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Abstract This paper presents a new hyperchaotic sys-
tem with three positive Lyapunov exponents (called
Tri-Chaos). Via linear coupling, Mathieu, and van der
Pol systems are coupled with each other and then be-
come a new four order system—Mathieu–van der Pol
autonomous system. As we know, two positive Lya-
punov exponents confirm hyperchaotic nature of its
dynamics and it means that the system can present
more complicated behavior than ordinary chaos. We
further generate three positive Lyapunov exponents in
a new coupled nonlinear system and anticipate the ad-
vanced application in secure communication. Not only
a new chaotic system with three Lyapunov exponents
is proposed, but also its implementation of an elec-
tronic circuit is put into practice in this article. The
phase portrait, electronic circuit, power spectrum, Lya-
punov exponents, and 2-D and 3-D parameter diagram
of tri-chaos with three positive Lyapunov exponents of
the new system will be shown in this paper.
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1 Introduction

Nonlinear systems are capable of exhibiting a variety
of behaviors, ranging from fixed points via limit cycles
and tori to the more complex chaotic phenomenon,
especially hyperchaotic attractors. Chaos and hyper-
chaos in a nonlinear system can occur in various kinds
of nature and man-made systems [1–10]; those sys-
tems are characterized by great sensitivity to initial
conditions [11]. In order to appear chaotic motion,
continuous time systems of integer order must be at
least third order. On the other hand, to obtain hyper-
chaos, the system must be at least fourth order.

Chaotic systems are characterized by one positive
Lyapunov exponent (PLE) in the Lyapunov spectrum
[12–19]. The one PLE just indicates that the dynam-
ics of the underlying chaotic attractor expands only
in one direction. If a chaotic attractor is character-
ized by more than one positive Lyapunov exponent,
it is termed hyperchaos. In this case, the dynamics of
the chaotic attractor expands in more than one direc-
tion giving rise to a “thick” chaotic attractor [20–24].
There are both theoretical and practical interests in hy-
perchaos. Hyperchaos was first reported from com-
puter simulations of hypothetical ordinary differen-
tial equations in [25–27]. The first observation of hy-
perchaos from a real physical system, a fourth-order
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electrical circuit, was later reported in [28]. Very few
hyperchaos generators have been reported since then
[29–32].

Hyperchaotic Chua’s circuit [33, 34] and Rossler
system [35] are two well-known examples of hyper-
chaotic models. In recent years, different methods
and techniques have been proposed for chaotification
chaos, in which the linear feedback control method is
simple, but effective to chaotify the chaotic system. Li
and Chen [36] introduced a hyperchaotic Chen system
via state feedback control. Chen et al. [37] constructed
a new hyperchaotic system based on Lü system by us-
ing a state feedback. More recent studies by Wang and
Liu [38] realized hyperchaos based on the chaotic dy-
namical system that was introduced in [39] using an
additional state input. Hu et al. [40] presented a new
hyperchaotic system, which was obtained by adding
an approximate time-delay state feedback to the sec-
ond equation of the three-dimensional Lorenz chaotic
system. Jia [41] also presented a hyperchaotic sys-
tem by adding a nonlinear quadratic controller to the
first equation. Wang [42] constructed a hyperchaotic
Lorenz system by adding a simple linear controller
to the second equation. Hyperchaotic attractors with
two positive Lyapunov exponents can be generated
through all these methods.

As the numerical example, recently developed new
Mathieu–van der Pol autonomous oscillator with four
state variables is used. For this new system, four Lya-
punov exponents are not zero. Although by tradi-
tional theory [43], for four-dimensional continuous-
time systems, there must be a zero Lyapunov expo-
nent; however, on the history of science, as mentioned
by Kuhn in his book, “The Structure of Scientific Revo-
lution,” the unexpected discovery or anomality (coun-
terinstance) is not simply factual in its import and the
scientist’s world is qualitatively transformed as well
as quantitatively enriched by fundamental novelties
of either fact or theory. “Conversion as a feature of
revolutions in science” is the conclusion of the book
“Revolution in Science” written by Cohen [44]. One
of the patterns of the evolution of science is: current
paradigm → normal science → anomality (counterin-
stance) → crisis → emergence of scientific theories
→ new paradigm.

Contributing editor—Professor Evan Ratliff wrote
a comment about Barack Obama’s technology strategy
which is published in the issue 17.02 of Science [45]
as: “Extraordinary claims require extraordinary evi-
dence.” Recently, Ott and Yorke [46] show that the

existence of Lyapunov exponents is a subtle question
for systems that are not conservative. They describe a
simple continuous-time flow such that Lyapunov ex-
ponents fail to exist at nearly every point in the phase
space. Ge and Yang [47] firstly find out the simulation
results of 3PLES in Quantum Cellular Neuro Network
autonomous system with four state variables. Thus, we
call the chaotic motions with three Lyapunov expo-
nents “tri-chaos,” which means there exist three posi-
tive Lyapunov exponents in a nonlinear system.

In this paper, a new system, Mathieu–van der Pol
autonomous system, with four state variables is intro-
duced by linear coupling and generated to show the tri-
chaos for 3PLEs. The complex dynamics behaviors are
going to be investigated by phase portrait, power spec-
trum, Lyapunov exponents, and parameter diagram in
the following simulation results.

2 Differential equations for New Mathieu–van der
Pol system and its basics properties

2.1 The New Mathieu–van der Pol system

Mathieu equation and van der Pol equation are two
typical nonlinear nonautonomous systems:
⎧
⎨

⎩

ẋ = y

ẏ = −(a + b sinωt)x − (a + b sinωt)x3

− cy + d sinωt

(2.1)

{
ż = w

ẇ = −ez + f (1 − z2)w + g sinωt
(2.2)

In order to generate tri-chaos in a four order nonlinear
system, we exchange sinωt in (2.1) with z and sinωt

in (2.2) with x for linear coupling, and then we obtain
the autonomous new Mathieu–van der Pol system.

For the Mathieu–van der Pol system, the following
differential equations are obtained:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = y

ẏ = −(a + bz)x − (a + bz)x3 − cy + dz

ż = w

ẇ = −ez + f (1 − z2)w + gx

(2.3)

where x, y, z, and w are four stats of the system,
a, b, c, d, e, f , and g are parameters of the Mathieu–
van der Pol system.
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Fig. 1 Phase portrait of Mathieu–van der Pol system with a = 91.17, b = 5.023, c = −0.001, d = 91, e = 87.001, f = 0.0180, and
g = 9.5072

2.2 Equilibria analysis

The equilibria of the new system can be found by solv-
ing the following equations simultaneously:
⎧
⎪⎪⎨

⎪⎪⎩

y = 0
−(a + bz)x − (a + bz)x3 − cy + dz = 0
w = 0
−ez + f (1 − z2)w + gx = 0

(2.4)

Here, we use the Lyapunov’s linearization method to
investigate the local stability of the new nonlinear sys-
tem in (2.3). Thus, the linearization of (2.3) for equi-
librium point E1(0, 0, 0, 0) is defined as:

Ẋ = J1X (2.5)

where

J1 =

⎡

⎢
⎢
⎣

0 1 0 0
a −c d 0
0 0 0 1
g 0 −e f

⎤

⎥
⎥
⎦ ,

X = [x1, x2, x3, x4]T
(2.6)

In order to gain the eigenvalues for E1, we take:

|J1 − λI | =

∣
∣
∣
∣
∣
∣
∣
∣

−λ 1 0 0
a −c − λ d 0
0 0 −λ 1
g 0 −e f − λ

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2.7)

and the characteristic equation is obtained:

det |J1 − λI |
= λ4 + (c − f )λ3 + (e − a − cf )λ2

+ (ce + af )λ + (−ae − dg) = 0 (2.8)

Substituting the constants a = 91.7, b = 5.023, c =
0.01, d = 91, e = 87.001, f = 0.0180, and g =
9.5072, then the eigenvalues which are corresponding
to the equilibrium point E1(0,0,0,0) are obtained as

λ1 = −9.8239, λ2 = 9.8146,

λ3 = 0.0086 + 9.5769i, λ4 = 0.0086 − 9.5769i

where λ2 are positive real numbers and the real parts
of λ3, λ4 are positive numbers as well.
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Fig. 2 Projection of phase
portraits outputs in
electronic circuit for
Mathieu–van der Pol
system

Theorem 1 [48, 49] Lyapunov’s linearization method.

According to Lyapunov’s direct method, the fol-
lowing results make precise the relationship between
the stability of the linear system and that of the origi-
nal nonlinear system.

1. If the linearized system is strictly stable (i.e., if all
eigenvalues of J are strictly in the left-half complex
plane), then the equilibrium point is asymptotically
stable (for the actual nonlinear system).

2. If the linearized system is unstable (i.e., if at least
one eigenvalue of J is strictly in the right-half com-
plex plane), then the equilibrium point is unstable
(for the nonlinear system).

3. If the linearized system is marginally stable (i.e., all
eigenvalues of J are in the left-half complex plane,
but at least one of them is on the jw axis), then
one cannot conclude anything from the linear ap-
proximation (the equilibrium point may be stable,
asymptotically stable, or unstable for the nonlinear
system.

Therefore, based on Theorem 1, the equilibrium
point E1(0,0,0,0) is a saddle point, i.e., unstable.
For those nonzero equilibria, it is not a necessary
work to numerically evaluating their stabilities since
one unstable equilibrium point has been found at
zero.



Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system 809

Fig. 3 The configuration of electronic circuit for Procedo-chaotic Mathieu–van der Pol system

3 Phase portraits and its implementation
of electronic circuits

It is well known that the phase space can present the
evolution of a set of trajectories emanating from vari-
ous initial conditions. When the solution becomes sta-
ble, the asymptotic behaviors of the phase trajectories
are particularly interested and the transient behaviors
in the system are neglected. As a result, the phase por-
trait of the Mathieu–van der Pol system, (2.3), is plot-
ted in Fig. 1. In these numerical studies, the parametric
values are taken to be a = 91.7, b = 5.023, c = 0.01,

d = 91, e = 87.001, f = 0.0180, and g = 9.5072 for
plotting the tri-chaotic phase portrait. The new system
can be represented as an electronic oscillator circuit
shown in Fig. 2. We have implemented it using an
electronics simulation package Multisim (previously
called Electronic Workbench, EWB) and the approx-
imated nonlinear electronic circuits are presented to
realize the disordered behavior in the new chaotic sys-
tem. The voltage outputs have been normalized to 1 V
and the operational amplifiers are considered to be
ideal. The phase diagrams are plotted within the time
interval 500 s. The time step is 0.001 s. Due to the limit
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Fig. 4 Power spectrum of
x for Mathieu–van der Pol
system with a = 91.17,
b = 5.023, c = −0.001,
d = 91, e = 87.001,
f = 0.018, and g = 9.5072

Fig. 5 Lyapunov
exponents of Mathieu–van
der Pol system with
b = 5.023, c = −0.001,
d = 91, e = 87.001,
f = 0.018, and g = 9.5072

Fig. 6 Lyapunov
exponents of Mathieu–van
der Pol system with
b = 5.023, c = −0.001,
d = 25,
e = 87.001, f = 0.018, and
g = 9.5072
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Fig. 7 Lyapunov
exponents of Mathieu–van
der Pol system with
a = 96.326680,
c = −0.001, d = 25,
e = 87.001, f = 0.018, and
g = 9.5072

Fig. 8 Lyapunov
exponents of Mathieu–van
der Pol system with
a = 96.326680, b = 5.023,
c = −0.001, e = 87.001,
f = 0.018, and g = 9.5072

Fig. 9 Lyapunov
exponents of Mathieu–van
der Pol system with
a = 96.326680, b = 5.023,
c = −0.001, e = 87.001,
f = 0.018, and g = 9.5072
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Fig. 10 Lyapunov
exponents of Mathieu–van
der Pol system with
a = 96.326680, b = 5.023,
c = −0.001, d = 25,
f = 0.018, and g = 9.5072

Fig. 11 Parameter
diagrams of Mathieu–van
der Pol system with
a = 96.326680, b = 5.023,
c = −0.001, e = 87.001,
and f = 0.018

of the scope of implementation of electronic circuits,
the phase portraits can be only shown in two dimen-
sions. In Fig. 3, the configuration of electronic circuits
is also given.

4 Power spectrum

The power spectrum analysis of the nonlinear dynam-
ical system, (2.3) with a = 91.7, b = 5.023, c = 0.01,
d = 91, e = 87.001, f = 0.0180, and g = 9.5072, is
shown in Fig. 4. The noise-like spectrum is one of the
characteristics of the chaotic dynamical system.

5 Lyapunov exponents

The Lyapunov exponents of Mathieu–van der Pol sys-
tem with 3PLEs are plotted in Figs. 5–10. These fig-
ures show that there exist at least one PLEs in the Lya-
punov spectrum for our new system, and which Lya-
punov exponents of Mathieu–van der Pol system are
varied separately with parameters a, b, d , and e.

6 Parameter diagrams

A system with more than one positive Lyapunov expo-
nent can be classified as a hyperchaotic system. In this
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Fig. 12 2D Parameter
diagrams varied with f .
a = 96.326680, b = 5.023,
c = −0.001 and
e = 87.001. Part A and B

are shown in Fig. 7

study, the parameter values, b, d, g, and f , are varied
to observe the regions of chaotization of our new sys-
tem. The enriched information of chaotic behaviors of
the system can be obtained from the Figs. 11–16. In or-
der to discover the behavior of such complicated non-
linear systems in detail, in this section, we further de-
velop a series of MATLAB codes to calculate the total
number of positive Lyapunov exponents and then plot
the 2-D and 3-D parameter diagrams automatically.

In Figs. 11–16, the regions of 3PLEs are presented
in yellow, 2PLEs are in green, and 1PLEs are in pur-
ple. It can be realized that the Mathieu–van der Pol
system is chaotic in several different regions, espe-
cially hyperchaos with 3 PLEs are found in many re-

gions between chaos with 2 PLEs and period with 1
PLE. The special 3D plots show that the variations of
chaotic and regular regions are smooth, gradual, and
continuous.

In Fig. 11, we plot the parameter diagram of
Mathieu–Van der Pol system with 0 < d < 100 and
0 < f < 100. Large parts of this diagram are 2PLEs
and 1PLEs areas, only area about 0 < d < 50 and
0 < f < 30 is 3PLE. In Fig. 12, an alternative form
of a parameter diagram is given—which is a 3-D dia-
gram and presents the chaotic states of the Mathieu–
van der Pol system with 0 < d < 50, 0 < g < 50 and
f = 0.05, 20, 40, 60, and with 0 < d < 10, 0 < g < 10
and f = 0.05, 0.2, 0.4, 0.6, and 0.8. Figure 13 shows
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Fig. 13 2D Parameter
diagrams varied with f .
a = 96.326680, b = 5.023,
c = −0.001 and
e = 87.001. Part C is shown
in Fig. 8

Fig. 14 3D Parameter
diagrams of Mathieu–van
der Pol system with
a = 96.326680, b = 5.023,
c = −0.001, and
e = 87.001

Fig. 15 3D Parameter
diagrams of Mathieu–van
der Pol system with
a = 96.326680, b = 5.023,
c = −0.001, and
e = 87.001
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Fig. 16 Parameter
diagrams of Mathieu–van
der Pol system with
a = 96.326680, b = 5.023,
c = −0.001, e = 87.001,
and g = 9.5072

that when f → +0.05, the area of chaotic state with
3PLEs is increasing in the parameter diagram. We can
use this strategy (from Figs. 12 and 13) to find out such
complicated behavior (3PLEs) of a nonlinear system
step by step. In Figs. 14 and 15, 3-D parameter dia-
grams with 6 < d < 10, 0.4 < f < 0.8, and 0 < g < 5
are provided for investigation. It is clear to find out that
the area of 3PLEs is within 6 < d < 10, 0.4 < f < 0.8,
and 0 < g < 1.

7 Conclusions

“Extraordinary claims require extraordinary evidence”
is quoted by the contributing editor of Science, Pro-
fessor Evan Ratliff. As a result, in this paper, we have
shown that the autonomous continuous-time Mathieu–
van der Pol autonomous system with four state vari-
ables as described by (2.1) can exhibit tri-chaos with
three positive Lyapunov exponents. The simulation re-
sults have been investigated in phase portrait, power
spectrum, parameter diagram, and the Lyapunov spec-
trum. An implementation of electronic circuit for the
new chaotic system is further given to show the com-
plicated and disordered behavior as well.
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