu = ua in D 
are locally uniformly bounded in D. Therefore if d < (a + 1)/(a - 1), the 
estimate (4.5) does not give the best possible lower bound. 
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EXIT MEASURES FOR SUPERDIFFUSIONS 277 

THEOREM 4.3. Assume d > (a + 1)/(a - 1). If ,u E MC(D), then XD is, 
P,1-a.s., singular with respect to the surface area S on dD. 

PROOF. Fix ,u. E MC(D) and put K = supp(XD). For all n ? 1, let {Bn, iC I, 
be an open covering of dD and diam(Bn ) = 2n. By the regularity of nD, we 
can assume the cardinality of In is less than c2 n(d-1), where c is a constant 
independent of n. Set 

Hn= E 1{Bni nK*0} 
iGIn 

and 

vn, (x) = -log P58[XD(Bn,) =0]. 

Then 

Pl n = E P,1[XD(Bnfi) > 0] = E (1 - Pa[XD(BN,i i ) ]) 

( 4 .10) ~i E- In i E- In 

= E (1 - exp{-Kvn V, KA)}) < E an, i, I- 
iGIn iEIn 

Note that vi is, as A -c, the limit of the functions 

Vl,i,A(x) = -lognPx ,exp(-AXD(Bni)} 

and vn i, A is a solution of Lu = ua in D with u = 0 on aD \EBn . Note that 
similar results as in Dynkin [(1992), Theorem 1.2] hold for elliptic case. 
Therefore, vn is a solution of (4.1) with F = B qn dD. By Lemma 4.2, we 
have, for n sufficiently large, 

Vn, in jut> < c(2 -n) d-(a+ 1)/(a- 1) iEIn. 

Therefore, by (4.10), 

P n< E (-n)(d-(a+l1)/(at-1)) < C 2-n) -2/(a-1 
ielR 

which implies, for n sufficiently large, 

Pi, (2- n )2/(a - )Hj ? < C < c? 

By Fatou's lemma, lim inf(2 -n)2/(a- )Hn < o, PI-a.s., and so the Hausdorff 
dimension of K is less or equal to 2/(a - 1). Since dim(dD) = d - 1 and 
d-1 > 2/(a-1), XD is, P,,-a.s., singular. L 

REMARK. (a) The same result was obtained by Abraham and Le Gall 
[(1993), Theorem 6.1] for the special case L = A and a = 2. Our proof is the 
same in spirit. 

(b) Assume d = (a + 1)/( a 1). By using Brownian path-valued pro- 
cesses, Abraham and Le Gall (1993) obtained a lower upper bound for 
Pj[XD(Bn i) # 0] and proved that XD is singular for L = A and a = 2. 
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5. Critical Hausdorff dimension for boundary polarity. In this sec- 
tion we consider X = (Xe, P,,), a (L, a) superdiffusion in D [for more detail, 
see Dynkin (1993)]. The range of X is the smallest closed set SD in Rd such 
that for every t ? 0, supp(Xt) CWD. A set F c dD is said to be 8-polar if 

- P8x[ SD n F = 0] = 1 for all x E D. 

Dynkin and Kuznetsov (1994) obtained that a closed subset F of 8D is 
8-polar if and only if there is no nonzero solution of the problem (4.1). 
Combining with Sheu [(1994), Theorem 1(A)] (which is still true for general 
L), we obtain that if d < (a + 1)/(a - 1), there are no 8-polar sets. 

Let h,3(s) = sQ , s > 0, / > 0 and write hi - m(F) for the hl,-Hausdorff 
measure of F [for a definition of h13-Hausdorff measure, see Dynkin (1991)]. 

THEOREM 5. 1. Assume d > (a + 1)/(a - 1) and let F be a closed subset of 
AD. Put ho = d - (a + 1)/(a - 1). 

(a) If h,30-m(F) = 0, then F is 8-polar. 
(b) If h8-m(F) > 0 for some ho < s < d - 1, then F is not 8-polar. 

PROOF. (a) Fix x E D and let 8 > 0. By assumption, there is a covering 
{Bz(zi)}, with zi c dD, of F such that 

Eh'80(8i) < & 

(We can assume 8i are small enough such that if K= {x}, the conclusions of 
Lemma 4.2 hold.) Set Bi = B,8(zi). Then 

P6.,[-D n F * 0 <EP6X,[ -D n Bi+0] =E(1 P6X [ -Dn Ki =0]) 
i i 

= - exp{ - vi(x)}) < vi x), 
i i 

where vi is the maximum solution of (4.1) with F = AD n B8(zj) [see Dynkin 
and Kuznetsov (1994)]. By Lemma 4.2, there exists a constant c, depending 
only on L, a and D, such that 

vi(x) < chi(e) for all i, 

and so P86x[D n F # 0] < c~jhq0(8j) < c8. Since 8 is arbitrary, we obtain 
Pa qDn F 0 0] = 0, which completes the proof of (a). 

(b) This follows directly from Sheu [(1994), Theorem 1(B)] and Dynkin and 
Kuznetsov's criterion for 8-polarity. D 
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