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This article re-examines the soft error effect caused by radiation-induced particles beyond the deep
submicron regime. Considering the impact of process variations, voltage pulse widths of transient faults are
found no longer monotonically diminishing after propagation, as they were formerly. As a result, the soft
error rates in scaled electronic designs escape traditional static analysis and are seriously underestimated.
In this article we formulate the statistical soft error rate (SSER) problem and present two frameworks
to cope with the aforementioned sophisticated issues. The table-lookup framework captures the change
of transient-fault distributions implicitly by using a Monte-Carlo approach, whereas the SVR-learning
framework does the task explicitly by using statistical learning theory. Experimental results show that both
frameworks can more accurately estimate SERs than static approaches do. Meanwhile, the SVR-learning
framework outperforms the table-lookup framework in both SER accuracy and runtime.
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1. INTRODUCTION

Soft errors have emerged to be the dominant failure mechanism for reliability in
modern CMOS technologies. Soft errors result from radiation-induced transient faults
latched by memory elements were of concern for memory units only, but are now
commonplace for logic units beyond deep submicron technologies. As predicted in
[Amusan et al. 2007; Dodd and Massengill 2003; Shivakumar et al. 2002], the soft
error rate in combinational logic will be comparable to that of unprotected memory
cells in 2011. Therefore, numerous studies have been dedicated to modeling transient
faults [Cha and Patel 1993; Garg et al. 2008; Omana et al. 2003; Tosaka et al. 1999],
propagation and simulation/estimation of soft error rates [Rajaraman et al. 2006;
Rao et al. 2006; Zhang and Shanbhag 2004; Zhang et al. 2006] and circuit hardening
techniques including detection and protection [Mukherjee et al. 2002; Bartlett and
Spainhower 2004; Mitra et al. 2005; Zhang et al. 2007].
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Fig. 1. Three masking mechanisms for soft errors.

Three masking mechanisms shown in Figure 1 are indicated by Shivakumar et al.
[2002] as the key factors to determine if one transient fault can be latched by the mem-
ory elements to become a soft error. Logical masking occurs when the input value of
one gate blocks the propagation of the transient fault under a specific input pattern.
One transient fault attenuated by electrical masking may disappear due to the electri-
cal properties of the gates. Timing masking represents the situation that the transient
fault propagates to the input of one memory element outside the window of its clock
transition.

Much previous work such as that of Omana et al. [2003] and Mohanram [2005]
propagate transient faults through one gate according to the logic function, and in the
meantime use analytical models to evaluate the electrical change of transient faults.
A refined model is presented in Garg et al. [2008] to incorporate nonlinear transistor
current, which is further applied to different gates with different charges deposited. A
static analysis is also proposed in Krishnaswamy et al. [2008] for timing masking by
computing backwards the propagation of the error-latching windows efficiently.

Moreover, in recent years, circuit reliability in terms of soft error rate (SER) has
been extensively investigated. SERA [Zhang and Shanbhag 2004] computes SER by
means of a waveform model to consider the electrical attenuation effect and error-
latching probability while ignoring logical masking. Whereas FASER [Zhang et al.
2006] and MARS-C [Miskov-Zivanov and Marculescu 2006] apply symbolic techniques
to logical and electrical maskings and scale the error probability according to the spec-
ified clock period, AnSER [Krishnaswamy et al. 2008] applies signature observability
and latching-window computation for logical and timing maskings to approximate SER
for circuit hardening. SEAT-LA [Rajaraman et al. 2006] and the algorithm in Rao et al.
[2006] simultaneously characterize cells, flip-flops, and propagation of transient faults
by waveform models and result in good SER estimates when compared to SPICE sim-
ulation. However, all of these techniques are deterministic and may not be capable of
explaining more sophisticated circuit behaviors due to the growing process variations
beyond the deep submicron era.

Process variations, including various manufacturing defects, have grown to be one of
the major challenges to scaled CMOS designs [Borkar et al. 2003; Bowman et al. 2002].
From Natarajan et al. [1998] and Borkar et al. [2003], 25%-30% variation on chip
frequency are observed. For design reliability, 15%-40% SER variations are reported
in Ramakrishnan et al. [2007] under the 70nm technology. Also, Miskov-Zivanov et al.
[2008] proposed a symbolic approach to propagate transient faults considering process
variations.

Using the 45nm Predictive Technology Model (PTM) [Nanoscale Integration and
Modeling Group 2008], the impact of process variations on circuit reliability is illus-
trated in Figure 2, where SERs are computed by SPICE simulation on a sample cir-
cuit c17 from ISCAS 85 under different values (σprocs) of process variation applied to
perturbing separately the gate width and channel length of each transistor in each
cell’s geometry. The X-axis and Y-axis denote σproc and SER, respectively, where FIT
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Fig. 2. SER discrepancies between static and Monte-Carlo SPICE simulation w.r.t. process-variation.

Fig. 3. Static SPICE simulation of a path in the 45nm technology.

(Failure-In-Time) is defined by the number of failures per 109 hours. Nominal settings
without variation are used in static SPICE simulation, whereas Monte-Carlo SPICE
simulations are used to approximate process-variation impacts under different σproc ’s.

As a result, SER from static SPICE simulation is underestimated. Considering
different σprocs in Monte-Carlo SPICE simulation, all SERs are higher than that
from static SPICE simulation. As process variations deteriorate, the discrepancy
between Monte-Carlo and static SERs further enlarges. In Figure 2, (SERmonte −
SERstatic)/SERstatic under σproc = 1%, 2%, 5%, and 10% are 6%, 19%, 46%, and 117%, re-
spectively. Such a result suggests that the impact of process variations to SER analysis
may no longer be ignored in scaled CMOS designs.

The rest of the article is organized as follows. A study on the statistical natures of
transient faults is first explored in Section 2, and these phenomena help formulate the
statistical soft error rate (SSER) problem in Section 3. Sections 4 and 5, respectively,
propose a table-lookup framework and a SVR-learning framework as the treatments
for the SSER problem. Experimental results from two proposed frameworks are pre-
sented and compared to SPICE simulation results in Section 6. Conclusions and future
work are discussed in Section 7.

2. TRANSIENT-FAULT BEHAVIOR IN VERY DEEP SUBMICRON ERA

Transient faults exhibit two characteristics in the very deep submicron era. One
makes the faults more unpredictable, whereas the other causes the discrepancy in
Figure 2. In this section, they are associated with the electrical and timing masking
mechanisms, respectively.

2.1 To Be Electrically Better Or Worse?

The first observation is conducted by running static SPICE simulation on a path
consisting of various gates (including 2 AND, 2 OR, and 4 NOT gates) in the 45nm
PTM technology. As shown in Figure 3, the radiation particle first strikes the output
of the first NOT gate with a collection charge of 32 fC, and then propagates the
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transient fault along other gates with all side-inputs being set properly. The pulse
widths (pwis) in voltage of the transient fault starting at the struck node and after
passing gates along the path in order are 171ps, 183ps, 182ps, 177ps, 178ps, 169ps,
166ps, and 173ps, respectively. Each pwi and pwi+1 can be compared to show the
changes of voltage pulse widths during propagation in Figure 3.

As we can see, the voltage pulse widths of such transient faults grow larger through
gates #1, #4, and #7, while gates #2, #3, #5, and #6 attenuate such transient faults.
Furthermore, gates of the same type behave differently when receiving different
voltage pulses. To take AND-type gates for example: the output pw1 is larger than
the input pw0 on gate #1, while the contrary situation (pw3 < pw2) occurs on gate #3.
This result suggests that the voltage pulse width of a transient fault is not always
diminishing, which contradicts some assumptions made in traditional static analysis
[Rajaraman et al. 2006]. A similar phenomenon called Propagation Induced Pulse
Broadening (PIPB) is discovered by Ferlet-Cavrois et al. [2007], and states that the
voltage pulse width of a transient fault widens as it propagates along the long inverter
chain.

2.2 When Error-Latching Probability Meets Process Variations

The second observation is dedicated to the timing masking effect under process vari-
ations. In Miskov-Zivanov and Marculescu [2006] and Zhang et al. [2006], the error-
latching probability (PL) for one flip-flop is defined as

PL =
pw − w

tclk
. (1)

where pw, w and tclk denote the pulse width of the arrival transient fault, the latching
window of the flip-flop, and the clock period, respectively. However, process variations
make pw and w become random variables. Therefore, we need to redefine Eq. (1) as
follow.

Definition 1 (Perr−latch, error-latching probability). Assume that the pulse width of
one arrival transient fault and the latching window (tsetup + thold) of the flip-flop are
random variables and denoted as pw and w, respectively. Let x = pw − w be another
random variable and μx and σx be its mean and variance. The latch probability is
defined as

Perr−latch(pw,w) =
1

tclk

∫ μx+3σx

0
x × P(x > 0) × dx. (2)

With the above definition, we further illustrate the impact of process variations on
SER analysis. Figure 4(a) shows three transient-fault distributions with the same
pulse-width mean (95ps) under different σprocs: 1%, 5%, and 10%. A fixed latching
window w = 100ps is assumed as indicated by the solid lines. According to Eq. (1),
static analysis result in zero SER under all σprocs because 95 − 100 < 0.

From a statistical perspective, however, these transient faults all yield positive and
different SERs. It is illustrated using two terms: P(x > 0) and x in Eq. (2). First, in
Figure 4(a), the cumulative probabilities for pw > w under three different σprocs are
17%, 40%, and 49%, respectively. The largest σproc corresponds to the largest P(x > 0)
term. Second, in Figure 4(b), we compute the pulse-width averages for the portion
x = pw − w > 0, and they are 1, 13, and 26, respectively. Again, the largest σproc
corresponds to the largest x term.

These two effects jointly suggest that larger σproc leads to larger Perr−latch, which
has been neglected in traditional static analysis, and also explain the increasing
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Fig. 4. Process-variation vs. error-latching probabilities.

Fig. 5. An example illustrating the SSER problem.

discrepancy shown in Figure 2. In summary, process variations make traditional
static analysis no longer effective, and should be considered in accurate SER
estimation for scaled CMOS designs.

3. PROBLEM FORMULATION OF STATISTICAL SOFT ERROR RATE (SSER)

In this section, we formulate the statistical soft error rate (SSER) problem for gen-
eral cell-based circuit designs. Figure 5 illustrates a sample circuit subject to process
variations, where the geometries of each cell vary [Natarajan et al. 1998]. Once high-
energy particles strike the diffusion regions of these variable-size cells, according to
Figures 2, 3, and 4, the electrical performance of the resulting transient faults also
vary a lot. Accordingly, to accurately analyze the soft error rate (SER) of a circuit, we
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need to integrate both process-variation impacts and three masking effects discussed
in Section 1 simultaneously, which brings up the statistical soft error rate (SSER)
problem.

The SSER problem is composed of three elements: (1) electrical probability com-
putation; (2) propagation probability computation; and (3) overall SER estimation. A
bottom-up mathematical explanation of the SSER problem will start in reverse from
overall SER estimation to electrical probability computation.

3.1 Overall SER Estimation

The overall SER for the circuit under test (CUT) can be computed by summing up the
SERs of each individual node in the circuit. That is,

SERCUT =
Nnode∑
i=0

SERi (3)

where Nnode denotes the total number of possible nodes to be struck by radiation par-
ticles in the CUT and SERi denotes the SER results from node i, respectively.

Each SERi can be further formulated by integrating over the range q = 0 to Qmax
(the maximum collection charge from the environment) the products of particle-hit rate
and the total number of soft errors that q can induce at node i. Therefore,

SERi =
∫ Qmax

q=0
(Ri(q) × Fso f t−err(i, q))dq. (4)

In a circuit, Fso f t−err(i, q) represents the total number of expected soft errors from each
flip-flop that a transient fault from node i can propagate to. Ri(q) represents the
effective frequency for a particle hit of charge q at node i in unit time according to
Shivakumar et al. [2002] and Zhang and Shanbhag [2004]. That is,

Ri(q) = F × K × Ai × 1
Qs

e
−q
Qs (5)

where F, K, Ai, and Qs denote respectively, the neutron flux (> 10MeV); a technology-
independent fitting parameter; the susceptible area of node i in cm2; and the charge
collection slope.

3.2 Logical Probability Computation

Fso f t−err(i, q) depends on all three masking effects and can be decomposed into

Fso f t−err(i, q) =
Nf f∑
j=0

Plogic(i, j) × Pelec(i, j, q) (6)

where Nf f denotes the total number of flip-flops in the circuit under test. Plogic(i, j)
denotes the overall logical probability of successfully generating a transient fault and
propagating it through all gates along the path from node i to flip-flop j. It can be
computed by multiplying the signal probabilities for specific values on target gates, as
follows:

Plogic(i, j) = Psig(i = 0) ×
∏

k∈i� j

Pside(k) (7)

where k denotes one gate along the target path (i � j) starting from node i and ending
at flip-flop j; Psig denotes the signal probability for the designated logic value; and Pside

ACM Transactions on Design Automation of Electronic Systems, Vol. 17, No. 1, Article 9, Publication date: January 2012.



Statistical Soft Error Rate (SSER) Analysis 9:7

Fig. 6. Logical probability computation for one sample path.

denotes the signal probability for the noncontrolling values (i.e., 1 for AND gates and
0 for OR gates) on all side inputs along the target path.

Figure 6 illustrates an example where a particle striking net a results in a transient
fault that propagates through net c and net e. Suppose that the signal probability of
being 1 and 0 on one arbitrary net i is Pi and (1-Pi), respectively. In order to propagate
the transient fault from a towards e successfully, net a needs to be 0 while net b , the
side input of a, and net d, the side input of c, need to be noncontrolling, simultaneously.
Therefore, according to Eq. (7),

Plogic(a, e) = Psig(a = 0) × Pside(a) × Pside(c)
= Psig(a = 0) × Psig(b = 1) × Psig(d = 0)
= (1 − Pa) × Pb × (1 − Pd).

3.3 Electrical Probability Computation

Electrical probability Pelec(i, j, q) comprises the electrical and timing masking effects,
and can be further defined as

Pelec(i, j, q) = Perr−latch(pw j, w j)
= Perr−latch(λelec−mask(i, j, q), w j). (8)

While Perr−latch accounts for the timing masking effect as defined in Equation (2),
λelec−mask accounts for the electrical masking effect with the following definition.

Definition 2 (λelec−mask, electrical masking function). Given the node i where the par-
ticle strikes to cause a transient fault and flip-flop j is the destination that the tran-
sient fault finally ends at, assume that the transient fault propagates along one path
(i � j) through v0, v1, ..., vm, vm+1 where v0 and vm+1 denote node i and flip-flop j, re-
spectively. Then the electrical masking function is defined as

λelec−mask(i, j, q) =
δprop(· · · (δprop(δprop︸ ︷︷ ︸

m times

(pw0, 1), 2), · · · ), m) (9)

where pw0 = δstrike(q, i) and pwk = δprop(pwk−1, k) ∀k ∈ [1, m].

In the above definition, two undefined functions, δstrike and δprop, respectively, repre-
sent the first-strike function and the electrical propagation function of transient-fault
distributions. δstrike(q, i) is invoked once and maps the collection charge q at node i into
a voltage pulse width pw0. δprop(pwk−1, k) is invoked m times and iteratively computes
the pulse width pwk after the input pulse width pwk−1 propagates through the kth
cell from node i. These two types of functions are also the most critical components to
the success of a statistical SER analysis framework due to the difficulty of integrating
process-variation impacts.

The theoretical SSER in Eq. (7) and Eq. (9) is analyzed from a path perspective.
However, in reality, since both the signal probabilities and transient-pulse changes
through a cell are independent of each other, the computation of SSER only needs to
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Fig. 7. Proposed table-lookup framework.

proceed stage by stage, and thus can be implemented in a block-based fashion. Sec-
tions 4 and 5 will present two different block-based SSER frameworks, a table-lookup
framework, and SVR learning framework, respectively. Both frameworks consider
process variations but differ from the way they compute δstrike and δprop: the former
does it implicitly; the later, explicitly.

4. A BASELINE TABLE-LOOKUP MONTE-CARLO (MC) FRAMEWORK

The first framework combines the current static approaches with the Monte-Carlo
(MC) method, a computational algorithm using repeated random samplings to portray
complex statistical behaviors of physical or mathematical systems. As depicted in
Figure 7, this framework maps to the formulation in Section 3, using three loops: the
outmost loop considers various levels of collection charge qi, which forms the discrete
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Fig. 8. Precharacterization of particle-strike table Tstrike for an AND gate.

approximation of Eq. (4); the second loop accounts for all vulnerable nodes within a
circuit, which corresponds to Equation (6); the innermost loop maps to Eq. (9) and
computes δstrike and δprop implicitly. As the key component of the framework, the last
loop can be further decomposed into two parts: (1) cell precharacterization and (2)
sampling and renewal of transient faults.

4.1 Cell Precharacterization

To reflect the electrical masking effect of transient faults on one cell intertwined with
process variations, an approach similar to Edamatsu et al. [1998] is employed to ex-
tract precharacterized tables. The objective of such precharacterized tables is to model
the pulse width and voltage magnitude for each cell as random variables that can be
sampled during the particle-strike process and transient-fault propagation of one cell.

Table contents are derived on the basis of data from Monte-Carlo SPICE simula-
tion with targeted process-variation parameters (or direct silicon measurement on test
structures if applicable). Considering the mapping relationship, two types of tables are
built for each cell separately: one for the particle-strike process, Tstrike, and the other
for transient-fault propagation, Tprop.

4.1.1 Particle-Strike Table Tstrike. Tstrike maps the collection charge q incurred by the par-
ticle strike to electrical properties of cells. Figure 8 illustrates the example to pre-
characterize one AND gate by properly setting up a SPICE simulation environment.
Figure 8(a) is the circuit netlist where a charge q is injected at the output of the AND
gate as an independent current source, according to Garg et al. [2008]:

I(q, t) =
q

τα − τβ

× (e− t
τα − e

− t
τβ ). (10)

An arbitrary number of cells are also generated and connected as the output loading
for the AND gate. Capacitance of each cell will be normalized in terms of the unit-size
inverter (NOT). The final output loading is obtained from summing up each output cell
and represented by a total number of equivalent NOTs.

Given a fixed q, a number of MC runs with different SPICE settings are repeated
in Figure 7 to compute the means and variances of pulse width and voltage magni-
tude, respectively, for the resulting transient fault. Figure 8(b) shows the table for
the AND gate including four matrices: pulse-width mean matrix (Mμ

pw); pulse-width
variance matrix (Mσ

pw); voltage-magnitude mean matrix (Mμ
vm); and voltage-magnitude

variance matrix (Mσ
vm) to store mean and sigma values for pulse widths and voltage

magnitudes of transient-fault propagation. Note that since first-strike transient faults
are sensitive to input vectors, the input vector also serves as an index in Tstrike.
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Fig. 9. Precharacterization of transient-fault-propagation table Tprop for an OR gate.

4.1.2 Transient-Fault Propagation Table Tprop. The transient-fault propagation table Tprop,
on the other hand, reflects the changes of electrical properties when propagating the
transient fault through one cell. Figure 9(a) shows the sample SPICE simulation envi-
ronment to precharacterize the transient-fault propagation through one OR gate. The
output loading is set up similarly to the pre-characterization of Tstrike for the AND gate
mentioned above. Both input and output of the OR gate are described as glitches and
pulse widths and voltage magnitudes are measured accordingly.

After performing statistical calculation, four matrices, pulse-width mean (Mμ
pw),

pulse-width sigma (Mσ
pw), voltage-magnitude mean (Mμ

vm) and voltage-magnitude
sigma (Mσ

vm) can be obtained for one output loading in the tables. Furthermore, each
Tprop has three dimensions where the first one is the output loading (load = 1..k), the
second one is the input pulse width (pw0...pwm), and the third one is the input volt-
age magnitude (vm0...vmn). Therefore, the above process iterates k times to derive one
Tprop of size 4 × k × m × n.

4.2 Sampling and Renewal of Transient Faults

Each Monte-Carlo (MC) run consists of two types of actions: sampling and renewal. A
two-tuple transient fault f=(pw,vm) is first generated by randomly choosing pw and
vm from pulse-width and voltage-magnitude distributions in Tstrike according to prob-
ability theory. Later, electrical properties of f after propagating through the next
cell are renewed and new pulse-width and voltage-magnitude distributions can be
looked up from Tprop of such a cell. Then, a sampling step repeats to pick the next
f ′=(pw′,vm′), followed by looking up the next (μ′

pw,σ ′
ps) and (μ′

vm,σ ′
vm) in the renewal

step. The sampling and renewal steps alternate until the transient fault either reaches
a flip-flop or disappears during propagation.

Transient-fault probability P( f ) denotes the updated probability after f propagates
through one gate and is also incorporated in the proposed table-lookup framework.
Initially, all inputs are assumed to be independent variables with an equal probability
of being 1 or 0. Probabilities for each node can be derived statically according to its
input probabilities. Later, during computing the change of f on each cell, P( f ) is
updated simultaneously to reflect the logic masking effect mentioned in Section 3.
Two different cases are discussed in detail, as follows.

4.2.1 First-Strike Cases. For the first-strike cases, the struck node is required to re-
main 0 for a positive transient fault and 1 for a negative transient fault. Let’s take one
AND gate shown in Figure 10(a), for example. Given the collection charge q, transient
fault fz = (pwz, vmz) can be looked up in Tstrike and denoted as fz = lutP.S.(q, z). Assume
that the probabilities of being 1 for inputs x and y are denoted by Px and Py. For the
particle strikes, the output z to induce a positive transient fault ( f +

z ), z is required to
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Fig. 10. Logical probability update for an AND gate.

Fig. 11. Reconvergent transient faults on an AND gate.

be 0, and thus P( f +
z ) = (1 − Px) × Py. Similarly, for a negative transient fault ( f −

z )
striking output z, P( f −

z ) = Px × Py.

4.2.2 Propagation Cases. For the propagation cases, in order to propagate the pos-
itive (or negative) transient faults through one gate, all other side-inputs are re-
quired to be noncontrolling values (n.c.v.). Besides, nonconvergent and convergent
conditions need to be considered separately. Figure 10(b) illustrates a nonconver-
gent example of the AND gate. Similarly, given fx, fz can be looked up in Tprop by
fz = lutprop( fx, z) = (pwz, vmz). As to transient-fault probability, since the nonconver-
gent condition assumes that only one positive (or negative) transient fault arrives, one
input of the AND gate, say x in this example, only y is required to be 1 (n.c.v. for the
AND gate). Therefore, P( fz) = P( fx) × Py.

A transient fault going through multiple propagation paths may reconverge to
one node, which is very expensive to handle by using enumeration. Currently, the
worst-case approximation is used, since it is reported to have only minor estimation
error [Zhang et al. 2006, 2007]. From the electrical perspective, the worst case denotes
a reconvergent transient fault that has the maximum pulse-width and voltage-
magnitude among updated values from each input transient fault. An example for the
AND gate is shown in Figure 11(a). Following this notion, a MAX operation is defined
to facilitate such computation:

fz = MAX(lutprop( fx), lutprop( fy))
= MAX(lutprop((pwx, vmx)), lutprop((pwy, vmy)))

= MAX((pw′
x, vm′

x), (pw′
y, vm′

y))

= (MAX(pw′
x, pw′

y), MAX(vm′
x, vm′

y))

= (pwz, vmz) (11)

where lut() looks up values from Tprop in the renewal step.
From the logical perspective, the worst case happens when the arrival windows

of two transient pulses are not overlapped; Figure 11(b) illustrates this concept. The
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corresponding transient-fault probability P( fz) can be computed by the summation of
two transient-fault probabilities from inputs x and y. That is,

P( fz) = P( fx) + P( fy). (12)

5. A SUPPORT-VECTOR-REGRESSION (SVR) LEARNING FRAMEWORK

The table-lookup Monte-Carlo framework is inherently limited in execution efficiency
because it computes δstrike and δprop indirectly using extensive samplings of Monte-Carlo
runs. In this section, we propose another learning-based framework to do the task
directly with the support of vector regression (SVR), and is found to be both more ef-
ficient and more accurate. Note that our SVR-learning framework can be represented
in the same flowchart as Figure 7, with the replacement of first-strike tables (Tstrike)
and propagation tables (Tprop) with the respective learning models (δstrike and δprop).

By definition, δstrike and δprop are functions of pw, which is a random variable.
From Figures 3 and 4, we assume pw follows the normal distribution, which can be
written as

pw ∼ N(μpw, σpw). (13)

Therefore, we can decompose δstrike and δprop into four models: δ
μ

strike, δσ
strike, δ

μ
prop, and

δσ
prop where each can be defined as

δ : �x �→ y (14)

where �x denotes a vector of input variables and y is called the model’s label or target
value.

To integrate the impact of process variations, four models are traditionally built us-
ing lookup tables. However, lookup tables have two limitations on applicability: (1) in-
accurate interpolation and (2) coarse model-size control. First, lookup tables can take
only finite table indices and must use interpolation. However, interpolation functions
are often not accurate enough or difficult to obtain, especially as the table dimension-
ality grows. Second, a lookup table stores data samples in a grid-like fashion, where
the table will grow prohibitively large for fine resolution. Meanwhile, the informa-
tion richness often differs across different parts of a table. For example, we observe
that pulse widths generated by strong charges behave much more simply than weaker
charges do. Naturally, simple behaviors can be encoded with fewer data points in the
model, whereas complicated behaviors need to be encoded with more.

In statistical learning theory, such models are built using regression, which can
be roughly divided into linear [Weisberg 2005] and nonlinear [Bates and Watts 1988]
methods. Among them, Support Vector Regression (SVR) [Smola et al. 2003; Vapnik
1995] combines linear methods’ efficiency and nonlinear methods’ descriptive power.
SVR has two advantages over lookup tables: (1) it gives an explicit function and needs
no interpolation; (2) it filters out unnecessary points and yields compact models.

In the following, we propose a methodology to adapt the framework in Section 4 to
a learning-based one based on SVR models, which comprises training sample prepara-
tion, SVR model training, and parameter selection. Also, the modification of the MAX
operation in Eq. (11) is addressed.

5.1 Training Sample Preparation

SVR models differ from lookup tables in the way we prepare training samples for them.
For lookup tables, we start by selecting a finite set of points along each table dimension.
On one hand, they should be chosen economically; on the other hand, it is difficult to
cover all corner cases with only a limited number of points. For SVR models, we do not
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need to select these points. Instead, we provide large sets of training samples, and let
the SVR algorithm do the selection task.

A training sample set S of m samples is defined as

S ⊂ ( �X × Y )m = {(�x1, y1), . . . , (�xm, ym)} (15)

where m pairs of input variables �xis and target values yis are obtained from mas-
sive Monte-Carlo SPICE simulation. For δ

μ

strike, δσ
strike, we use input variables including

charge strength, driving gate, input pattern, and output loading; for δ
μ
prop, δσ

prop, we
use input variables including input pattern, pin index, driving gate, input pulse-width
distribution (μi−1

pw and σ i−1
pw ), propagation depth, and output loading.

In our training samples, we implement output loading using combinations of arbi-
trary cell input pins. Doing so preserves additional information for the output loading
status and saves the labor (and risk) of characterizing the capacity of each cell’s input
pin. Although the number of such combinations can easily explode, there are usually
only a limited number of representatives, which are automatically identified by SVR.
Furthermore, from a learning perspective, since both peak voltage and pulse width
are the responses of charge injection current formulated in Eq. (10), they are highly
correlated. Empirically, using pulse-width information alone can yield satisfactory
SSERs, and thus in our framework, we do not need to incorporate models for peak
voltage.

5.2 Support Vector Machine and Its Extension to Regression

Support vector machine (SVM) is one of the most widely used algorithms for learning
problems [Vapnik 1995], and can be summarized with the following characteristics.

— SVM is an efficient algorithm and finds a global minimum (or maximum) for a con-
vex optimization problem formulated from the learning problem.

— SVM avoids the curse of dimensionality by capacity control and works well with
high-dimensional data.

— SVM automatically finds the decision boundary for a collection of samples using a
small subset where each sample is called a support vector.

The basic idea behind SVM is to find a function as the decision boundary with minimal
errors and a maximal margin to separate data in multidimensional space. Given a
training set S, with �xi ∈ Rn, yi ∈ R, the SVM learning problem is to find a function f
(first assume y = f (�x) = 〈 �w · �x〉 + b ) that models S properly. Accordingly, the learning
task is formulated into a constrained optimization problem, as follows:

minimize ‖ �w‖2 + C(
∑m

i=1 ξi)k

subject to
{

yi(〈 �w · �xi〉 + b ) ≥ 1 − ξi, i = 1, . . . , m,

ξi ≥ 0, i = 1, . . . , m,

(16)

ξi is a slack variable providing an estimate of the error induced by the current decision
boundary; C and k are user-specified parameters indicating the penalty of function
errors in control. Later, the Lagrange multiplier method can efficiently solve such
a constrained optimization problem [Vapnik 1995] and finds �w and b for f (�x) = 〈 �w ·
�x〉 + b with a maximal margin 2/| �w| between 〈 �w · �x〉 + b = +1 and 〈 �w · �x〉 + b = −1.
Figure 12 shows an example for a two-dimensional data set containing samples of
two different classes. Figure 12(a) illustrates many possible decision boundaries to
separate the data set, whereas Figure 12(b) shows the one with the maximal margin
and the minimal errors that the user can tolerate among all boundaries.
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Fig. 12. Linear decision boundaries for a two-class data set.

One SVM algorithm can be applied to regression problems via three steps: (1) pri-
mal form optimization; (2) dual form expansion; and (3) kernel function substitution.
The primal form presents the nature of the regression, whereas the dual form provides
the key to the later nonlinear extension using kernel functions. In our framework,
ε-SVR [Vapnik 1995] is implemented to realize a family of highly nonlinear regression
models f (�x) : �x �→ y for δ

μ

strike, δσ
strike, δ

μ
prop, and δσ

prop for pulse-width mean and sigma
of first-strike functions and pulse-width mean and sigma of propagation functions,
respectively.

5.2.1 Primal Form Optimization. The regression’s goal is to derive a function that min-
imizes slacks and meanwhile to make f as smooth as possible. The corresponding
constrained optimization problem for ε-SVR is modified as follows:

minimize ‖ �w‖2 + C
∑m

i=1(ξ2
i + ξ̂i

2
)

subject to

⎧⎨
⎩

(〈 �w · �xi〉 + b ) − yi ≤ ε + ξi, i = 1, . . . , m,

yi − (〈 �w · �xi〉 + b ) ≤ ε + ξ̂i, i = 1, . . . , m,

ξi, ξ̂i ≥ 0, i = 1, . . . , m,

(17)

where the two slack variables ξi and ξ̂i represent, respectively, variations of the error
exceeding and being below the target value by more than ε. The parameter C deter-
mines the tradeoff between the smoothness of f (�xi) and the variation in the number
of errors (ξi and ξ̂i) to be tolerated. Equation (17) is termed the regression’s primal
form.

5.2.2 Dual Form Expansion. Instead of finding �w directly, the Lagrange multiplier
method transforms the optimization problem from the primal form to its dual form
and derives f as

f (�x) =
m∑

i=1

(αi − α∗
i )〈�x · �xi〉 + b , (18)

where αi, α
∗
i are Lagrange multipliers and b is a function of ε, C, αs and α∗s [Smola

et al. 2003].
Several findings can be inferred from Eq. (18). First, the only inner product 〈�x · �xi〉

implies that only an unseen sample �x and a training sample �xi are sufficient to predict
a new unseen target value y. Second, only training samples �xis that correspond to
nonzero (αi − α∗

i )s contribute to the prediction outcome. All other samples are unnec-
essary for the model and are filtered out during the training process. Third, the inner
product operation is a form of linear combination. As a result, the predicted target
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Fig. 13. Quality comparison of 200 models using different parameter combinations.

values of such a model are all linear combinations of training samples, and thus f is
a linear model. In practice, SVR often keeps only few samples (i.e., �xis with nonzero
coefficients) in its models, and thus benefits from both smaller model size and faster
prediction efficiency.

5.2.3 Kernel Function Substitution. According to the statistical learning theory [Vapnik
1995], SVM remains valid if the inner product operation 〈�u· �v〉 in Eq. (18) is substituted
by a kernel function K(�u, �v) [Cristianini and Shawe-Taylor 2002]. That is,

f (�x) =
m∑

i=1

(αi − α∗
i )K(�x, �xi) + b . (19)

Radial Basis Function (RBF) is one kernel function used in our framework, and can
be formulated as K(�u, �v) = e−γ ·‖�u−�v‖2

where γ is a controlling parameter. Unlike the
inner product operation, the RBF kernel is highly nonlinear. This enables the SVM
algorithm to produce families of nonlinear models that are suitable to capture compli-
cated behaviors, like that of generation and propagation of pulse-width distributions
of transient faults.

5.3 Parameter Search

Now we return to the issue of selecting parameters (ε, C, γ ) that have an unbounded
number of combinations and is critical for achieving fine model quality. Figure 13
illustrates 200 models built from the same training sample set; each point represents
one model using a distinct parameter combination. Their quality is measured along
two coordinates: the Y-axis denotes the error rate for prediction; the X-axis denotes
the sample compression ratio—the ratio between the number of samples kept by the
model and the original size of S. Figure 13 shows that while it is possible to obtain an
ideal model that is small and accurate (indicated by the circle), it is also possible to
obtain a large and inaccurate model (indicated by the square). The differences are 20X
in both axes, and there is so far no deterministic method to find the best combination.

Since exhaustive search is clearly impractical, we need an efficient searching pro-
cess with an effective cost function, which is written as

(ε̂, Ĉ, γ̂ ) = arg
(ε,C,γ )

min(Ek R). (20)

In Eq. (20), Ek R denotes the cost function, where E and R, respectively, denote error
rate and compression ratio, and k is a parameter controlling the tradeoff between E
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Fig. 14. Prioritized scheme for parameter search.

and R. A larger k makes the cost function more sensitive to the error rate, and vice
versa. Note that if a single k is used, the cost function may wrongly select a combina-
tion with one matrix being extremely low and the other being undesirably high (e.g,.
E = 0.01% and R = 0.99%, as indicated by the triangle in Figure 13).

Therefore we applied a prioritized scheme according to predefined goals on both
matrices, as illustrated in Figure 14. Assuming the goal (E < 6%, R < 10%), we
draw finite grids near these goals, and prioritize them accordingly. For example, G0 is
preferred over G1, G1 is preferred over G2, and G0 ∼ G5 are preferred over G′. The
main idea is that in grids where E is small or R is large, the cost function is adjusted to
be more insensitive to error. Therefore, k is assigned smaller in grids with a lower error
rate or larger compression ratio, as illustrated in Figure 14. In G′, k = 3.5 generally
works well.

After determining the cost function, exhaustive search may still take months. To
speed up the searching process, we observe two helpful properties from samples of
all our four types of models. First, a sufficiently large (> 500) sample subset shares
similar behaviors as the complete sample set. Second, points forming a cluster in
Figure 13 have similar parameter combinations. For example, the combination (ε, C, γ )
of points within the circle has a range of [2−4, 2−6] on ε, [24, 28] on C, and [2−2, 2−6] on
γ . The first property enables the use of subset search; the second property allows for
incremental search with granularity.

Parameter search is critical for building SVR models. Using the prioritized cost
function, we can systematically find a good parameter combination. Further, using
subset search and incremental search with granularity, the time consumed by param-
eter search is reduced to about half an hour.

6. EXPERIMENTAL RESULTS

In this section, all experiments are divided into two parts. The first part is to ex-
amine the accuracy of the precharacterized lookup tables and learned models. In the
second part, they are then integrated into their respective statistical SER analysis
frameworks and are compared in their SSER analysis accuracy and runtime.

6.1 Table and Model Accuracy

We use a unified framework to generate test samples for the precharacterized tables
and learning models, considering process-variation impacts. For simplicity, we only
consider the with-in die geometric process variation; other types of variation are not
included in our work. We perturb gate width and channel length of each transistor in
geometry, used to model with-in die variation, since they are the dominant factors for
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Fig. 15. The framework for test sample generation.

Table I. Summary of Table Error Rates

(a) Vm table error rate (b) pw table error rate
error rate (%) error rate (%)

Cell Tμ

strike Tσ
strike Tμ

prop Tσ
prop Cell Tμ

strike Tσ
strike Tμ

prop Tσ
prop

NOT 3.0 2.2 10.7 22.8 NOT 0.4 0.2 4.4 5.3
AND 2.8 1.6 11.2 22.6 AND 0.3 0.2 4.2 6.2
OR 2.9 1.6 11.6 23.7 OR 0.4 0.2 4.3 7.4

gate delay [Choi et al. 2004; Salzmann et al. 2007; Weste and Harris 2005]. Note that,
the other important random variation, threshold-voltage (Vth) fluctuation, can also
be reflected indirectly by considering the process variation. However, more variation
sources can be considered as long as their impacts can be reflected onto SPICE
simulation results.

As illustrated in Figure 15, the framework first generates a path consisting of a ran-
dom number of cells, which are connected to additional random cells as loadings. Using
Monte-Carlo spice simulation, the transient-fault distributions are recorded along the
path, which are later collected as test samples. The training samples for the learning
models are also generated in the same manner.

6.1.1 Precharacterized Tables. We build a series of precharacterized tables for pulse
width pw and voltage magnitude Vm with a total size of 9.5MB, using about 1 month
for data preparation and < 1 second for table construction, according to Section 4.1.
Used with samplings and renewals, the tables are later verified with 10K test samples,
where the results are presented and categorized according to cell and table types in
Table I. For pw tables, the results are better: the error rates for Tμ

strike and Tσ
strike are

within 0.5%, whereas the error rates for Tμ
prop and Tσ

prop are up to 7.4%. For Vm tables,
however, the error rates for Tμ

strike and Tσ
strike are around 3.0%, whereas the error rates

for Tμ
prop and Tσ

prop are up to 23.7%. Note that in the table-lookup framework, Vm is also
one of the indexing variables of pw tables. Therefore, when used in this framework,
the Vm tables’ higher error rates will also affect the lookup of pw tables.

6.1.2 SVR Models. We also build the SVR models for three cells with four charge-
strength levels. Assuming a 5% process-variation, each model is trained with 10K
training samples. Then, we examine these models’ accuracy and compression ratios
using another 10K test sample.

The mean error rates and compression ratios are first categorized according to
model and cell types in Table II. Three messages are observed. (1) All mean error
rates and compression ratios of δ

μ

strike, δ
μ
prop, and δσ

prop models are below 4% and 4.5%,
respectively. Hence, we found these models accurate and compact. (2) δσ

strike models
have error rates and compression ratios around 13% and 0.4%, respectively. This type
of model is less accurate and smaller, which means the behavior of δσ

strike may not be
fully explained by its current input variables. (3) Among different cells, NOT has the
largest mean compression ratio, whereas OR has the smallest. It means that NOT mod-
els generally have a more complex behavior than OR models.
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Table II. Model Quality w.r.t. Model Type

error rate (%)

Cell δ
μ

strike δσ
strike δ

μ
prop δσ

prop

NOT 2.0 12.9 3.7 3.8

AND 2.8 12.0 2.4 3.9
OR 2.6 11.9 3.3 3.7

compression ratio (%)
Cell δ

μ

strike δσ
strike δ

μ
prop δσ

prop

NOT 2.7 0.4 4.4 1.2
AND 2.4 0.3 1.1 0.9

OR 1.4 0.3 0.4 1.2

training time (sec.)
Cell δ

μ

strike δσ
strike δ

μ
prop δσ

prop

NOT 273.0 1293.3 706.5 310.5
AND 1329.7 1373.3 1057.4 314.3

OR 1478.5 1341.3 1149.6 286.3

Fig. 16. Model quality w.r.t. charge strength.

In Figure 16, we further categorize the models’ error rates and compression ratios
according to charge strength. This time, we do not use mean values, as they are known
to be easily biased toward extreme values. Instead, we use box-plots that mark the
data’s minimum, first quartile, median, third quartile, and maximum. For the error
rate (shown on the left), while there are extreme values in each category, models of
Q0 in general have a slightly greater error rate (median = 4.5%) compared to Q1
(median = 3.3%), Q2 (median = 3.2%), and Q3 (median = 3.3%). For the compression
ratio (displayed on the right), maximum values likewise, exist in all categories.
However, models of Q0 demonstrate 7X∼10X overall compression ratio (median =
2.2%) compared to Q1 (median = 0.3%), Q2 (median = 0.3%), and Q3 (median = 0.2%).
Equivalently, a model in the Q0 category generally needs 220 out of 10k samples to
encode its behavior, while 30, 20, and 30 samples, respectively, are needed in the Q1,
Q2, and Q3 categories.

These observations show that the pulse-width distribution caused by weak charges
exhibits more complex behavior than the distribution caused by strong charges. This
can be explained by the fact that the transient fault caused by weak charges does
not reach Vdd, and thus is more unpredictable than that caused by strong charges.
However, since weak charges strongly dominate the majority of particle hits due to
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Fig. 17. Three small circuits in our experiment.

their exponential distribution in Eq. (5), accurately predicting their behavior becomes
the key to the success of accurate SER estimation.

6.2 SER Computation

The table-lookup Monte-Carlo and the SVR-learning frameworks are built and exer-
cised on a Linux machine with a Pentium Core Duo (2.4GHz) processor and 4GB RAM.
We use the the 45nm Predictive Technology Model (PTM) [Nanoscale Integration and
Modeling Group 2008] and set the corresponding charge collection slope Qs as 10.84 fC
according to Semiconductor Roadmap Committee of Japan [2003]. The neuron flux
rate is set to F = 56.5m−2s−1 at sea-level [Dodd and Massengill 2003]. In Eq. (2), μw

and σw are set to 100ps and 10ps, respectively [Nangate Inc. 2008]. For all circuits,
each node under every input pattern combination is injected with four levels of elec-
trical charges: Q0 = 34 fC, Q1 = 66 fC, Q2 = 99 fC and Q3 = 132 fC, where 32 fC is
observed to be the weakest charge capable of generating a transient fault with positive
pulse width under our settings. Note that for simplicity, as in Zhang et al. [2006] and
Rao et al. [2006], four levels of charges and only one kind of soft error, the 0-to-1 error,
are considered for computing SSERs. More levels of charges and a 1-to-0 error can be
injected in both of our frameworks to better approximate the total SER in Eq. (4) if
time permits.

Both static and Monte-Carlo SPICE simulation are used for SER accuracy evalu-
ation over four benchmark circuits (t4, t6, t18, as shown in Figure 17, and c17 from
ISCAS 85). In the static setting, we use static SPICE simulation and calculate the
error-latching probability according to Eq. (1). In the statistical setting, we use 100
Monte-Carlo SPICE simulation runs and calculate the error-latching probability ac-
cording to Eq. (2). The pulse width of the arrival transient fault is then measured at
all primary outputs under all input pattern combinations.

Because of the extremely long runtime of Monte-Carlo SPICE simulation, we are
only able to perform tests on small circuits, with the largest containing 7 gates, 12
vulnerable nodes, and 5 inputs. The runtime of the Monte-Carlo SPICE simulation
ranges from 8 hours to slightly more than one day. The runtime of the table-lookup
framework ranges from 0.19 to 0.71 seconds with the average 105X speedup. The
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Fig. 18. Soft error rate comparison between static SPICE simulation, Monte-Carlo SPICE simulation, and
the proposed frameworks.

Fig. 19. SER breakdown by charge strength.

SVR-learning framework runs even faster (< 0.01 second on the four cases), and the
average speedup is of the order of 107X.

Figure 18 compares the SER analysis results where three facts are observed: (1)
under 5% process-variation, the SER obtained by Monte-Carlo SPICE simulation are
35% ∼ 52% above that obtained by static SPICE analysis. Since the process vari-
ations worsen the stability of circuits beyond the deep submicron regime, statistical
analysis methods should be used to avoid increasingly underestimated circuit SER.
(2) The table-lookup framework underestimates t4, t18, and c17, but overestimates t6
meanwhile, with the maximum error difference being 26.27%. (3) The SVR-learning
framework yields SER’s slightly above the result using Monte-Carlo SPICE simulation
and the maximum difference is < 9.0%.

To more closely investigate the SER difference between static and statistical analy-
ses, we breakdown the results in Figure 18 by charge strength levels, and present the
results in Figure 19. Comparing the results between static and Monte-Carlo SPICE
simulations across all test circuits, it is observed that the results of the two SPICE
simulations and the two proposed frameworks are very similar for Q1 ∼ Q3 parts (dif-
ference < 5%). For the Q0 part, indicated by the white bars, however, the static SPICE
simulation constantly underestimate the SER. The table-lookup framework performs
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Fig. 20. σpw propagation along a path.

Table III. Benchmark Circuits, SER and Runtime from Table-Lookup Monte-Carlo and
SVR-Learning Frameworks

table-lookup (tbl) SVR-learning (svr) tbl/svr
circuit Nnode Npo Npred(k) SER(FIT) time(s) SER(FIT) time(s) spdup(X)

t4 4 1 0.1 2.18E-05 0.2 2.52E-05 < 0.01 >20.0
t6 6 2 0.2 4.73E-05 0.3 4.06E-05 < 0.01 >30.0

t18 12 3 0.4 6.05E-05 0.7 7.21E-05 < 0.01 >70.0
c17 12 3 0.5 5.31E-05 0.7 6.66E-05 < 0.01 >70.0
c432 233 7 362.5 1.25E-04 114.4 1.48E-04 5.9 19.4

c499 638 32 2939.3 1.15E-04 870.6 1.59E-04 42.9 20.3
c880 443 26 402.5 1.52E-04 173.2 2.18E-04 6.1 28.4

c1355 629 32 3013.2 1.19E-04 891.8 1.36E-04 43.5 20.5
c1908 425 25 1240.3 2.12E-04 365.1 2.27E-04 18.4 19.8

c2670 841 157 570.8 3.48E-04 401.0 3.40E-04 9.6 41.8
c3540 901 22 3142.4 7.41E-04 1070.6 6.67E-04 39.8 26.9

c5315 1806 123 2272.2 1.15E-03 818.2 1.09E-03 35.1 23.3
c6288 2788 32 43776.4 6.86E-04 15703.1 8.45E-04 501.5 31.3

c7552 2114 126 3704.8 1.04E-03 1406.7 8.89E-04 97.4 14.4

mul 4 158 8 145.4 1.58E-04 98.8 1.79E-04 2.4 60.6
mul 8 728 16 2960.3 4.14E-04 710.2 6.06E-04 45.1 15.7

mul 16 3156 32 52348.1 1.48E-03 9565.0 1.47E-03 784.7 12.2
mul 24 7234 48 273008.7 2.63E-03 39628.5 2.35E-03 3553.2 11.2
mul 32 13017 64 890360.5 2.82E-03 131535.6 3.21E-03 11142.1 11.8

Average 28.8

better than the static SPICE simulation but worse than the SVR-learning framework.
Overall, the SVR-learning framework can give a slightly larger but closer (and more
stable) results as Monte-Carlo SPICE simulation.

To further investigate the 9% SER over-estimation of the SVR learning framework,
one transient fault along a path is specifically identified in Figure 20. The X-axis and
Y-axis denote the propagation level and the standard deviation of the pulse width (σpw)
of this transient fault, respectively. After two propagations, the σpw drops sharply and
has not yet been fully captured by the current learning model. This behavior does
not seem to correlate to any of our existing input variables, and caused larger SER
estimations according to Eq. (2) and Figure 4. Such an issue will be another topic
worth exploring.
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Since running Monte-Carlo SPICE simulation with process variations for large
circuits will be prohibitively time-consuming, we can only run both frameworks on
large benchmark circuits. However, the entire set of circuits includes the ones used in
Figure 18, ISCAS 85 benchmark circuits [Brglez and Fujiwara 1985], and a series of
multipliers. Table III first lists the name, the total number of nodes,the total number
of outputs, and the total number of predictions for each circuit. The latter columns in
the table report the SER and runtime from both the table-based and the SVR-learning
frameworks. Accordingly, SER is clearly proportional to the number of nodes and
primary outputs of a circuit, which correspond, respectively, to the possibility of the
circuit struck by radiation particles and the possibility of the resulting transient
faults observed in primary outputs. The runtime, however, does not only depend on
the number of strike nodes, but also depend on the number of convolutions between
these nodes. For example, c3540 (an ALU with control) has fewer nodes than c5315
(another ALU), whereas its runtime is larger. This property is also observed from the
large runtime of multiplier circuits, in which every primary output depends on each
primary input. Finally, the SVR-learning framework runs faster than the table-based
framework by 11.8X-70.0X, with an average of 28.8X.

7. CONCLUSIONS

Traditional SER analysis techniques try to mimic the results of static SPICE simula-
tion. However, static analysis tends to increasingly underestimate true SERs in the
presence of process variations. In this article, we first examine the soft-error effect
beyond deep submicron technologies considering process variations. From the statis-
tical point of view, we found that transient faults are not always diminishing in pulse
width after propagation, and may even become larger when reaching flip-flops. We
also showed that soft errors originating from particle strikes with small charges can
easily escape from the traditional static analysis.

To cope with these sophisticated issues, a table-lookup Monte-Carlo framework and
a SVR-learning framework are proposed, respectively. The first framework captures
the change of transient-fault distributions implicitly, using the Monte-Carlo method,
whereas the second does the same task explicitly, using support vector regression.
Experimental results show that both frameworks are capable of more accurately es-
timating SERs when comparing to the static SPICE simulation. Moreover, the SVR
learning framework outperforms the table-lookup framework in terms of both SER
accuracy and runtime.

Statistical soft error rate (SSER) is an emerging topic. As the IC technology keeps
evolving beyond deep submicron, we envision SSER analysis becoming increasingly
critical for reliable scaled designs. A few future directions of SSER research include
(1) deriving more accurate learning models for σpw ; (2) developing a faster Monte-Carlo
framework with high accuracy; and (3) applying statistical circuit optimization.
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