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Abstract
Estimating the frequency of a single-tone signal is a common problem in radar applications,
such as frequency-modulated continuous wave radar. This study presents a frequency
estimation algorithm called the gradient search method using the derivative of discrete Fourier
transform on the received signal samples. The analytical boundaries of the proposed method
for different signal-to-noise ratios under the two conditions, with the rectangular window and
with the Hann window, are derived. This study also compares the most appropriate algorithms
available in the literature, including chirp-Z transform and other advanced methods.
Simulation and experimental results show that the proposed algorithm provides superior
performance to previous methods.

Keywords: frequency estimation, FFT, DFT, Cramer–Rao bound (CRB), frequency-modulated
continuous wave (FMCW)

(Some figures may appear in colour only in the online journal)

1. Introduction

Precisely estimating a sinusoidal signal frequency is an
important task in signal processing. The frequency estimation
problem is relevant to a wide range of areas, including radar,
sonar and communications, and has consequently attracted
considerable attention in the literature [1–4]. In liquid level
measurements using a frequency-modulated continuous wave
(FMCW) radar, the liquid level is converted from range data
and is proportional to the frequency of received signals. Thus,
the accuracy of frequency estimation is directly related to the
accuracy of range data.

This study estimates the frequency of a single sinusoidal
wave, which is given by

x(n) = a sin

(
2π

fin

fs
n + φ

)
+ z(n), n = 0, 1, . . . , N − 1,

(1)

where a, fin, fs and φ denote the signal amplitude, signal
frequency, sampling frequency and initial phase, respectively.
The noise terms z(n) are assumed to be zero mean, additive
white Gaussian noise (AWGN) with a variance of σ 2.

In a FMCW level measuring system, received signal errors
are often produced by internal components, the environmental
factor and quantization. The signal-to-noise ratio (SNR)
is generally greater than 40 dB. This study analyzes the
performance of each frequency estimator with an SNR of 0–
70 dB. Rife and Boorstyn [1] generated the Cramer–Rao lower
bound and the maximum likelihood (ML) frequency estimator
of this problem. The ML frequency estimator is a maximizer
of the periodogram for calculation, for which the fast Fourier
transform (FFT) and discrete Fourier transform (DFT) can be
employed:

f̂ML = arg max
λ

{Y (λ)} , (2a)
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where

{Y (λ)} =
∣∣∣∣∣
N−1∑
k=0

x(k) e−j2πkλ

∣∣∣∣∣
2

. (2b)

The ML Cramer–Rao bound (CRB) of frequency estimations
can be treated as a fundamental (i.e. cannot be surpassed by
any estimator) lower limit of the variance of any unbiased
frequency estimator, operating on the signal modeled in
equation (1). The CRB is given by

σ 2
CR = 6 f 2

s

(2π)2ρN(N2 − 1)
, (3)

where

SNR ρ = a2/2σ 2.

The length of the FFT needed to reach the CRB with the
appropriate frequency resolution is too large for reasonable
real-time implementation. The numerical maximization of
(2) is never a computationally simple task and can lead
to convergence and resolution problems [1]. Therefore, the
frequency of a sinusoid is typically estimated using a two-
step process involving a coarse estimator and a fine search.
The coarse estimation stage is generally implemented using
a maximum bin search to produce a coarse approximation of
the periodogram [8, 9]. This stage calculates the N-point FFT
of the sampled signal and then locates the bin index with the
largest magnitude.

Researchers have proposed a variety of fine frequency
estimators [2–12]. Many multipoint interpolated DFT methods
have been created. These methods are fast algorithms that
interpolate the peak from DFT/FFT coefficients. In this
approach, the main method of compensating the frequency
is the ratio of DFT magnitudes for two or more frequency
bins around the coarse estimation. Although Aboutanios
and Mulgrew [8] developed a fast estimation method, their
algorithm generates a high root-mean-square error (RMSE)
when the value fin is close to 0 and fs/2. Moreover, this
algorithm cannot be combined with a windowing function,
which generally increases the estimation accuracy [9]. The
centrobaric energy method [9] is another interpolated DFT
fine search algorithm that has been applied to the liquid level
measuring system [13]. However, this algorithm is a one-
shot scheme, that is, it cannot improve accuracy after several
iterations.

Other fine search algorithms are based on the DFT
magnitude comparison scheme. Following a few iterations,
the estimated peak frequency is asymptotically close to the
actual frequency. Zakharov and Tozer [5, 6] developed simple
algorithms consisting of iterative dichotomous searching
procedures for precise signal frequency estimation.

The most prominent DFT-type frequency estimator is
currently the chirp-Z transform (CZT) [11, 12]. The CZT is
based on an interpolation technique to resolve the spectrum
between any two frequency components. This results in a
higher frequency resolution than that of the original FFT
method.

This study presents a novel search algorithm that
resembles the dichotomous search algorithm developed by
[5, 6]. The algorithm performs the coarse-frequency estimation

using the position of the FFT peak. Subsequent iterations are
carried out following the gradient search method (GSM). This
study also analyzes and evaluates the RMSE of the GSM
frequency estimation for different SNRs. The remainder of
this paper is organized as follows. Section 2 presents the
details of the proposed frequency estimator GSM including
its underlying motivations. Section 3 analyzes the algorithms
and assesses their asymptotic performance, and discusses
convergence properties. Sections 4 and 5 present the simulation
and experimental results, and section 6 provides concluding
remarks.

2. Gradient search method

The GSM consists of a coarse-frequency search followed by a
fine estimation stage.

In the first step, we calculate the maximum bin from an
initial coarse-frequency estimate. If the index of the maximum
bin is denoted as m, the coarse peak frequency is fpeak = m� f .
A search range [ flow, fhigh] can also be defined as flow =
(m − 1)� f and fhigh = (m + 1)� f . Notably [8] showed that
the search range can be refined in a narrower range of [ flow,
fhigh] = [(m − 0.5)� f , (m + 0.5)� f ].

In the second step, we derive the continuous DFT at fpeak.
Slope r indicates the curve direction.

In the third step, if r > 0, then the true peak lies to the
right of fpeak. The flow can be moved to fpeak. If r < 0, then
fhigh moves to fpeak. The new estimated peak, fpeak, is then
( flow + fhigh)/2.

After the third step, we return to the second step to derive
the continuous DFT at a new fpeak. Iterations may continue
until fpeak converges to a defined accuracy. Figure 1 shows the
iteration steps of the GSM.

In the absence of noise, an observed sine wave, sampled
at a known sampling frequency fs, is described as

x(n) = a sin(ωn + φ)

ω = 2π
fin

fs
∈ (0, π ), φ ∈ [0, 2π), n = 0, 1, . . . , N − 1,

where a, fin, fs and φ are the amplitude, signal frequency,
sampling frequency and phase of the sine wave, respectively.

The DFT is treated as a continuous Fourier transform
to perform the differentiation on it. The N-point DFT of the
samples, Xω, is defined as

Xω ≡ X (ω) =
N−1∑
n=0

x(n)W (n) e−jωn = A ejθ , (4)

where X (ω) is the ω component of discrete Fourier
transformation, A is the magnitude of X (ω), θ is the phase
of X (ω) and W (n) is the windowing function.

The derivative of Xω is

X ′
ω = dXω

dω
=

N−1∑
n=0

−jnxnW (n) e−jωn = A′
ω ejθω + jAωθ ′

ω ejθω .

(5)

For a coarse peak frequency that is calculated using the FFT,
the magnitude of DFT Xω is |Xω| = Aω. The gradient of |Xω|
can be represented as |Xω|′ = A′

ω, and the sign of A′
ω is the sign

2
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Figure 1. Iteration process of the GSM.

of the gradient. To avoid resolving A′
ω directly, an alternative

method was developed as follows. Dividing equation (5) by
equation (4), we have

X ′
ω

Xω

= A′
ω

Aω

+ jθ ′
ω. (6)

Thus,

A′
ω = Re

[
X ′

ω

Xω

]
Aω,

where Re[·] denotes the operation of taking the real part.
Because Aω > 0, the sign of A′

ω is identical to the sign of
Re

[X ′
ω

Xω

]
.

Let Xω = Rω + jMω, X ′
ω = R′

ω + jM′
ω.

The gradient r is then given by

r = Re

[
X ′

ω

Xω

]
= Re[(Rω + jMω)(R′

ω − jM′
ω)]

= RωR′
ω + MωM′

ω. (7)

Equation (7) determines the direction of searching for the peak
frequency. If r > 0, then the true peak lies on the right of fpeak,

whereas if r < 0, then the true peak lies on the left of fpeak.
The steps of the GSM algorithm implementation are described
as follows.

(a) Windowing samples are s(n) = x(n)w(n), n =
0, 1, . . . , N − 1, where w(n) is a Hann window; Ding
[9] showed that applying a windowing function increases
the accuracy of the interpolated DFT method.

(b) Given S = FFT(s) and Y (n) = |S(n)|, n = 0, 1, . . . , N −
1, find m = arg max {Y (n)}, coarse peak frequency
fm = m� f , where � f = fs/N.

(c) The initial setting of peak frequency and search range are
fpeak = fm, flow = (m − 0.5)� f , fhigh = (m + 0.5)� f ;
For each iteration from 1 to Q iterations

Find derivative r at fpeak, where r = R f R′
f + M f M′

f ;
if r > 0, then flow = fpeak;
else fhigh = fpeak;
fpeak = ( flow + fhigh)/2;

(d) Finally, the estimated fine peak frequency is f̂ = fpeak.

3
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Figure 2. Iterative bounds of the GSM.

Figure 3. Estimation errors of GSM with different windowing functions.

3. Theoretical analysis

The results of this study show that the measurement error of
the GSM comes from many sources, including the frequency
leakage, iterative counts, AWGN sources, intrinsic error of
GSM and quantization noise. The performance of the GSM is
limited by these sources. Thus, this study derives the iterative
bound, AWGN error bound and intrinsic error bound.

The iterative bound is dominated by the iterative counts Q.
The frequency resolution of the coarse search is fs/N. After Q
iterations, the final resolution is fs

2Q+2N . Thus, more Q iterations

can achieve a lower iterative bound, and the resulting error
bound is closer to CRB. The iterative bound’s equation is

σQ =
(

fs

2Q+2 N

)2

. (8)

In this paper, fs = 1000 Hz, N = 512, the resolution bandwidth
(RBW) is defined as RBW = fs

N = 1.953 Hz. The iterative
bounds of the simulation results (figure 2) are consistent with
the analytical formula given by (8). This study uses Q = 14
for comparison with the simulation results obtained by other
algorithms.

4
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Figure 4. Intrinsic bounds for GSM with and without windowing.

Figure 5. The simulated and analytical error bounds of GSM.

The question to ask at this stage is whether the variances of
estimation can become any lower as the iteration Q increases.
The answer is obviously impossible. Figure 2 shows that the
RMSE is restricted by the iterative bound and the SNR, and
AWGN influenced the measurement error. To estimate the
accuracy of the GSM, it is necessary to derive the variance of
R f R′

f + M f M′
f in (7).

Consider the sampled data with noise in the following
form:

x̃(n) = x(n) + z(n) = a sin

(
2π

fin

fs
n + φ

)
+ z(n),

n = 0, . . . , N − 1, (9)

where x̃(n) is the sampled signal and z(n) is WGN with
the standard deviation σz. According to (9), the estimated
frequency f̂ is the best estimation while R̃ f̂ R̃

′
f̂
+ M̃ f̂ M̃

′
f̂

= 0.
The tilde means that the item is sampled data in a noisy

environment. The DFTs of x(n) and z(n) are defined as

Xf = DFT(x(n)) = R f + jM f ,

Z f = DFT(z(n)) = R f ,Z + jM f ,Z .

The derivatives of Xf and Z f are defined as

X ′
f = R′

f + jM′
f ,

Z′
f = R′

f ,Z + jM′
f ,Z .

R̃ f̂ R̃
′
f̂
+ M̃ f̂ M̃

′
f̂

can be expressed as

R̃ f̂ R̃
′
f̂
+ M̃ f̂ M̃

′
f̂
= (R f̂ + R f̂ ,Z )(R′

f̂
+ R′

f̂ ,Z
)

+ (M f̂ + M f̂ ,Z )(M′
f̂
+ M′

f̂ ,Z
)

= R f̂ R
′
f̂
+ R f̂ R

′
f̂ ,Z

+ R f̂ ,ZR′
f̂
+ R f̂ ,ZR′

f̂ ,Z

+ M f̂ M
′
f̂
+ M f̂ M

′
f̂ ,Z

+ M f̂ ,ZM′
f̂
+ M f̂ ,ZM′

f̂ ,Z
. (10)

5



Meas. Sci. Technol. 23 (2012) 035002 C-F Huang et al

Figure 6. Plot of the RMSE of the frequency estimation for the GSM, and methods developed by Zakharov [5], Ding [9], Aboutanios [8]
and CZT [11] under different SNRs.

Figure 7. Plot of the RMSE comparison of the GSM, Ding and Aboutanios methods over the full frequency range at SNR = 40 dB.

Because the WGN has a flat spectrum, R f ,ZR′
f ,Z + M f ,ZM′

f ,Z
is zero. Equation (10) then becomes

var(R̃ f̂ R̃
′
f̂
+ M̃ f̂ M̃

′
f̂
) = R2

f̂
var(R′

f̂ ,Z
) + R′2

f̂
var(R f̂ ,Z )

+ M′2
f̂

var(M f̂ ,Z ) + M2
f̂
var(M′

f̂ ,Z
), (11)

where R f̂ ,Z , R′
f̂ ,Z

, M f̂ ,Z and M′
f̂ ,Z

are random variables, and
they can be found by the definition of DFT and variance:

Z f =
N−1∑
n=0

z(n)e−j2π
f
fs

n

var[Z f ] = var(z(n)) ·
N−1∑
n=0

|e−j2π
f
fs

n|2 = Nσ 2
z (12a)

Z′
f =

N−1∑
n=0

(−j2π · n

fs

)
z(n) e−j2π

f
fs

n

var[Z′
f ] = var (z(n)) ·

N−1∑
n=0

∣∣∣∣
(−j2π · n

fs

)
· e−j2π

f
fs

n

∣∣∣∣
2

= 2π2N(N − 1)(2N − 1)

3 f 2
s

σ 2
z . (12b)

The variance of the real and imaginary parts is
independent, and under the Gaussianity assumption, (12) can

6
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(a) Double-precision is applied. 

(b) Single-precision is applied. 

Figure 8. Plot of the RMSE comparison of the GSM, CZT and Zakharov’s methods over the full frequency range at SNR = 70 dB. (a)
Double precision is applied. (b) Single precision is applied.

be derived as var(R f̂ ,Z ), var(R′
f̂ ,Z

), var(M f̂ ,Z ) and var(M′
f̂ ,Z

)

as follows:

var[R f ] = var[M f ] = Nσ 2
z

2
, (13a)

var[R′
f ] = var[M′

f ] = π2N(N − 1)(2N − 1)

3 f 2
s

σ 2
z . (13b)

After substituting (13) into (11), the variance of R̃ f̂ R̃
′
f̂
+M̃ f̂ M̃

′
f̂

becomes

var(R̃ f̂ R̃
′
f̂
+ M̃ f̂ M̃

′
f̂
)

=
[

A2
f̂

π2N(N − 1)(2N − 1)

3 f 2
s

+
∣∣∣X ′

f̂

∣∣∣2 N

2

]
a2

2ρ
. (14)

The estimation error f̂ − f0 is related to R̃ f̂ R̃
′
f̂
+ M̃ f̂ M̃

′
f̂
,

and the equation of estimation error can be derived as

f̂ − f0 = 1

2
·

R̃ f̂ R̃
′
f̂
+ M̃ f̂ M̃

′
f̂

A f̂

· 1

A′′
ϕ

, (15)

where f0 is the true signal frequency, f̂ is the estimated
signal frequency, A f is the magnitude of X (ω), A′

f is the first
derivative of A f and A′′

ϕ is the second derivative of A f .

After some algebraic operations, the variance of
estimation is

var( f̂ − f0) ≈ 7π4 f 2
s

96(4π − 16)2N3ρ
= 0.6024 · f 2

s

N3ρ
. (16)

7
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(a) 

(b) 

Figure 9. Experimental settings. (a) Experimental apparatus. (b) Block diagram of experimental setting.

After derivation processing, the lower bound with the Hann
window becomes

var( f̂ − f0)Hann ≈ 1.2347 · f 2
s

N3ρ
. (17)

Comparing (16) and (17) shows that the AWGN error
bound with the Hann window seems larger than the one
without the Hann window. However, the variance decreases
as the SNR increases. Analysts normally apply a window to
the data to alleviate the effects of leakage, but windowing also

distorts the original signals. The simulation results indicate
that the windowing function improves the GSM accuracy at
a higher SNR. The conditions of fs = 1000, N = 512, Q =
14 and an SNR of 0–60 dB are simulated. Figure 3 compares
RMSE with different windowing functions, Hamming, Hann
and Blackman Harris. In the case of low noise (SNR > 30 dB),
processing with a windowing function can significantly reduce
RMSE. Although these simulation results did not reach the
CRB, the results obtained with a Hann window are better than

8
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Figure 10. Experimental result of the RMSE comparison of GSM and Aboutanios’s algorithm.

Figure 11. Experimental results of RMSE comparison of GSM and algorithms of Zakharov and Ding.

those without windowing. Due to the obvious improvement in

accuracy when using a Hann window at a high SNR, this study

uses the Hann window for the following comparisons.

Another interesting characteristic for all estimators

investigated in this study is how the estimation error would

be if no noise exists. Simulation results show that even under

noiseless conditions, there still are very low estimation errors

for all estimators. These errors were labeled as the intrinsic

bound in this paper. Intrinsic bounds are dependent on the

windowing function and estimators, but unrelated to a noisy

environment. Thus, it can be treated as the condition of a very

high SNR. Figure 4 shows the simulation result of GSM’s

intrinsic bound with and without Hann windowing.

The input frequency is fin ∈ (
0,

fs

2

)
, and the lowest

variance is at fin = fs

4 . The intrinsic bound with the

Hann window is lower than that without the Hann window.

This is why the GSM with the Hann window shows better

performance at a high SNR. Equations (18a) and (18b) are

the estimated intrinsic bounds for the rectangular and Hann
windows, respectively,

var( f − f0) = π2 f 2
s

N3

∣∣∣∣cos4(2πD( f ))

D( f )2

∣∣∣∣
(rectangular window), (18a)

var( f − f0) = π2 f 2
s

N3
×

∣∣∣∣cos2(2πD( f ))

D( f )2

∣∣∣∣
3

(Hann window), (18b)

where

D( f ) = f , f � N

4

= N

4
− f , f >

N

4
.

Combining the three error bounds, iterative bound, AWGN
bound and intrinsic bound, figure 5 compares the simulation
and analytical results for the GSM.

9



Meas. Sci. Technol. 23 (2012) 035002 C-F Huang et al

Figure 12. Comparison of simulation and experimental results for each algorithm.

4. Simulation results

Monte Carlo simulations were carried out to assess the
performance of the proposed GSM frequency estimator. The
performance of this method was compared with that of
well-known methods, such as the iterative search method of
Zakharov [5], the interpolated DFT of Ding [9], the iterative
interpolation method of Aboutanios [8] and CZT [11, 12]. All
comparisons were accompanied by the benchmark ML CRB.
Figure 6 presents the results.

The test parameters included a sampling rate of
fs = 1000 Hz and the FFT length of N = 512. For each
test point, the RMSE is the total error summation of simulated
frequency f0 ∈ (

0,
fs

2

)
. More than 2000 runs were simulated

for each SNR. The iterative count Q is the same at Q = 14 for
the Zakharov method and the proposed GSM.

Among these competitive methods, Ding’s and
Aboutanios’s methods both adopt interpolation schemes that
require few calculation resources. The disadvantage of these
methods is that their RMSE is higher than that of the other
estimators under low noise conditions. Figure 7 compares the
RMSE of the GSM, Ding’s and Aboutanios’s algorithms at the
SNR of 40 dB.

For an SNR exceeding 30 dB, figure 6 shows that
the GSM, CZT and Zakharov’s methods are the three best
estimators. It is interesting to investigating the performance
of these estimators at a higher SNR. Figure 8(a) shows the
simulation result at SNR = 70 dB, clearly showing that
the GSM has the lowest RMSE. Note that the CZT and
Zakharov methods require more precise computing capability

of calculating the amplitudes approaching the peak frequency.
Experimental results (figure 8(b)) show that using the data-type
single precision (float) instead of double precision (double)
degrades the performances of the CZT and Zakharov methods,
though the GSM remains unaffected.

5. Experiments

This experiment compares the GSM with three other frequency
estimators proposed by Zakharov [5], Ding [9] and Aboutanios
[8]. This experiment was performed using an Agilent 33120A
function generator as a signal source to simulate the beat
frequency of a FMCW sensor. A low-cost micro control
unit (MCU), Microchip dsPIC33F, served as the frequency
measuring set. A personal computer (PC) was used to
record the measuring data through serial communication with
dsPIC33F. Figure 9 shows a block diagram of the experimental
setting.

The Agilent 33120A facilitates changing frequency and
magnitude. The testing signal frequencies ranged from 10
to 490 Hz in 10 Hz steps. For each frequency change, 50
measurements were carried out by all four algorithms. The
measured frequencies were sent to a PC to analyze and record
the RMSE. The dsPIC33 has a 12-bit internal analog-to-digital
converter. The sampling rate was set to 1000 Hz. Because of
being constrained by MCU memory, the maximum FFT length
could only be 512 points.

The experimental results in figure 10 show that
Aboutanios’s algorithm is highly frequency dependent. The

10
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result of Ding’s algorithm also exhibits this phenomenon
(figure 11). Both algorithms use an interpolation scheme.

Figure 11 shows that GSM performs better than the
algorithms of Zakharov and Ding. In the experiment, the SNR
is around 45 dB. Figure 12 shows the comparison between the
simulated and experimental results for each algorithm. The
experimental results are consistent with the simulation results
in the previous section.

6. Conclusion

This study has proposed a novel frequency estimator GSM
and analyzed its performance and the effects of applying a
windowing function. The simulated accuracy performance of
the GSM and that of other well-known frequency estimators
were compared over the possible frequency range. Simulation
results show that the proposed method is better than the
interpolated DFT methods when the SNR exceeds 30 dB.
Compared to the CZT and Zakharov dichotomous search
method, the GSM requires less calculation precision capability.
This study also shows that the GSM for the range measurement
can be easily implemented in digital signal processors and low-
cost MCUs, making it suitable for applications that require
high accuracy and reliable level measurement.
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