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frequencies within each channel. Also, as the frequency of the folded 
input voltage increases, the tips of the folding waveforms tend to 
round-off. These effects tend to degrade the performance of any 
folding ADC. For example, if the rounding is such that the waveform 
drops below (or above) the threshold level, the circuit as described 
will not perform correctly. The SNS encoding however, can be 
directly applied to other folding techniques such as double folding 
which attempt to circumvent this rounding problem. 
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Analysis of Adaptive LMS Estimator with Cyclic 
Sequences in Complex Frequency Domain 

Ging-Shing Liu and Che-Ho Wei 

Abstruct- Cyclic sequences are usually employed as the reference 
sequences in the adaptive filtering systems for signal or channel es- 
timation. In this situation, the stability of an adaptive filter can be 
analyzed by an equivalent transfer function in complex frequency domain. 
For several special classes of cyclic reference sequences, the stability 
bounds of the adaptive filter with least mean-square (LMS) algorithm 
and its variants, leaky-LMS (L-LMS) and minimum output variance LMS 
(MOV-LMS), are obtained. Effects of these algorithms on the resultant 
transfer functions and the stability bounds are also investigated. 

I. INTRODUCTION 
The least mean-square (LMS) algorithm has been well analyzed in 

the early works of adaplive filtering problem [l]. Most of the works 
consider the cases with random reference signals. However, the cyclic 
reference sequences with desired correlation property have been well 
employed in the adaptive filter for fast start-up channel estimation 
[2]-[6]. For an adaptive noise canceller, some cyclic sequences have 
also been proposed to estimate the periodic interference components 
corrupted on the desired signal [7]. Also, cyclic sequences are used 
as the reference signal in a minimum output variance mean-square 
estimator [8]. 

In [7], Glover develolped an equivalent transfer function to analyze 
the adaptive filter for noise cancellation. For a special class of 
reference inputs, the adiaptive filter can be characterized by a linear 
time-invariant transfer ifunction. Clarkson and White [9] generalized 
this approach to the adaptive LMS filter for a more general class of 
inputs. Although this approach can not provide high-order statistical 
information for the adaptive filters, it may be convenient in the 
stability analysis. 

In this brief, we will revisit the adaptive estimator with attentions 
concentrated on the stability analysis. Several classes of cyclic se- 
quences for the adaptive LMS estimator are introduced in Section 11. 
Their correlation characteristics and the resulting equivalent transfer 
functions are derived. In Section 111, the stability issues for the 
adaptive filter are discussed in terms of discrete transfer function 
concept in complex frequency domain. 

11. EQIJIVALENT TRANSFER FUNCTION 
FOR THE ADAPTIVE LMS ESTIMATOR 

A. Some Special Cyclic Sequences 

To achieve fast convergence, cyclic reference sequences with flat 
line spectra, or equivalently impulse-like correlation functions, are 
more preferable. Although the use of cyclic sequences can only 
estimate the spectrum at equally-spaced frequency points rather than 
the overall frequency band, it actually conditions the estimator to 
reach a higher signal-to-distortion ratio such that the start-up process 
can be accelerated. Impulse train sequences such as {+l, 0, 0, . . . , 0} 
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or {+l, -1, -1,. . . , -1) [3],  171, [8], short pseudorandom (PN) 
sequences 121-141, self-orthogonal sequences [5] and CORSk%lt Am- 
plitude and Zero Autocorrelation (CAZAC) sequences 161 are the 
most common candidates for the cyclic reference sequences. 

Although the impulse train sequences are more straightforwad and 
very simple in hardware implementation, they suffer from the draw- 
backs of low power and large sensitivity to the noise. To overcome 
these problems, short PN sequences are usually considered. The use 
of self-orthogonal sequences for fast start-up channel estimation had 
been found in [5], where a large class of self-orthogonal sequences 
are derived from the dc-biased PN sequences. The appropriate dc bias 
C can be related to the sequence period N by C = w. In the 
following discussions, these cyclic sequences with the same period 
of iV = 2m - 1 will be applied to the adaptive LMS estimator. 

B. Equivalent Transfer Function 

In general, a mean-squared estimator implemented by adaptive 
filtering technique can be constructed as shown in Fig. 1. It will 
operate upon a reference signal to generate an estimate of the desired 
signal at the filter output. The tap-weight vector W k  is adjusted so 
that the estimation error between the desired signd d k  and the output 
signal Y k ,  e k  = d k  - y k  = d k  - W,'Xk ,  is minimized. For LMS 
algorithm [I], the tap-weight vector Wk is adjusted by 

where p is a scalar that controls the stability and the convergence 
rate. For hardware implementation, the initial tap-weights are usually 
assumed to be zero. Accordingly, (1) becomes 

i =O 

Similarly, the filter output yk can be expressed by 
k - 1  

i =O 
k-1 

i=O 

where 

denotes the periodic correlation function of the cyclic sequence. Note 
that this correlation depends only on the relative time-difference so 
that the identity Y k z  = yk--z holds. By using (3) and the relation 
e k  = d k  - Yk, we obtain the following difference equation: 

k - 1  

ei, + ~ L N  yk-%ez = d k ,  k L 1. (5) 
Z=O 

The summation term in the LHS of ( 5 )  implies a convolution 
operation between {yk} and { e h } .  By taking 2-transform upon both 
sides of (5) ,  we obtain an equivalent transfer function defined by 

where E ( z )  and D ( z )  represent the Z-tran$omzs of the error 
signal { e h >  and the desired signal { d k } ,  respectively. Also, r ( z )  = 
CEl ykz is the 2-transform of the correlation function {yk) 
with the point at zero-lag neglected. By utilizing the periodicity in 
the correlation function, r ( z )  can be factored as r ( z )  = , 
where f ( z )  = (y1z-l + y ~ z - ~  + . . .  + y j v - ~ a - ~ + '  + y ~ z - ~ ) .  

- k  ' 

W r e d  Error 
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Yb 

Transversal Filter 
I wk xk 

Fig. 1. Adaptive LMS estimator. 

Based on the relation yk = &X?-,X,,  it is easy to show that the 
periodic correlation function { yk  } can be expressed, respectively, by 

k, k=O(modN) 
for unipolar impulse sequence, 

Y k = (  0, elsewhere. 

(7a) 

for bipolar impulse sequence, (7b) 

(7c) 
k = O(modN) 

for PN sequence, = { -\, elsewhere. 

1 + &, k = O(modN) 
y k = {  0, elsewhere. 

for self-orthogonal sequence. (7d) 

By substituting (7) into (6) ,  the equivalent transfer function H ( z )  can 
be written explicitly, respectively, by 

1 - z - N  

1 - (1 - p)z-" 
fir(,) = 

for unipolar impulse sequence, (Sa) 
1 - 2 - M  H ( 2 )  = 

1 + p(N - 4) E:;' z-2 + ( p N  - 1)z-N ' 
for bipolar impulse sequence, (8b) 

for PN sequence, (8c) 
1 - z-N 

1 + ( p N  + p - 1)z-" 
H ( z )  = 

for self-orthogonal sequence. (Sd) 

Since there are N zeros equally spaced on the unit-circle for H ( z )  
in (8), there exists N notches in the frequency band [0,27r]. The 
notches indicate that the estimator can only perfectly estimate the 
signal or channel response at these equally-spaced frequency points 
rather than the overall frequency band. 

m. STABILITY BOUNDS AND OTHER CONSTRAINTS 

The stability of an adaptive filter is usually evaluated from the 
autoconelation matrix R = E { X k X T }  of the reference input X k .  
The algorithm is stable if the step-size p satisfies 0 < p < &, 
where A,,, is the largest eigenvalue of matrix R. Although the 
equivalent transfer function approach can not describe the behavior 
of the adaptive filter in all aspects, it is very convenient to determine 
the stability bound in terms of linear system. 

It is known that the necessary condition for a digital system to be 
stable is that the poles of the system should be located inside the unit 
circle in the a-plane. The poles z, for H ( z )  in (Sa) can be easily 
located at lap/ = I v-1. Thus, the choice of p for H ( z )  to be 
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Fig. 2. Stability boundaries for the leaky-LMS estimator trained by (a) 
unipolar impulse (b) bipolar impulse (c) PN (d) self-orthogonal sequences 
with N = 7 and 15. 

stable should satisfy (zpl < 1 or, equivalently, 0 < p < 2 .  Similarly, 
the stability condition for the case with self-orthogonal sequences in 
(8d) is given by 0 < p < &. However, it is very complicated 
to determine the stability bounds for H ( z )  in (8b) and (8c). In these 
cases, the stability bound can be found by performing Jury's test [lo], 
[I 11 on their characteristic equations p(z).  First, the characteristic 
equation p(z) for (8b) is defined from its denominator by 

p(z) = zN + ( p N  - 4p)zN-1 + . . . + ( p N  - 4 p ) 2  

+ ( p N  - 4p)z  + ( p N  - 1). (9) 

For the convenience in mathematical manipulation, we define 

A(0,N) = 1 
A(0,i)  = ( p N  - 4p) ,  for i = (N - I), ( N  - Z),. . . ,2,1.  
A(0,O) = ( p N  - 1). (10) 

Also 

w, k )  

A ( j  - 1,0) A ( j  - 1 , N +  1 -j - I C )  = det 
A ( j  - 1, N + 1 - j) 
j = 1 . 2 , .  . . , ( A i  - 2 ) : k  = 0,1,2. . .  . . ( N - j ) .  (11) 

Based on (1 I), we can evaluate A(j. k )  from A ( j  - 1, k ) ,  recursively, 
for j = 1 , 2 , .  . . , ( N  - 2). 

A ( j  - 1, I C )  

As done in [ 111, the necessary and sufficient condition for p( z )  to 
have no roots outside the unit circle can be stated by 

(1) P(1) > 0 

(3) In(o,o)I < 1 
(2) p(-1) < 0 for odd N ,o r  y(-l) > 0 for even N 

(4) IA(j ,O))> l A ( j , N - j ) l ,  f o r j = 1 , 2  ..,.. N - 2 .  

(12) 

Since the sequence period N is assumed to be 2" - 1, the second 
statement in (12) for odd N is valid. From the first three conditions, 
we obtain 0 < p < $. However, it is difficult to evaluate the 
last condition by analytic method. By computer exhaustive test as in 
[11], it is found that the condition is never violated. Thus, we can 
conclude that the first three conditions are the desired necessary and 
sufficient conditions. In the same manner, we can obtain the stability 
condition for the case with PN sequence in (8c), 0 < p < $. 
The stability bounds of the LMS estimator trained by these cyclic 
reference sequences car1 be summarized as follows: 

O < p < 2 ,  for unipolar impulse sequence, (13a) 

0 < p < i\r, for bipolar impulse sequence. (13b) 
2 

2 
0 < p < for PN sequence, (134 

2 
O < P < < ,  for self-orthogonal sequence. (13d) 

In the following, the equivalent transfer function and the stability 
of the adaptive filter with two variants of the LMS algorithms, leaky 
LMS (L-LMS) and minimum output variance LMS (MOV-LMS), 
will be studied. First, the leaky-LMS algorithm [ l ]  controls the filter 
tap-weights such that the cost function J = e: + aWTWk(k 2 1) 
is minimized, where a is a constraint factor ( a  > 0). Similarly, the 
MOV-LMS algorithm adopts a cost function J = e; + a y : ( k  2 
1) [8]. Differentiating J with respect to wk yields the following 
stochastic gradient algorithms: 

wk = (1 - pcv)Wk-l + pekXk,  k 2 1 (L-LMS), 

(144 

(14b) 

After some algebraic manipulations, the estimation error can be 
written recursively by 

Wk = W k - - l  + p [ e k X k  - a y k X k ] ,  k 2 1 (MOV-LMS). 

k 

ek = d k  - p ek-,Xr-nXk(l  - p ~ ) ~ - - l ,  
n = l  

k 2 1 (L-LMS), (1Sa) 
k-1 

e k  = d k  - p z{(l+ a ) e ,  - ad , }XTXk ,  
,=O 

k 2 1 (MOV-LMS). (1Sb) 

By taking 2-transfom upon both sides of (15) and utilizing the 
identity Cr=l[[m(l-ap)"-l]z-" = 1 - ~ ~  Al?(A) ~-~~ , we obtain the 
general form of the equivalent transfer function for the two variants 
of the LMS algorithm as 

1 
H ( z )  = - (L-LMS), (16a) 

li-Pq&)r(*) 

H ( z )  = - -k I L a N r ( ' )  (MOV-LMS). (16b) 
1 3  p ~ ( i  + 

The derivation of stability bound under the tap-leakage constraint 
is not mathematically tractable by Jury's test method. Alternatively, it 
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can be evaluated from the denominator of H ( z )  in (164 by numerical 
manipulation. Fig. 2 shows the stability boundaries of (16a) for the 
cases with N = 7 and 15. The ordinate represents the constraint factor 
a, and the abscissa is the step-size p. To observe how the constraint 
factor affects the stability bounds, the step-size p is normalized to 
the upper-bound in the absence of constraint (CY = 0). The shaded 
regions indicate the choices of (p ,  CY) such that H ( z )  is stable. From 
the results, it is found that the stability can be improved by using 
the leaky-LMS algorithm. 

Second, substituting appropriate r(z) into (16b) and performing 
the Jury’s test for the MOV-LMS algorithm, the stability bounds are 
obtained as follows: 

L 
O < p < -  for unipolar impulse sequence, 

l + a ’  
(17a) 

for bipolar impulse sequence, 
2 

O<p<- 
(1 +CY)” 

2 
O<p<- 

(1 +a)” 

O < p <  

(17b) 

for PN sequence, ( 1 7 ~ )  

for self-orthogonal sequence. 
2 

(1 + a)(l+ N ) ’  
(17d) 

The upper bounds of stability in (17) decrease by a factor of (1 + a)  
from those in (13). That is, this output variance constraint reduces the 
upper bound of p. It is quite different from the case with tap-leakage 
constraint. 

IV. CONCLUSION 
Equivalent transfer function method is applied to the stability 

analysis of the adaptive LMS filter for several cyclic sequences in the 
signal or channel estimation. The stability bounds for the adaptive 
estimator with LMS algorithm and its two variants under different 
constraint are obtained. It is found that the leaky-LMS algorithm 
provides a larger stability bound compared to the LMS algorithm. In 
contrast, the MOV-LMS algorithm has lower stability upper-bound. 
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