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Study of Reliable Control Via an Integral-Type
Sliding Mode Control Scheme

Yew-Wen Liang, Member, IEEE, Li-Wei Ting, and Li-Gang Lin

Abstract—This paper studies the active reliable control issues
for a class of second-order nonlinear uncertain systems using an
integral-type sliding mode control (ISMC) strategy. The proposed
ISMC reliable scheme is shown to be able to tolerate some of
the actuators’ faults whenever the fault detection and diagnosis
information is available. The presented scheme also maintains the
main advantages of the ISMC designs, including robustness, rapid
response, and ease of implementation. When the uncertainties
and the output of the faulty actuators are matched regarding the
nominal healthy subsystem, the state trajectories of the nominal
healthy subsystem and the uncertain faulty system are identical.
As a result, the engineers may adopt an optimal strategy for
the nominal system, creating a desired trajectory for that of the
uncertain faulty system to follow. Simulation results demonstrate
the benefits of the proposed scheme.

Index Terms—Integral-type sliding manifold, reliable control,
sliding mode control (SMC), uncertain system.

I. INTRODUCTION

ECENTLY, the study of reliable (or fault-tolerance)

control, including fault detection and diagnosis (FDD)
issues for performing the active reliable task, has attracted
considerable attention (see, e.g., [1]-[19]). Since the repair and
maintenance services are generally not able to be provided
instantly, reliable control issues have become of paramount
importance. The objective of reliable control is to design an
appropriate controller such that the closed-loop system can
tolerate the abnormal operations of specific control components
and retain the overall system stability with acceptable system
performance. Among the existing reliable control studies, some
investigate the reliability issues for linear systems [17], [18],
[20], and some investigate those for nonlinear systems [3],
[10]-[13], [19]. The nonlinear reliability studies include the
Hamilton—Jacobi (HJ)-based approach [10], [19] and the sliding
mode control (SMC)-based approach [3], [11], [12]. Because
the HJ-based approach is designed under an optimal strategy,
its reliable controller is inevitably dependent on the solution
of an associated HJ equation, which is, in general, difficult
to solve. Although a power series method [21] may alleviate
the difficulty through computer calculation, the obtained so-
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lution is only an approximation, and the computational load
grows quickly when the system is complicated. In contrast, the
SMC reliable controllers do not require the solution of any HJ
equation and retain the advantages of SMC designs, including
rapid response, easy implementation, and robustness to model
uncertainties and/or external disturbances [3], [22]-[26].

Although the SMC designs possess the aforementioned ad-
vantages, it was reported that the resulted closed-loop system
might be sensitive to uncertainties and/or disturbances during
the period of time in which the system state has not yet
reached the sliding manifold [27]. To solve the reaching phase
problem, an integral-type SMC (ISMC), which guarantees that
the system trajectories will start in the manifold from the first
time instant, and its applications have been studied recently
(see, e.g., [3], [22]-[24], [28], and [29]). In addition to the
absence of a reaching phase feature, the ISMC design also
maintains the aforementioned advantages of SMC and the
following three characteristics: First, the matched uncertainties
and/or disturbances will be completely rejected whenever the
system state remains on the sliding manifold; next, due to the
fact that the maximum control magnitude of the SMC designs
usually happens at the beginning of the reaching phase period,
the maximum control magnitude required for ISMC is usually
smaller than those of SMC designs; and, finally, the states of
the nominal healthy subsystem and the matched-type uncertain
system are exactly the same if the system state stays on the
sliding manifold. The last feature provides us an extra degree
of freedom to organize a suitable controller for the nominal sys-
tem, creating a desired system state trajectory for the state of the
uncertain system to follow. In light of the benefits mentioned
earlier, this paper will investigate the reliability issues from the
ISMC viewpoint. To the best of the authors’ knowledge, this is
the first such implementation that takes the advantages of the
ISMC scheme at the reliable control issues. With this approach,
the engineer is capable of addressing better system performance
under different faulty situations.

The rest of this paper is organized as follows. Section II states
the problem and the main goal of the study. It is followed by the
design of the ISMC reliability laws. The analytical results are
then applied in Section IV to the attitude control of a spacecraft.
Finally, Section V provides the conclusions.

II. PROBLEM STATEMENT

Consider a class of n second-order nonlinear control systems
as described by

X1 =X ey
and %y =f(x,t) + G(x,t)u+d. )
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Here, x; = (21,...,2,)7 € R", X0 = (Tpi1,...,72,)" €

T
R", and x = (x¥,x1)" are the system states, u = (uy,...,
um)? € R™ are the control inputs, d = (dy,...,d,)T € R"

denote possible model uncertainties and/or external distur-
bances, f(x,t) € R" and G(x,t) € R™™ are smooth func-
tions with £(0,¢) =0, and (-)” denotes the transpose of a
vector or a matrix.

In this study, we will investigate the active reliable control
issues for Systems (1) and (2). That is, we assume that the
actuator fault has been successfully detected and diagnosed
by an FDD mechanism. The fault may be time varying and
include degradation, amplification, and outage [11], [15]. Be-
fore the occurrence of faults, the engineers may take any kind
of control strategy to fulfill their desired system performance.
When the fault is detected and diagnosed, the control law is
guided to switch to an active reliable law for ensuring system
performance. Thus, after the fault is detected, we may divide the
actuators into two groups, H and JF, within which we assume
that all of the actuators in H are healthy while those in F
experience faults. Moreover, we assume that the output values
of the faulty actuators are successfully diagnosed by an FDD
mechanism as

ur =ur + Aur 3)

where 1 and Auyr denote the estimated value and the estima-
tion error, respectively. Let

G(x,t) = (Gn(x,t) FGr(x, t)) 4)
T
andu = (u% u?_—) . 5)

Systems (1) and (2) can be

X1 =X3 (6)
and %o = f(x, t) + Gu(x, t)uy + Gx(x,t)(aF + Aug) +d.
(N

Here, we assume that uy € R*, iy and Auyr € R™ %, and
m > k. From [27], we know that

I, = Gu(x, )G (x, ) + Gy (x, )Gy, (%, t) (3)

where I, € R™" denotes the identity matrix, G (x,t) €
R**™ represents a matrix whose columns span the null space
of G%(x,t), and G5 (x,t) and G5 (x, t) denote the pseudoin-
verses of Gy (x,t) and G,(x,t), respectively. Therefore, the
uncertainties and/or disturbances, including the output of faulty
actuators given in (7), can be projected into the column spaces
of Gy (x,t) and G;(x, t), in which the components of the pro-
jection are called the matched and the unmatched uncertainties
regarding the healthy subsystem %; = x5 and %3 = f(x,t) +
Gy (x,t)uy, respectively [27]. However, due to the assump-
tion that the estimated value tiz is available from the FDD
mechanism, the matched part Gy (x, )Gy, (x,t)G#(x, t)ar of
Gr(x,t)ur in (7) can be directly compensated by the healthy
controllers. Thus, the total uncertainties given in (7) reduce to

d; := G]:(X, t)u]: +d— G‘H(X7 t)G;(X, t)G]:(X, t)fl}'. ©))
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According to (8), d; can be further decomposed into matched
and unmatched parts as shown in the following:

d; = Gyu(x,t)d,, +d, (10)
where d,,, = GJ;(x,t)d; and d,, = G7;(x, )Gy, (x,)d;. We
impose the following four assumptions for succeeding analysis.

Assumption 1: Any n columns taken from G(x,t) are lin-
early independent for any (x,t).

Assumption 2: When k < n, there exists a constant matrix
Dy € RF*™ such that Dy Gy (x,t) is uniformly invertible.
When k > n, Dy € R™*™ is chosen such that Dy, Gy /(x, t) has
full rank.

Assumption 3: There exists a control uy such that the
origin of the following nominal healthy subsystem

5(1 = X2
and X2 =f(x,t) + Gr(x, t)uxo

Y
12)

is uniformly asymptotically stable (UAS). That is, there exists
a continuously differentiable function V'(x, ¢) such that

7 (Ix]) < Vix, 1) < 72 ([I]) (13)

8Vgtc, 2 (aVG% t)>T' (f (x,t) + 21(& t>uH0)

< =3 (Ixl)

where 71,72 : RT — R* are class Ko, functions and 3 is a
class K function.

Assumption 4: There exist two nonnegative functions
Pm(x,t) and p, (x,t) such that

(14)

[dm |l < pm(x,t) and [|dy|| < pu(x,1) (15)

for all x and ¢, where d,,, and d,, are given by (10).

Note that Assumption 1 claims that the system with any n
healthy actuators is controllable. Assumption 2 provides the
condition so that the ISMC scheme can be successfully imple-
mented. Assumption 3 asserts the performance of the healthy
subsystem. Finally, Assumption 4 gives the upper bounds of
possible matched and unmatched uncertainties for robustness
analysis. From (10) and Assumption 4, it is clear that the more
accurate the diagnosis of the FDD is, the smaller the function
pm(x,t) will be. The objective of this study is to organize an
appropriate uy, so that the origin of the closed-loop system is
UAS under Assumptions 1-4.

III. RELIABLE CONTROLLER DESIGN

To achieve the objective as stated earlier, in the following,
we will employ the ISMC technique to perform the design task.
Along the ISMC design procedure (see, e.g., [22] and [27]), we
introduce the sliding manifold as the following:

s=s(x,t)

=Dy %o (1) —xa(to) — /[f(x(f),T)+GH(X(T),T)uHO]dT .

to

(16)
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It follows from (6), (7), (10), and (16) that

§ =Dy - {%a(t) — f(x,t) — Gu(x,t)uno}
=Dy - {Gu(x,t)uy + Gr(x,)ur + d — Gr(x,t)unp}
=Dy Gr(x,t) {117-( + G+(X H)Gr(x,t)ar +d,, — uHo}
+ Dyd,. 17

In order to keep the system state on the sliding manifold, we
choose

uy = { W0~ G (x,t)Gr(x,t)ar ifs = b8
uyo — G;(X,t)G}'(X7 Har —uyy ifs# O
where
wr =plx, 1) 2 Cn ] (19)
H [DyGr(x,t)]" H

and p(x,t) >pm (%, 1) +|| [D1 Gy (x, )] DHH'pu(th)~ (20)

Note that the reliable controller (18) involves the FDD infor-
mation. Thus, we have the next result.

Theorem 1: Suppose that Systems (1) and (2) experience
actuator faults at the control channels in F with estimated value
Uz and error Auy given by (3). Then, the origin of Systems
(1) and (2) under Assumptions 1-4 and the control law given
by (18)—(20) is UAS if

BV (x,1) 0
puls.) H A O | e
for all ¢ and for all x # 0, where
D(x,t) := I, — Gu(x,t) - [DnG(x,t)]T - Dy (22)

Proof: From (17)-(20), Assumption 4, and the fact
that [DyGu(x,t)] - [DyGr(x,t)]T =1 for k<n and
[Dy Gy (x,1)] - [DyGy(x,t)]T = I, for k > n, we have
[D'HGH (X, t)]T S

[DyGr(x,1)]" s

STS :STDHGH(X?t) ’ {_ p(X, t) H

+ dm+ [DHGH(X7 t)]+ DHdu}

< H [Dy G (x, t)] H { p(x,t)+pm(x,1)

+{|[Dn G, )] Dy |- pu(x, t)}

<0 (23)

for s # 0. Since s(x(tp),to) = 0, it follows from (23) that
s(x,t) = 0 for all ¢t > tg, i.e., the system state remains on
the sliding manifold for all ¢ > ty. To determine the sliding
dynamics (motion equations on the sliding manifold), we use
the equivalent control method (see, e.g., [26] and [27]). The
equivalent control is obtained by solving the equation s = 0
from (17) as

uif = Uxo — G;?(X,t)G]:(X, t)fl]: — dm

— [DyGy(x,1)]" Dyd,. (24)
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By substituting uy;
the sliding dynamlcs

7 into (6) and (7) and using (10), we have

(25)
(26)

)'(1 = X9
and X =f(x,t) + Gy (x,t)uyo + I'(x,t)d,

where T'(x, t) is given by (22). It then follows from (25) and
Assumption 3 that

WV (x.1) <6V(x, t))T

Vit =—% ox

' (f(x, ) 4G (x, t)upo+I(x, t)du)

(*52) (e

for all x # 0. Thus, the origin is UAS. |

Remark 1: 1t is found from the proof of Theorem 1 that the
matched uncertainties and/or disturbances can be completely
rejected. When k& > n (i.e., the number of healthy actuators
is greater than or equal to n), the range space of Gy (x,t)
is the whole R™ space, and hence, the uncertainties and the
output of the faulty actuators are matched type, which can be
completely rejected. Thus, the sliding dynamics given by (25)
and (26) and that of the nominal healthy subsystem described
in Assumption 3 are exactly the same. As a result, the state
trajectories of the uncertain faulty system described by (6) and
(7) and the nominal healthy subsystem are identical. Therefore,
the engineer is allowed to organize an appropriate controller
according to the system requirements for the nominal healthy
subsystem, creating a desired system state trajectory for the
state of the uncertain faulty system to follow.

Remark 2: Suppose that k < n and G(x,t) = G is a con-
stant matrix. Then, under the settings of Theorem 1, the
matched uncertainties (including the matched part of the output
of the faulty actuators) regarding the healthy subsystem can be
completely rejected, while the effect of the unmatched uncer-
tainties in (25) and (26) remains minimum in the Euclidean
norm sense if the matrix Dy in (16) is selected to be Dy =
G;Q [27]. Under this setting, the control uy; given by (19) is
simplified to be

< —73 (HXH)—&-pu(X, t)'

<0

wy = p(x,t)ﬁ. @7)

Remark 3: It is known that the success of an active reliable
scheme depends mainly on the performance of the supplemen-
tary FDD method, including detection speed and accuracy [2],
[6], [7]. Therefore, it is important to select an FDD mechanism
that is appropriate for an active mission according to system
requirements. From the theoretical derivations presented ear-
lier, it should be noted that the reliable scheme proposed in this
study can tolerate the inaccuracy of FDD estimation provided
that an upper bound of the estimation error is known. Thus,
the proposed reliable scheme also provides engineers with the
flexibility of choosing another well-developed FDD mechanism
[2], [6], [7] in accordance with system requirements and FDD
performances.
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IV. APPLICATION TO SPACECRAFT
ATTITUDE STABILIZATION

An attitude model for a spacecraft along a circular orbit can
be described in the same form as (1) and (2) with n = 3 and
m = 4 [12]. The three Euler’s angles (¢, 0, ) and their deriv-
atives are adopted as the six state variables. For simplicity, we
assume in this study that the thruster is the only applied control
force and there is actuator redundancy for the reliable task.
Let x = (w1, 22,3, %4, Ts, mG)T = (9,0, 9, q-ﬁ, éa ZZ})T, u=
(w1, ug,uz,ug)t, and f(x,t) = (f1(x,1), f2(x,1), f3(x,1))T.
The overall system dynamics has parameters as described in
the following:

I,—1I.
I,

f1(x,1) =woxecrscrs — woTssr3sTe +
X lx5x6 + Wox5CT18T38To + Wox5CT3ST

1
+ worgcr3cxy + 5w35(2x3)02xlsx2

15,
+ FWoc x38(2w1) — WoLeST3ST2ST]

1 1
— 50.)3521‘2521"33(23:1) = 50)38(2]}3)31‘282331

3
- 2w802x28(2$1)] (28)
fa(x,1) =woxesaszcay + woTaCr3sT1 + WoTeCT3ST2STY
Iz - Ix

1y

+ Wox58T3CT28T + WoXgST38T2CT1 +

T4T6 + WoT4CT18T38T2 + WL 4CL38T

1, 2
— WoTESTICLy — §w08(2x2)3 T3CT

1
- 510(2)015281'18(21'3) + §w38(2$2)0$1 (29)

2
f3(X,1) =wox48218T35T9 — WXECT1CT3STo
— WOIT5CL18T3CTo + WoXgST3ST1 — WL 4Cr3CT
I—1,

+Iz

Tys —|—w0x4cx30x1 —WoL4ST38T28T1

1
— WoX5ST3CTy — §w§s(2x3)cxgcx1

1
+ ~wis?rzsrys(2r7)

2
3 5
— §w05(2x2)8331 (30)
0.67 0.67 0.67 0.67
Gx,t)=G=[069 —0.69 —0.69 0.69 G1)
0.28 0.28 —0.28 —-0.28

Here, I, I,, and I, denote the inertia with respect to
the three body coordinate axes, wy denotes the constant or-
bital rate, and ¢ and s denote the cosine and sine functions,
respectively. Note that, Assumptions 1 and 2 are obviously
satisfied since G(x,t) is a constant matrix, and a matrix that
is composed of any three columns taken from G is invertible.
A candidate for Dy described in Assumption 2 is Dy = I3.
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Moreover, the system is found to be controllable for any three
of the control inputs being healthy; therefore, Assumption 3
is satisfied for £ > 3, and we have an additional redundant
control channel for the reliable control task. In this study,
we assume that I, = I, = 2000 kg-m?, I, =400 kg-m?,
and wo = 1.0312 x 1072 rad/s, and the angular positions are
constrained to be z1,x3 € [, 7| and x5 € [—7/2,7/2].

For demonstration, we use the linear quadratic regulator
(LQR) design [10] for the nominal controller uy of the ISMC
scheme with @Q = 27 and R = I. Since the solution of the
associated HJ equation for the LQR design is difficult to derive,
we adopt the Taylor series expansion method [21] for uyg
up to order 3, which can be computed offline. The reliable
scheme proposed in this paper can tolerate the FDD estimation
error (see Remark 3). Therefore, in this study, we only adopt
the observer and the observer parameters from [12, egs. (10)
and (11)]for demonstration of application because the adopted
observer has been shown to be able to reflect the fault of any
single actuator at an exponential rate and greatly attenuate
high-frequency noises. It is also worth noting that any other
well-developed FDD mechanism [4], [6] can be considered
for application here. Before an alarm, all of the active reliable
schemes adopt their conventional nonreliable designs as if all
actuators are available. When there is an alarm, the associated
active reliable controllers are activated according to the FDD
information provided.

The numerical results of the study are summarized in
Figs. 1-4. The four figures exhibit respectively the time his-
tories of the six system states, the sliding variables s :=
(s1, 82, 53)T, the four control inputs, and the residual and alarm
signals. Among these figures, we consider the following four
cases: the first two adopt the LQR reliable scheme [10] for the
nominal system (labeled LQR1) and for the uncertain system
(labeled LQR?2), whereas the other two adopt the sliding mode
reliable control scheme [12] (labeled SMRC) and the ISMC
reliable scheme proposed in this paper (labeled ISMC). The
parameters of the SMRC scheme are adopted from [12] as
M = 215 and n = 1, while the parameter of the ISMC is Dy =
I5. In addition, we assume that d = 0.08 - (sin(t), cos(2t),
sin(3t))” + (0.1,0.1,0.1)T,  x(0) = (0.7,0.07, -1.5,—0.3,
—1.3,0.2)T, and the upper bound p,,(x,t) in Assumption 4 is
selected as |G| - [|d| ., where ||d||« := sup, ||d]|. To alle-
viate chatter, the sign function in SMRC is replaced by the satu-
ration function with a boundary layer width of 0.02, while the
control (18)inISMCisreplaced by uy=uyo — G5 (x,t) G (x,t)
Ur—p(x,t)([DyGr(x,t)]Ts/e(x,s,t)), where e(x,s,t) =
|[DnGx(x,t)]Ts|| if ||s|| >0.02 and e(x,s,t) =0.02 if
|ls|| < 0.02. Finally, to demonstrate reliable performance, we
assume that us fails at ¢ = 1 s, and the threshold for the alarm
is set as 0.05, i.e., the alarm is triggered if the magnitude of any
of the residual signals from the observer is greater than 0.05. It
should be noted that the performance of an FDD mechanism
is influenced by the presence of model uncertainties and/or
disturbances, which might result in a false alarm. Therefore,
the selection of the threshold is, in general, a tradeoff between
the probability of a false alarm and the probability of missed
detection [5]. Although the threshold can be set lower to
promote the sensitivity of the FDD mechanism, a lower
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1 0.4
LQR2 . SMRC
5 05 ISMC, LQR1 5
© ©
= A 0 -
X0 LR % LQR2
SMRC | \A=—isMc, LQR1
= -0.4
052 4 6 8 10 4% 4 & & 10
(a) Time (s) (b) Time (s)
0.5 0.2
0 -
) LQR2 2
© o
=-05 SMRC £
<4 ISMC, LQR1 <
=
56 2 4 6 8 10
(C) Time (s)
05 . ISMC, LQRT L
—~ 0 — SMRC
3 LQR2 g o5 LQR2
e}
£ -05 SMRC g )
o
x4 <° ISMC, LQR1
= -0.
50 2 4 6 8 10 %59 2 4 6 8 10
(e) Time (s) (f) Time (s)
Fig. 1. Time history of the six system states with LQR, SMRC, and ISMC
designs.
15 T T T T T T T
g ! SMRC 1
e}
£ 05t ISMC 1
a0
—05 | | 1 | | 1 | | |
0 1 2 3 4 5 6 7 8 9 1
(a) Time (s)
0.5 T T T T T T T T T
.0
Q
3 o5l ISMC J
o SMRC N
= . . . . . . . . .
155 1 2 3 4 5 6 7 8 9 1
(b) Time (s)
1 T T T T T T T T
@ 0
T 1t ISMC i
® Ll ™\ swRe |
=30 1 2 3 4 5 6 7 8 9 10
(C) Time (s)

Fig. 2. Time history of the three sliding variables with SMRC and ISMC
designs.

threshold setting might result in a false alarm for real and noisy
applications [5], [16].

It is observed from Fig. 1 that the stabilization performance
is, as expected, achieved for the SMRC and the ISMC designs.
However, since the LQR is not a robust design, its system
states are not found to be convergent to zero, particularly
when there exist persistent uncertainties and/or disturbances.
Moreover, the state trajectories of the ISMC and those for
the nominal design LQR1 are found to be almost identical,
which agrees with the theoretical conclusion. From Fig. 2,
the sliding variables of the ISMC design are seen to be zero
for all time. It implies that the system states remain on the
sliding manifold for all ¢, which also agrees with the main
results. In Fig. 4(a), the actuator fault is successfully detected
by all of the three designs since the magnitude of the second
residual signal exceeds the threshold near tgnc =~ 1.092 s,
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nA/SMRC

LQR2

uy (m-N)

LQR1
ISMC

2 4 6 8 10
(b) Time (s)

0 2 4 6 8 10 0 2 4 6 8 10
(C) Time (s) (d) Time (s)
Fig. 3. Time history of the four control inputs with LQR, SMRC, and ISMC
designs.
0.1 T T T T T T T T T

0.05

0 1 2 3 4 5 6 7 8 9 10
(@) Time (s)
4 T T T T T T T T
3r SMRC E
ISMC
E Ll
E g
n le—1QR2 |
0 . L . . . L . ! L
0 1 2 3 4 5 6 7 8 9 10
(b) Time (s)

Fig.4. Time history of (a) the second residual signals and (b) the alarm signals
by the FDD observer with LQR, SMRC, and ISMC designs.

tsmre ~ 1.144 s, and t1,qr2 ~ 1.73 s. This can also be seen
from the alarm signals given in Fig. 4(b) where the alarm
value 2 denotes the fault of the second actuator. After the
fault is successfully detected, the associated active reliable
controllers are activated, and the magnitude of the residual
signals soon decreases, as shown in Fig. 4(a). The persistent
oscillation of the residual signal comes from the effect of the
disturbance d. It is also noted from Fig. 3 that there are several
peaks for the control curves of the SMRC design. These peaks
correspond to the system states reaching the sliding manifold
and the switch of control due to the detection of fault, which
can be seen from Figs. 2 and 4(b), where the time instants
for the three sliding variables of SMRC reaching zero are
ts, = 117 s, tg, = 0.91 s, and g, ~ 2.23 s, respectively.
Finally, since the ISMC design of this example adopts the LQR
scheme for the nominal healthy subsystem, its performances
are close to those of LQRI1 except for the need of an extra
control component to compensate for the uncertainties. In this
example, the ISMC is found to have better performance than
the SMRC in quadratic performance [ x” Qx + u’ Ru, energy
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consumption | u’'u, and required maximum control magnitude
|ufl according to the following relations: ([ x”Qx +
u’Ru)qr1 = 10.24 < ([ xTQx + uT Ru)isme = 11.33 <
(f XTQX + uTRu)SMRC = 14.42, (f uTu)LQRl =224 <
([u'u)isme =3.35 < (fuTu)smrc =6.54, and (lalldrgri =
(Iaflso)1sme = 2-85 < (|lulloo)symre = 3-08. Although  the
SMRC design consumes much more energy than the ISMC,
it attains a larger convergence speed of the system states,
which can be recognized in Fig. 1. From this simulation, it is
concluded that the ISMC reliable design can not only achieve
the stabilization performance when some of the actuators
experience fault but also maintain the same state trajectory as
the nominal healthy subsystem whenever the uncertainties are
matched.

V. CONCLUSION

An ISMC stabilization scheme has been employed in this
paper to study the active reliable control issues of a class
of second-order nonlinear nonautonomous uncertain systems.
Both matched and unmatched uncertainties were considered
in this reliable design. Similar to those stated in [27], which
were nonreliable designs and only investigated systems with
constant control matrices, it was shown that the proposed
reliable design can completely reject the matched uncertainty,
while the effect of the unmatched uncertainty can also be made
minimum through the setting of sliding manifold parameters
under different faulty situations. As a result, the engineer is al-
lowed to address better system performance for uncertain faulty
system. It is worth noting that the matched uncertainty may
become unmatched due to the actuators’ outage. Therefore,
for practical applications, it is important to have an effective
FDD mechanism to efficiently realize the ISMC reliable control
performances. An example and an observer were also given
to demonstrate the benefits of the proposed reliable scheme.
Nevertheless, the reliability study for more general systems
and applications, including FDD development, needs further
investigation.
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