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Abstract—Cooperative bit-interleaved coded modulation
(BICM) is a key technology for the next-generation wireless
communication systems. This paper investigates power
allocation for the cooperative BICM systems with decode-
remap-and-forward (DRF) relaying. Unlike the conventional
decode-and-forward relays, the DRF relays may choose different
constellation mappings from that of source so as to obtain a
remapping gain. In spite of its importance, the power allocation
in such a system has not yet been explored in the literature. Two
new power allocation methods are proposed, aiming to minimize
bit error rate at the destination. The first uses a cost function
based on the minimum weighted squared-Euclidean distance
(called PA-MWSED) and is optimized with the sub-gradient
method. The second is based on a generalized MWSED (called
PA-GMWSED) and is optimized with the Simplex method after
the optimization is re-cast as a linear programming problem.
Generally speaking, PA-MWSED has a better performance than
PA-GMWSED but requires a higher complexity. Numerical
results show that both of the proposed methods outperform the
equal gain power allocation with large margins.

Index Terms—Bit-interleaved coded modulation, cooperative
relaying, decode-remap-and-forward, power allocation.

I. INTRODUCTION

RECENTLY, the cooperative relaying technique has
drawn an increasing interest in wireless communications

for gaining space diversity yet without using multiple physical
antennas [1]-[5]. The basic idea is to allow other nodes, called
relays, to forward the information of source to destination
in a cooperative way [1][2]. Basically, the relay can simply
amplify the received signal and forward it to the destination, or
the relay can decode the received signal and re-encode before
forwarding to the destination. The former is called the amplify-
and-forward (AF) relaying mode and the latter the decode-and-
forward (DF) relaying mode. Each mode has its merit over the
other under different system setups and/or channel conditions
[1]-[5]. Furthermore, different types of hybrid modes that are
able to adapt to channel conditions have been proposed in the
literature to improve system performance [5]-[7].
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Bit-interleaved coded modulation (BICM) [8][9] is a
bandwidth-efficient technique for fading channels and has
been used widely in real systems [10][11]. Very recently, stud-
ies have begun to look at the BICM systems with cooperative
techniques [12]-[16][26]. In particular, bit error rate (BER)
performance of a cooperative BICM system was analyzed in
[12] with the DF relay being modeled by a post-BSC (binary
symmetric channel). Reference [13] derived the achievable
rates for different combinations of modulation and number of
antennas used at the source and relay nodes. Pre-coding for
a non-orthogonal AF cooperative BICM system was studied
in [14] aiming to achieve maximum diversity order and high
coding gains. For the cooperative BICM-OFDM (orthogonal
frequency-division multiplexing) systems, [15] considered the
relay selection and sub-carrier allocation with AF relaying
in order to minimize the asymptotic worst-case, pair-wise
error probability, whereas [16] considered the issue of relay
placement with DF relaying.

In this paper, we investigate power allocation for a coop-
erative BICM system with decode-remap-and-forward (DRF)
relaying, where relays do the forwarding only if the received
packet is decoded correctly and are allowed to use different
constellation mappings from that of source so as to obtain a
remapping gain [17]-[19]. Two power allocation methods are
proposed aiming to minimize BER at the destination based on
perfect knowledge of channel state information (CSI). To the
best of our knowledge, power allocation in such a system has
not yet been discussed in the literature1.

Theoretically, the optimal power allocation for the con-
sidered cooperative BICM systems can be achieved by first
obtaining the exact BER at the destination, followed by an
exhaustive search of the optimal power allocation. Unfortu-
nately, such an approach is not practical because the exact
BER is very difficult to obtain if not impossible for a coded
system, and all possible allocations have to be examined in the
exhaustive search. In this paper, two low-complexity power
allocation methods are proposed. The first employs a cost
function based on the minimum weighted squared-Euclidean
distance (MWSED), which is shown to be convex and can
be optimized with the sub-gradient method [20]. The second

1Joint optimization of power and mappers is a very complicated problem
in the considered cooperative BICM systems. In fact, the mapping design
itself is very cumbersome and lacks of analytical solutions. This paper mainly
focuses on the power allocation methods that are applicable to systems with
different mappers at source and relays, although the joint optimization is a
very important topic and deserves a full investigation.
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Fig. 1. A cooperative relaying network with one source, one destination and
R relays.

employs a cost function based on a generalized MWSED
(GMWSED) to further reduce complexity; the optimization
is done with the Simplex method [21] after the problem is
re-cast as a linear programming problem. Simulation results
show that the proposed methods significantly outperform the
equal gain power allocation. Furthermore, it was shown in [26]
that the cooperative BICM system with DRF relaying achieves
full diversity order.

The remainder of this paper is organized as follows. Section
II describes the system model, and Section III analyzes BER
at the destination. In Section IV, the proposed power allocation
methods are presented. Simulation results and complexity
comparisons are given in Section V, followed by conclusions
in Section VI.

II. SYSTEM MODELS

As is shown in Fig. 1, we consider a cooperative relaying
network with one source, R relays and one destination, which
are indexed by 0, 1, ..., R and R + 1, respectively. Each
node is equipped with one antenna and operates in the half-
duplexing manner, implying that it cannot transmit and receive
simultaneously. The channel gain between nodes i and j is
denoted by hi,j which, in a block fading environment, remains
unchanged over the transmission of a packet. Perfect CSI
of h0,j is assumed to be known at the relay j, and perfect
h0,R+1, h0,j and hj,R+1, j = 1, 2, · · · , R are known at the
destination and the power allocation unit. In addition, since
all links remain unchanged over the transmission of a packet,
they can be treated as AWGN (additive white Gaussian noise)
channels from the power allocation perspective. Note that
power allocation can be done either at source or destination
depending on the required signaling overhead and where the
complexity of power allocation is to be placed. From the
signaling overhead aspect, allocation at destination seems
favorable because only the CSIs of the source-to-relay links
have to be reported to the destination.

In the considered DRF relaying, transmission of a packet
is divided into two phases. At phase-I, the source broadcasts
the packet to all relays and the destination. If a relay decodes

correctly, aided by a cyclic redundancy check (CRC), it re-
encodes, remaps and forwards the packet to the destination at
phase-II; otherwise, the relay keeps silent. The transmissions
of relays are through orthogonal channels with the transmit
power determined by the power allocation unit. At the des-
tination, the received signals from phase-I and phase-II are
combined and decoded jointly.

BICM is employed at all nodes. At the source, an informa-
tion bit sequence b of length K is encoded by a channel en-
coder to a coded sequence c of length N and then interleaved
by an interleaver π. The resulting binary sequence v = π(c)
is successively partitioned into groups of m bits, called the
labels. The k-th label of v, denoted by vk, is then mapped to
a complex symbol x

(0)
k in the constellation χ, according to

the constellation mapper μ(0), i.e., x
(0)
k = μ(0)(vk), where

|χ| = 2m, and |χ| is the cardinality of χ. For notation
simplicity, the time index k will be omitted in the following
development.

The received signals at relays and the destination at phase-I
are given by

y0,j = h0,j

√
P0x

(0) + ω0,j, j = 1, 2, · · · , R+ 1, (1)

where P0 is the source transmit power, and ω0,j is AWGN
at node j. The noises at relays and destination are modeled
as i.i.d. (independent and identically distributed) zero-mean,
circularly-symmetric complex Gaussian random variables with
variance N0/2 per dimension. Upon receiving y0,j , the demap-
per of relay j evaluates the simplified log-likelihood ratio
(LLR) of the i-th bit of the considered label v, according to

log

max
v∈Γi

1

p(y0,j |v)
max
v∈Γi

0

p(y0,j |v) = min
v∈Γi

0

|y0,j − h0,j

√
P0μ

(0)(v)|2
N0

− min
v∈Γi

1

|y0,j − h0,j

√
P0μ

(0)(v)|2
N0

, (2)

where Γi
b is the set of labels with the binary value b at the i-th

position. The LLRs are then de-interleaved and passed to the
decoder. If b is decoded correctly at the relay, b is re-encoded
and re-interleaved by the same encoder and interleaver as those
of source, resulting the label sequence v. A particular v of v
is then mapped to x(j) ∈ χ by the mapper μ(j), which may
or may not be the same as μ(0).

Denote Ω the set of relays which have succeeded in decod-
ing (called active relays). The received signals at destination
at phase-II can then be expressed as

yj,R+1 = hj,R+1

√
Pjx

(j) + ωj,R+1, j ∈ Ω, (3)

where Pj is the transmit power of relay j, and ωj,R+1 is
AWGN at destination. After combining the signals received
at phase-I and II, the LLR for the i-th bit of the considered
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label v is evaluated at destination by

log

max
v∈Γi

1

∏
j∈˜Ω

p(yj,R+1|v)

max
v∈Γi

0

∏
j∈˜Ω

p(yj,R+1|v)

= min
v∈Γi

0

∑
j∈˜Ω

∣∣yj,R+1 − hj,R+1

√
Pjμ

(j)(v)
∣∣2

N0

− min
v∈Γi

1

∑
j∈˜Ω

∣∣yj,R+1 − hj,R+1

√
Pjμ

(j)(v)
∣∣2

N0
, (4)

where Ω̃ = Ω ∪ {0} is the set of all active nodes including
the source. The LLRs of the coded sequence are then de-
interleaved and passed to the decoder.

III. BIT ERROR RATE AT DESTINATION

The objective of this work is to determine the power
allocation P = [P0 P1 · · ·PR]

T that minimizes BER at the
destination under the power constraint of

∑R
j=0 Pj ≤ PT ,

where [·]T denotes taking transpose of a vector. In this
section, the BER performance is analyzed, and the new power
allocation methods will be discussed in the next section.

Let pb,j and pf,j denote BER and PER (packet error rate)
at node j, respectively. Then, BER at the destination pb,R+1

is evaluated by

Pb,R+1

=
∑

Ω⊆{1,2,··· ,R}
pb,R+1(Ω)

⎡⎣∏
j∈Ω

(1− pf,j)

⎤⎦⎡⎣∏
j /∈Ω

pf,j

⎤⎦
≈

∑
Ω⊆{1,2,··· ,R}

pb,R+1(Ω)
∏
j /∈Ω

K · pb,j, (5)

where pb,R+1(Ω) is BER at destination given the active set
Ω, and j = 1, 2, · · · , R. In (5), the approximation is obtained
with the assumptions that pf,j � 1 in practical systems and
that pf,j ≈ K · pb,j for a small pb,j .

With the assumptions of ideal interleaving (an interleaver
with infinite depth) and symmetrization as in [9], a BICM can
be regarded as a linear code, and pb,R+1(Ω) is upper-bounded
by [9],

pb,R+1(Ω) ≤
N∑

dh=df

WI(dh)fub(dh,P,Ω), (6)

where WI(dh) denotes the total input weight of error events
with Hamming weight dh divided by K , df is the free distance
of the code, and fub(dh,P,Ω) is an upper bound of the pair-
wise error probability (PEP) between two coded sequences
with Hamming distance dh, given by

fub(dh,P,Ω) =
1

2πj

∫ s0+j∞

s0−j∞
[ΦP,Ω(s)]

dh
ds

s
. (7)

In (7),

ΦP,Ω(s) =
1

m2m

m∑
i=1

1∑
b=0

∑
v∈Γi

b

∑
w∈Γi

b̄

∏
j∈˜Ω

ΦΔ(x(j),z(j))(s), (8)

j =
√−1, and ΦΔ(x(j),z(j))(s) is the moment generating

function of

Δ(x(j), z(j)) = log p(yj,R+1|x(j))− log p(yj,R+1|z(j)) (9)

with x(j) = μ(j)(v) and z(j) = μ(j)(w). Similar upper-bound
on pb,j for j = 1, 2, · · · , R can be obtained by applying the
same procedure.

IV. NEW POWER ALLOCATION METHODS

In this section, two low-complexity power allocation meth-
ods are proposed: one is based on the minimum weighted
squared-Euclidean distance (PA-MWSED), and the other
on the generalized MWSED (PA-GMWSED). Generally
speaking, PA-MWSED has a better performance than PA-
GMWSED but requires a higher complexity. Both of the
proposed methods outperform the equal gain power allocation
(PA-EG) with large margins, as is to be shown in Section V.

A. PA-MWSED

At high signal-to-noise ratios (SNRs), the summation in
(6) is dominated by the error events that have the smallest
Hamming weight, i.e., the free distance df . Thus, (6) can be
approximated by

pb,R+1(Ω) ≈ WI(df )fub(df ,α,Ω), (10)

where P is replaced by α = [α0 α1 · · ·αR]
T with αj =

Pj/PT .
The inverse Laplace transform in (7) can be evaluated

efficiently along the vertical line of the saddle point [22].
In addition, given the channels, Δ(x(j), z(j)) is a Gaussian
random variable with the moment generating function

ΦΔ(x(j),z(j))(s) = exp

[−s+ s2

N0
PTαj |hj,R+1|2D(j)

]
, (11)

where D(j) = |x(j) − z(j)|2 is the squared-Euclidean distance
between x(j) and z(j). Note that −s+ s2 = (s− 0.5)2− 0.25,
and the saddle point of (11) always occurs at s = 0.5,
regardless of the values of PT , αj , |hj,R+1|2 and D(j).
Substituting s = 0.5 + jt into (11) and (8), we have

Φα,Ω(t)

=
1

m2m

m∑
i=1

1∑
b=0

∑
v∈Γi

b∑
w∈Γi

b̄

exp

⎡⎣− t2 + 1/4

N0
PT

∑
j∈˜Ω

αj |hj,R+1|2D(j)

⎤⎦ .(12)

Furthermore, at high SNRs, (12) can be simplified by just
considering the (v, w) pairs which achieve MWSED, i.e.,

Φα,Ω(t) ≈ NΩ(α)

m2m
exp

[
− t2 + 1/4

N0
PTMΩ(α)

]
, (13)

where MΩ(α) is MWSED, given by

MΩ(α) = min
v∈Γi

b,w∈Γi
b̄
,i=1,··· ,m, b=0,1

∑
j∈˜Ω

αj |hj,R+1|2D(j)

= min
D∈ΨPA−MWSED

∑
j∈˜Ω

αj |hj,R+1|2D(j), (14)



YU et al.: POWER ALLOCATION FOR COOPERATIVE BIT-INTERLEAVED CODED MODULATION SYSTEMS WITH DECODE-REMAP-AND-FORWARD . . . 1715

[3;C;5;4]

[2;9;B;B]

[6;D;3;7]

[7;8;C;9]

[1;2;2;6]

[0;7;D;8]

[4;3;4;5]

[5;6;E;E]

[9;A;A;2]

[8;F;0;C]

[C;B;9;1]

[D;E;6;A]

[B;4;8;0]

[A;1;7;F]

[F;0;1;D]

[E;5;F;3]

1-1 3-3

3

1

-1

-3

Fig. 2. Four example mappers μG, μA, μB and μC for the 16-QAM
constellation. The signal point labels [vG; vA; vB ; vC ] are in hexadecimal
format, where vG, vA, vB and vC are to denote the label of μG , μA, μB

and μC , respectively. (The μA, μB and μC mappers are the MBER mappings
which maximize the minimum Euclidean distance between transmit symbols
for the second, third and forth transmissions of the hybrid automatic repeat-
request system in [23], respectively.)

ΨPA−MWSED is the set of all distinct D =
[D(0) D(1) · · ·D(R)]T obtained by exhausting all possible
(v, w) pairs, and NΩ(α) is the number of (v, w) pairs which
achieve MWSED. Note that the numbers of (v, w) pairs for
different D’s in ΨPA−MWSED are usually not the same so
that NΩ(α) may not be a continuous function of α. Table I
enumerates ΨPA−MWSED for the following setups.

Setup-1: R = 1, 16-QAM, and μ(0) = μ(1) = μG (the Gray
mapping) in Fig. 2. Note that all elements in D are
same if μ(j) = μ(0) for all j.

Setup-2: R = 1, 16-QAM, μ(0) = μG and μ(1) = μA in
Fig. 2.

Setup-3: R = 2, 16-QAM, μ(0) = μG, μ(1) = μA and
μ(2) = μB in Fig. 2.

Using (13), we have

fub(df ,α,Ω)

≈ 1

2π

∫ ∞

−∞

[
NΩ(α)

m2m
exp

[
− t2+1/4

N0
PTMΩ(α)

]]df dt

1/2+jt

=
1

4π

(
NΩ(α)

m2m

)df

exp

[
−dfPT

4N0
MΩ(α)

]
·
∫ ∞

−∞
exp

[
−dfPT

N0
MΩ(α)t2

]
dt

1/4 + t2
, (15)

where the equality is obtained by using the fact that the imag-
inary part in the integral is an odd function of t. Furthermore,
at high SNRs, i.e., PT /N0 → ∞, the integral in (15) is
dominated by the value integrated over a small interval [−τ, τ ],

where 0 < τ � 1. Thus, (15) can be approximated by

fub(df ,α,Ω) ≈ 1

π

(
NΩ(α)

m2m

)df

exp

[
−dfPT

4N0
MΩ(α)

]
·
∫ ∞

−∞
exp

[
−dfPT

N0
MΩ(α)t2

]
dt

=

(
NΩ(α)

m2m

)df

√
N0

πdfPTMΩ(α)

· exp
[
−dfPT

4N0
MΩ(α)

]
, (16)

where the equality is obtained by re-arranging the term in
the integral into the form of a Gaussian probability density
function. Applying similar steps in (10)-(16), we can obtain
similar results for pb,j , j = 1, 2, · · · , R as follows. Since relay
j receives the signal from the source only, the corresponding
MWSED is degenerated to α0|h0,j|2Dχ, where

Dχ = min
v∈Γi

b
,w∈Γi

b̄
,i=1,··· ,m, b=0,1

|μ(0)(v)− μ(0)(w)|2, (17)

and consequently

pb,j ≈ WI(df )

(
N∅(α)

m2m

)df

√
N0

πdfPTα0|h0,j |2Dχ

· exp
[
−dfPT

4N0
α0|h0,j |2Dχ

]
. (18)

Now, we can approximate (5) by using (10), (16) and (18).
As to power allocation, we note that (i) NΩ(α)’s may not be

continuous functions of α, and (ii) at high SNRs NΩ(α) and
N∅(α) (the numbers of pairs) are less dominant than MΩ(α)
and α0|h0,j |2Dχ (the distances) in (16) and (18), respectively.
Therefore, for simplicity, the effects of NΩ(α) and N∅(α) are
neglected by replacing them with m2m. Through above steps,
(5) can be approximated as

pb,R+1 ≈ WI(df )G(α), (19)

where

G(α)=
∑

Ω⊆{1,2,··· ,R}
gΩ
∏
j /∈˜Ω

KWI(df )g̃j , (20)

gΩ=

√
N0

πdfPTMΩ(α)
exp

[
−dfPT

4N0
MΩ(α)

]
, (21)

g̃j=

√
N0

πdfPTα0|h0,j|2Dχ
exp

[
−dfPT

4N0
α0|h0,j |2Dχ

]
.(22)

Now, we introduce our first power allocation method called
PA-MWSED as follow: given the channel realizations and the
mappers μ(0), μ(1), · · · , μ(R),

αPA−MWSED = argmin
α

G(α),

s.t. 1Tα ≤ 1, 0 ≤ αj ≤ 1, j = 0, 1, · · · , R, (23)

where 1 is the all-one vector of dimension R + 1. Note that
the feasible set of α is convex. In addition, as is proved in
Appendix A, G(α) is a convex function of α, but may not be
differentiable because MΩ(α) is the minimum of linear func-
tions of α and may not be differentiable. Such a constrained
convex optimization problem with a non-differentiable cost
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TABLE I
ΨPA−MWSED FOR SETUP-1, SETUP-2 AND SETUP-3

Setup ΨPA−MWSED

Setup-1 [4 4]T , [8 8]T , [16 16]T , [20 20]T , [32 32]T , [36 36]T , [40 40]T , [52 52]T , [72 72]T

Setup-2
[4 16]T , [4 20]T , [4 36]T , [4 52]T , [8 16]T , [8 20]T , [8 52]T , [8 72]T , [16 4]T , [16 8]T , [16 40]T , [20 4]T ,

[20 8]T , [20 32]T , [20 40]T , [32 20]T , [36 4]T , [40 16]T , [40 20]T , [40 40]T , [52 4]T , [52 8]T , [72 8]T

Setup-3

[4 16 20]T , [4 20 20]T , [4 20 40]T , [4 36 8]T , [4 36 40]T , [4 36 72]T , [4 52 4]T , [4 52 8]T , [8 16 16]T ,

[8 16 52]T , [8 20 16]T , [8 20 20]T , [8 20 40]T , [8 20 52]T , [8 52 4]T , [8 52 36]T , [8 72 32]T , [16 4 20]T ,

[16 8 16]T , [16 8 52]T , [16 40 4]T , [16 40 16]T , [20 4 20]T , [20 4 40]T , [20 8 16]T , [20 8 20]T , [20 8 40]T ,

[20 8 52]T , [20 32 4]T , [20 32 8]T , [20 32 16]T , [20 40 4]T , [20 40 36]T , [32 20 4]T , [32 20 8]T , [32 20 16]T ,

[36 4 4]T , [36 4 8]T , [36 4 40]T , [36 4 72]T , [40 16 4]T , [40 16 16]T , [40 20 8]T , [40 20 32]T , [40 40 32]T ,

[40 40 36]T , [52 4 4]T , [52 4 8]T , [52 8 8]T , [52 8 32]T , [72 8 36]T

function can be solved by applying the projected sub-gradient
method [20].

Define the sub-gradient of G(α) by

G′(α) =

[
∂G(α)

∂α0

∂G(α)

∂α1
· · · ∂G(α)

∂αR

]T
, (24)

where ∂G(α)/∂αj can be evaluated numerically by using the
following difference quotient with a sufficiently small δ, i.e.,

∂G(α)

∂αj
≈ G(α)−G(α+ δj)

δ
, (25)

with δj = [δ0 δ1 · · · δR ]T and the i-th entry of δj defined
by

δi =

⎧⎨⎩ δ, if i = j

0, otherwise
.

The projected sub-gradient method iterates

α(t) = P

(
α(t−1) − εtG

′(α(t−1))
)
, (26)

where εt is the step size at the t-th iteration and P is the
Euclidean projection on the feasible set of α. Some example
performances of PA-MWSED will be provided in Section V.

B. PA-GMWSED

In PA-MWSED, G(α) needs to be evaluated repeatedly
(according to (24) and (25)) in each iteration when the sub-
gradient method is carried out, and there are total of 2R

Ω’s (each has different gΩ
∏

j /∈˜Ω KWI(df )g̃j) needed to be
included in the evaluation of G(α) in (20). As a consequence,
PA-MWSED can be quite complex in some cases. In this sub-
section, the method of PA-GMWSED is proposed to further
reduce the complexity of power allocation. The performance
and complexity of PA-MWSED and PA-GMWSED will be
compared in Section V for some examples.

The first idea in the development of PA-GMWSED is that
instead of minimizing G(α) in (20), an α is searched to
minimize max

Ω⊆{1,2,··· ,R}
gΩ
∏

j /∈˜Ω KWI(df )g̃j , the largest term

in the summation of (20). Equivalently, an α is searched to
minimize

max
Ω⊆{1,2,··· ,R}

{lnAΩ(α) + lnBΩ(α)} , (27)

where

lnAΩ(α) = −1

2
ln

⎡⎣MΩ(α)
∏
j /∈˜Ω

α0|h0,j |2Dχ

⎤⎦ , (28)

and

lnBΩ(α) = ln

(
KWI(df )

√
N0

πdfPT

)R−|Ω|

−dfPT

4N0

⎡⎣MΩ(α) + α0

∑
j /∈˜Ω

|h0,j |2Dχ

⎤⎦ .(29)

Note that (i) lnAΩ(α) does not change with PT /N0, (ii)
| lnBΩ(α)| → ∞ as PT /N0 → ∞, and (iii) | lnAΩ(α)| → ∞
as α0 → 0 for |Ω| < R. Using a very small α0, however, is
impractical because the source power will be too small to
activate any relay in this case. Therefore, in practical systems,
lnAΩ(α)+lnBΩ(α) is dominated by lnBΩ(α) at high SNRs,
and it can be employed in search for good α with a reduced
complexity.

In the proposed PA-GMWSED, the optimization problem
is cast as follows.

αPA−GMWSED

=argmin
α

max
Ω⊆{1,2,··· ,R}

lnBΩ(α)

= argmax
α

min
Ω⊆{1,2,···,R}

⎧⎨⎩MΩ(α)+α0

∑
j /∈˜Ω

|h0,j |2Dχ−ηR−|Ω|

⎫⎬⎭,(30)

where

ηR−|Ω| =
4N0

dfPT
ln

(
KWI(df )

√
N0

πdfPT

)R−|Ω|

. (31)

In (30), MΩ(α) is the MWSED contributed by active nodes,
α0

∑
j /∈˜Ω |h0,j |2Dχ accounts for the effect of inactive relays,

and ηR−|Ω|, which is independent to α, is a term relating to
the channel coding (K, df ,WI(df )), the number of inactive
relays (R−|Ω|) and the SNR (PT /N0). Note that ηR−|Ω| = 0
when PT /N0 → ∞ or |Ω| = R.
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Using MΩ(α) in (14), we have

MΩ(α) + α0

∑
j /∈˜Ω

|h0,j|2Dχ − ηR−|Ω|

= min
D∈ΨPA−MWSED

∑
j∈˜Ω

αj |hj,R+1|2D(j)

+α0

∑
j /∈˜Ω

|h0,j |2Dχ − ηR−|Ω|
R∑

j=0

αj

= min
D̄∈Ψ̄Ω

D̄T
α, (32)

where

Ψ̄Ω=
{

D̄=[D̄(0) D̄(1) · · · D̄(R)]T |D∈ΨPA−MWSED

}
, (33)

and

D̄(j)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|hj,R+1|2D(j)+Dχ

∑
j1 /∈˜Ω

|h0,j1 |2−ηR−|Ω|, if j = 0

|hj,R+1|2D(j) − ηR−|Ω|, if j ∈ Ω

−ηR−|Ω|, otherwise

.

Substituting (32) into (30), we have

argmax
α

min
Ω⊆{1,2,··· ,R}

{
min

D̄∈Ψ̄Ω

D̄T
α

}
=argmax

α
min
D̄∈Ψ̄

D̄T
α, (34)

where

Ψ̄ =
⋃

Ω⊆{1,2,··· ,R}
Ψ̄Ω. (35)

Define M̄(α) = minD̄∈Ψ̄ D̄T
α, which can be regarded as

a generalized MWSED (GMWSED) that jointly considers
MΩ(α), α0

∑
j1 /∈˜Ω |h0,j1 |2Dχ and ηR−|Ω| among all Ω’s.

With this formulation, the optimization in (30) becomes

argmax
α

M̄(α)

s.t. 1Tα ≤ 1, 0 ≤ αj ≤ 1, j = 0, 1, · · · , R. (36)

To solve (36), firstly some D̄’s, which are irrelevant in find-
ing αPA−GMWSED, are removed from the set Ψ̄ according
to the following Lemma whose proof is given in Appendix B.

Lemma-1: For a D̄2 ∈ Ψ̄, if there exist a D̄1 ∈ Ψ̄ with
D̄

(j)
1 ≤ D̄

(j)
2 for all j, then D̄2 can be removed from Ψ̄ without

changing M̄(α) in (36).
After removal of irrelevant D̄’s, the optimization in (36)

becomes

argmax
α

min
D̄∈ΨPA−GMWSED

D̄T
α

s.t. 1Tα ≤ 1, 0 ≤ αj ≤ 1, j = 0, 1, · · · , R, (37)

where ΨPA−GMWSED is the set after removing irrelevant D̄’s
from Ψ̄.

Example-1: Consider Setup-1 with |h0,1|2 = 5, |h0,2|2 = 1
and |h1,2|2 = 10. In this case, (32) becomes

MΩ(α) + α0

∑
j /∈˜Ω

|h0,j |2Dχ − ηR−|Ω|

=

⎧⎨⎩ min
D∈ΨPA−MWSED

{
α0D

(0)+10α1D
(1)
}
, Ω={1}

24α0 − η1, Ω=∅
(38)

with ΨPA−MWSED given as Setup-1 in Table I and Dχ = 4
for 16-QAM. Substituting 24α0 − η1 by (24− η1)α0 − η1α1,
Ψ̄Ω becomes

Ψ̄Ω =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[4 40]T , [8 80]T, [16 160]T, [20 200]T,

[32 320]T , [36 360]T, [40 400]T,

[52 520]
T
, [72 720]T ,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,Ω={1}

{
[24−η1 −η1]

T
}
, Ω=∅

.

After defining Ψ̄ = Ψ̄∅∪Ψ̄{1} and removing all irrelevant D̄’s
from Ψ̄ according to Lemma-1, one has

ΨPA−GMWSED

=

⎧⎨⎩
{
[4 40]

T
, [24−η1 −η1]

T
}
, if η1 < 20{

[24−η1 −η1]
T
}
, if η1 ≥ 20

, (39)

where the number of vectors is reduced from 10 in Ψ̄ to 2 or
1 in (39) depending on the value of η1.

Example-2: Consider Setup-2 with |h0,1|2 = 5 and
|h0,2|2 = |h1,2|2 = 1. In this case, (32) becomes

MΩ(α) + α0

∑
j /∈˜Ω

|h0,j |2Dχ − ηR−|Ω|

=

⎧⎨⎩ min
D∈ΨPA−MWSED

{
α0D

(0) + α1D
(1)
}
, Ω = {1}

24α0 − η1, Ω = ∅
(40)

with ΨPA−MWSED given as Setup-2 in Table I. Also, it can
be shown that

ΨPA−GMWSED

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
[16 4]T , [4 16]T , [24−η1 −η1]

T
}
, if η1<8{

[4 16]
T
, [24−η1 −η1]

T
}
, if 8≤η1<20{

[24−η1 −η1]
T
}
, if η1≥20

. (41)

In this case, the number of vectors has been reduced from 24
in Ψ̄ to 3 or less in ΨPA−GMWSED .

From (37), it can be easily seen that the optimization
problem can also be recast as

max
α, β

β (42)

s.t. β ≤ D̄T
α, ∀D̄ ∈ ΨPA−GMWSED

1Tα ≤ 1, and 0 ≤ αj ≤ 1, j = 0, 1, · · · , R.

Since the objective function and all the constraints are linear,
(42) is a linear programming problem (though not in a
standard form) and can be solved efficiently with the Simplex
method [21]. To have a better understanding how the power
is allocated, we provide the following example.

Example-3: Consider Example-2. According to (41), when
the SNR is low such that η1 ≥ 20, we have only one vector in
ΨPA−GMWSED and consequently M̄(α) = 24α0 − η1. The
optimum of M̄(α) occurs at α0 = 1. As the SNR increases
to 8 ≤ η1 < 20, there are two vectors in ΨPA−GMWSED.
The corresponding curves of D̄T

α for D̄2 = [4 16]T and
D̄3 = [24− η1 − η1]

T with different values of η1 are plotted
in Fig. 3 as functions of α0 (note that α1 = 1 − α0). As
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Fig. 3. Curves of D̄T
α, D̄ ∈ ΨPA−GMWSED for Example-3, where

D̄1 = [16 4]T , D̄2 = [4 16]T and D̄3 = [24−η1 −η1]T .

shown in Fig. 3, the optimum of M̄(α) = min{D̄T
2 α, D̄T

3 α}
occurs at the intersection of the two lines. By solving D̄T

2 α =

D̄T
3 α, the intersection point locates at αPA−GMWSED =

[0.44+0.028η1 0.56−0.028η1]
T and M̄(αPA−GMWSED) =

10.67− 0.33η1. For convenience, we denote this intersection
point by (0.44 + 0.028η1, 10.67 − 0.33η1). In the case of
η1 < 8, we have ΨPA−GMWSED = {D̄1, D̄2, D̄3} with
D̄1 = [16 4]T . When 2 < η1 < 8, the optimum is still at
(0.44 + 0.028η1, 10.67 − 0.33η1). When η1 ≤ 2, M̄(α) is
maximized at α0 = 0.5, which is the intersection between
D̄T

1 α and D̄T
2 α. As is observed, the full power is allocated

to source at low SNRs. As the SNR increases (η1 decreases),
the allocated source power decreases and finally arrives at 0.5
when the SNR is high enough such that η1 ≤ 2. In summary,
the optimum power allocation occurs at α0 = 1 when the SNR
is very low. As the SNR increases, the decreasing η1 makes
the optimal α0 become smaller. This is quite obvious; when
SNR is very low such that relay can never decode correctly, all
power should be allocated to the source. And, when the SNR
increases, the relay may be given some power to improve the
BER performance.

V. NUMERICAL RESULTS

A. Power Allocations and BER Performances

In this subsection, numerical results are given to con-
firm the effectiveness of the proposed methods. In the fol-
lowing example systems, two 1/2-rate covolutional codes
are considered: the CC(7,5) code with the generator matrix
(1 + D + D2, 1 + D2) is employed in System-1, 3, 4
and 5, and the CC(171,133) code with the generator matrix
(1+D+D2+D3+D6, 1+D2+D3+D5+D6) is employed
in System-2. The interleaver is S-random with length of 6144
and depth of 20 2. The modulation constellation is 16-QAM.

2For the block-fading channel considered in this paper, the channels remain
constant over the transmission of a packet. Therefore, the use of the interleaver
is mainly to break the correlation introduced by high-order modulations. In
[9], it was shown that an interleaver depth of 10 is sufficient for 8-PSK
modulation to approach the ultimate performance. In our case, where 16-
QAM is used, an interleaver depth of 20 is generally enough for not incurring
performance loss.
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Fig. 4. Power allocation results of different methods for System-1 and
System-2.
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Fig. 5. BER performance of System-1 with power allocations in Fig. 4.

Equations (2) and (4) are used to evaluate the LLRs at relays
and destination, respectively. The Max-Log MAP decoder [24]
is employed in all receiving nodes.

Figure 4 shows the power allocation results with PA-
MWSED and PA-GMWSED for System-1, where R = 1,
μ(0) = μG, μ(1) = μA, |h0,1|2 = 5 and |h0,2|2 = |h1,2|2 = 1.
As is shown, for Eb/N0 ≤ 0 dB, all power is allocated to the
source in both methods; as the SNR increases, the allocated
source power of PA-MWSED and PA-GMWSED are close
with PA-MWSED slightly lower than PA-GMWSED. When
Eb/N0 ≥ 12 dB, PA-MWSED and PA-GMWSED have the
same power allocation at α0 = 0.5 (as predicted in Fig. 3
with η1 ≤ 2). The BER performance of the system is given in
Fig. 5. The proposed methods achieve almost the same BER
performance and outperform PA-EG by at all ranges of SNRs.
In particular, 0.5 dB gain is observed at BER of 10−5.

The power allocation results for System-2 are also plotted
in Fig. 4, where R = 1, μ(0) = μ(1) = μG, |h0,1|2 = 5,
|h0,2|2 = 1 and |h1,2|2 = 10. Similarly, both the proposed
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Fig. 6. BER performance of System-2 with power allocations in Fig. 4.

methods allocate all power to the source when Eb/N0 ≤ −3
dB. As SNR increases, the allocated source power with PA-
MWSED decreases much faster than that with PA-GMWSED.
For Eb/N0 ≥ 23 dB, both methods allocate the same power
to the source at about α0 = 0.67. Figure 6 shows the
BER performance. As is seen, PA-MWSED achieves the best
performance at all ranges of SNRs, followed by PA-GMWSED
and PA-EG. At BER of 10−5, PA-MWSED has a gain of about
1.8 dB, and PA-GMWSED has about 1 dB over PA-EG.

Figure 7 shows the power allocation results for System-3,
where R = 2, μ(0) = μG, μ(1) = μA, μ(2) = μB , |h0,3|2 = 1,
|h0,1|2 = 10, |h0,2|2 = 5, |h1,3|2 = 1, and |h2,3|2 = 2.
The two relays have different qualities of the source-relay and
relay-destination links and different mappers. Since |h0,1|2 >
|h0,2|2, relay 1 is more likely to have a correct decoding at
low SNRs than relay 2. Therefore, each the power allocation
method starts to allocate non-zero α1 at the SNR earlier than
that of α2. The BER performance is given in Fig. 8, where
PA-MWSED still achieves the best BER performance, closely
followed by PA-GMWSED. PA-EG is about 1.5 dB and 1.1
dB worse than PA-MWSED and PA-GMWSED at BER of
10−5, respectively.

Figure 9 shows the BER performance for System-4 and
5 with R = 3. The channels |h0,4|2 = 1, |h0,1|2 = 15,
|h0,2|2 = 10, |h0,3|2 = 5, |h1,4|2 = 1, |h2,4|2 = 2 and
|h3,4|2 = 3 are used for both systems but with different map-
pers at relays; in particular, μ(0) = μ(1) = μ(2) = μ(3) = μG

are employed in System-4 and μ(0) = μG, μ(1) = μA,
μ(2) = μB and μ(3) = μC in System-5 (see Fig. 2). As
is seen in Fig. 9, PA-MWSED and PA-GMWSED perform
similarly and outperform PA-EG by 1.1 dB and 1.8 dB at
BER of 10−5 for System-4 and 5, respectively. In addition,
System-5 outperforms System-4 by using different mappers at
relays; the performance improvement is quite significant; for
example, at BER of 10−5, 1.3 dB is observed for PA-EG and
2 dB for PA-MWSED and PA-GMWSED, respectively.
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Fig. 7. Power allocation results for System-3.
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Fig. 8. BER performance of System-3 with power allocations in Fig. 7.

B. Complexity Comparison

The computation complexities of PA-MWSED and PA-
GMWSED are compared here for the 5 example systems
investigated in the previous subsection (at Eb/N0 = 10
dB). The number of iterations for the sub-gradient method
in PA-MWSED is fixed at 10. In Table II, we list the
total numbers of required multiplications (×), additions (+),
square-roots (

√
x), exponentials (ex) and nature-logs (ln x).

As is shown, PA-GMWSED has a much lower complexity
than PA-MWSED. Note that the major complexity of PA-
MWSED comes from the evaluation of 2R different terms
(gΩ

∏
j /∈˜ΩKWI(df )g̃j) in the summation of G(α). Further-

more, in each iteration, G(α) is calculated twice as in (25) and
is repeated (R+1) times because of taking the sub-gradients
with respect to all entries in α. On the other hand, the omission
of lnAΩ(α) in (27) and the removal of the irrelevant D̄’s in Ψ̄
effectively reduce the complexity of PA-GMWSED. It is also
observed that in each of the proposed methods the complexity
increases substantially with R due to that the number of Ω’s
increases exponentially with R.
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TABLE II
COMPLEXITY COMPARISONS BETWEEN PA-MWSED (M) AND PA-GMWSED (G)

System-1 System-2 System-3 System-4 System-5

R 1 1 2 3 3

{μ(j)} μG, μA μG, μG μG, μA, μB μG, μG, μG, μG μG, μA, μB , μC

Coding CC(7,5) CC(171,133) CC(7,5) CC(7,5) CC(7,5)

{|hi,j |2}
|h0,2|2 = 1, |h0,2|2 = 1, |h0,3|2 = 1, |h0,4|2 = 1,

|h0,1|2 = 5, |h0,1|2 = 5, |h0,1|2 = 10, |h0,2|2 = 5, |h0,1|2 = 15, |h0,2|2 = 10, |h0,3|2 = 5,

|h1,2|2 = 1 |h1,2|2 = 10 |h1,3|2 = 1, |h2,3|2 = 2 |h1,4|2 = 1, |h2,4|2 = 2, |h3,4|2 = 3

PA M G M G M G M G M G

× 6820 330 3460 210 52470 2016 42440 1299 196040 17595

+ 2780 629 1100 232 24090 8503 14840 3207 91640 93281
√
x 160 2 160 2 480 3 1280 4 1280 4

ex 80 0 80 0 240 0 640 0 640 0

lnx 0 2 0 2 0 3 0 4 0 4
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Fig. 9. BER performance of System-4 and System-5 with different power
allocation methods.

VI. CONCLUSIONS

This paper investigates power allocation for the cooperative
BICM systems with DRF relaying. Two methods of power
allocation, PA-MWSED and PA-GMWSED, are proposed
under the assumption of perfect knowledge of CSI. In PA-
MWSED, a cost function is derived based on the saddle-
point integration and MWSED and optimized with the sub-
gradient method. In PA-GMWSED, with the introduction
of a generalized MWSED, the optimization is re-cast as a
linear programming problem which can be solved efficiently
via the Simplex algorithm. Several examples with different
relay number, mappers and channels are given to confirm
the effectiveness of the proposed methods. Simulation results
show that both the proposed methods outperform PA-EG with
large margins under different system configurations.

APPENDIX A
THE CONVEXITY OF G(α)

To show that G(α) is convex, we first re-write G(α) =∑
Ω⊆{1,2,··· ,R} FΩ(α) and FΩ(α) = h(q1, q2) = q1 ·q2, where

q1 = gΩ and q2 =
∏

j /∈˜ΩKWI(df )g̃j . We aim to show that
FΩ(α) is convex for any Ω, and so is G(α) which is a sum
of convex functions. According to [25], FΩ(α) is convex if
(a) h is convex in each argument, (b) h is non-decreasing
in each argument and (c) both q1 and q2 are convex. Firstly,
(a) and (b) can be proved to be true by evaluating the first
and second derivatives of h w.r.t. q1 and q2. Now consider the
convexity of q1 and q2. According to [25], a function S(T (α))
is convex if S is convex non-increasing and T is concave.
Define S(x) = a1x

−a2/2e−a3x. By evaluating the first and
second derivatives of S, it can be shown that S is convex
non-increasing in the region x > 0 for any α1 > 0, α3 > 0
and any positive integer α2. Let T (α) = MΩ(α), which is
the minimum of linear functions of α, is positive and concave.
Since we can write q1 = S(T (α)) by properly choosing a1, a2
and a3, q1 is convex. Similarly, q2 can also be proved convex
by letting T (α) = α0. Q.E.D.

APPENDIX B
PROOF OF LEMMA-1

Since D̄
(j)
1 ≤ D̄

(j)
(2) for all j, one has

D̄T
1 α =

R∑
j=0

D̄
(j)
1 αj ≤

R∑
j=0

D̄
(j)
2 αj = D̄T

2 α, (43)

for any α with non-negative entries, and thus,

M̄(α) = min
D̄∈Ψ̄

D̄T
α = min

D̄∈{Ψ̄\D̄2}
D̄T

α. (44)

One can remove D̄2 from Ψ̄ without changing M̄(α). Q.E.D.
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