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a b s t r a c t

Let wi ∈ C (1 ≤ i ≤ n) and l ∈ Sn, the symmetric group of all permutations of 1, 2, . . . , n.
Suppose Al is the weighted cyclic matrix

Al ≡


0 wl(1)

0
. . .

. . . wl(n−1)
wl(n) 0


and w(Al) denotes its numerical radius. We characterize those ζ ∈ Sn which satisfy
w(Aζ ) = maxl∈Sn w(Al). The characterizations for unilateral and bilateral weighted
(backward) shifts are also obtained.

Crown Copyright© 2012 Published by Elsevier Inc. All rights reserved.

1. Introduction

Let H be a complex Hilbert space and A be a bounded linear operator on H . The numerical range of A is defined by

W (A) ≡ {⟨Ax, x⟩ : x ∈ H and ∥x∥ = 1},

where ⟨·, ·⟩ is the inner product in H and ∥ · ∥ is the corresponding norm.W (A) is always a nonempty, convex and bounded
subset of C. In addition,W (A) is closed if A is of finite rank. The numerical radius of A isw(A) ≡ sup{|z| : z ∈ W (A)}.

The weighted cyclic matrix with the weightw = (wi)
n
i=1, wherewi ∈ C for all 1 ≤ i ≤ n, is the matrix

0 w1

0
. . .

. . . wn−1
wn 0

 ,
and is regarded as a bounded linear operator on Cn (with the standard inner product) under the matrix multiplication. Let
Sn stand for the symmetric group on 1, 2, . . . , n and l ∈ Sn. The weighted cyclic matrix with the weight (wl(i))

n
i=1 is denoted
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by Aw,l or simply Al, that is,

Aw,l = Al ≡


0 wl(1)

0
. . .

. . . wl(n−1)
wl(n) 0

 .
In Section 2,we characterize those ζ ∈ Sn such thatw(Aζ ) = maxl∈Sn w(Al). The characterizations for unilateral and bilateral
weighted backward shifts are also obtained in Section 3.

Let Re A ≡ (A+A∗)/2 andρ(A)be the real part and the spectral radius of amatrixA, respectively. SupposeA is theweighted
cyclic matrix with theweightw = (wi)

n
i=1. It is well-known that, for some real θ, eiθA is unitarily equivalent to theweighted

cyclic matrix with the weight |w| ≡ (|wi|)
n
i=1, which implies that their numerical radii coincide. When w is nonnegative,

that is,wi ≥ 0 for all 1 ≤ i ≤ n, ⟨Ax, x⟩ ≤ ⟨A|x|, |x|⟩ for each x = (x1 · · · xn)T ∈ Cn, where |x| ≡ (|x1| · · · |xn|)T , and hence

w(A) = max{⟨Ax, x⟩ : x is a nonnegative unit vector in Cn
} = ρ(Re A),

the largest eigenvalue of Re A (cf. [1, Proposition 3.3]). In addition, if atmost one of thesewi’s is zero, then Re A is nonnegative
and unitarily irreducible, and there exists a unique positive unit vector y such that w(A) = (Re A)y = ⟨Ay, y⟩ by
Perron–Frobenius theorem. On the other hand, if some of these wi’s are zero, then A and eiθA are unitarily equivalent for
all real θ and hence W (A) is a closed circular disc centered at the origin with radius w(A) (cf. [2]). Moreover, if at least two
of these wi’s are zero, then A is the direct sum of two weighted cyclic matrices and its numerical range equals the largest
numerical range of these summands. Therefore, it is sufficient to consider the case that at most one of these wi’s is zero
when evaluating w(A). For further information about numerical ranges and weighted cyclic matrices, we refer the readers
to [1–8].

Let l ∈ Sn and write xl ≡ (xl(1) · · · xl(n))T , where x = (x1 · · · xn)T ∈ Cn. For any weight w = (wi)
n
i=1, define

Fw ≡ ⟨{(ij) ∈ Sn : 1 ≤ i < j ≤ n and |wi| = |wj|}⟩, the subgroup of Sn generated by the transpositions for which the
weight |w| is unchanged (we adopt that Fw consists of only the identity permutation if these |wi|’s are all distinct). Notice
that ψ ∈ Fw if and only if |wψ(i)| = |wi| for all 1 ≤ i ≤ n. We observe that w(Aw,ψ l) = w(A|w|,ψ l) = w(A|w|,l) = w(Aw,l)

for each ψ ∈ Fw . Moreover, set τn =


1 2 · · · n − 1 n
2 3 · · · n 1


and ϑn =


1 2 · · · n − 1 n
n n − 1 · · · 2 1


, the permutations which

shift and reverse the order of {1, . . . , n}, respectively, and define Hn ≡ ⟨τn, ϑn⟩, the subgroup of Sn generated by τn and ϑn.
Because for each x ∈ Cn, ⟨Alτnxτn , xτn⟩ = ⟨Alϑnxϑn , xϑn⟩ = ⟨Alx, x⟩, we obtain thatw(Alϕ) = w(Al) for all ϕ ∈ Hn. As a result,
w(Aψ lϕ) = w(Al) for allψ ∈ Fw and ϕ ∈ Hn. In Section 2, we show that under the condition |w1| ≥ |w2| ≥ · · · ≥ |wn| with
wn−1 ≠ 0, ζ ∈ Sn satisfiesw(Aζ ) = maxl∈Sn w(Al) if and only if ζ = ψσnϕ for someψ ∈ Fw and ϕ ∈ Hn (Theorem 2.1). Here
σn is the permutation given by σn(i) = 2 [n/2] − 2i + 2 if 1 ≤ i ≤ [n/2] and σn(i) = 2i − 2 [n/2] − 1 if [n/2] + 1 ≤ i ≤ n,
where [ · ] denotes the greatest integer function. Therefore,

σn =




1 · · ·

n
2


− 1

n
2

 n
2


+ 1

n
2


+ 2

n
2


+ 3 · · · n

n − 1 · · · 4 2 1 3 5 · · · n


if n is odd,


1 · · ·

n
2


− 1

n
2

 n
2


+ 1

n
2


+ 2

n
2


+ 3 · · · n

n · · · 4 2 1 3 5 · · · n − 1


if n is even.

One could interpret σn as a rearrangement which centralizes those wi’s with largest absolute values. Furthermore, if w
is nonnegative, the unique positive unit vector y satisfying w(Aσn) = ⟨Aσny, y⟩ must be of the form y = xσ ′

n
, where

x = (x1 · · · xn)T with x1 ≥ x2 ≥ · · · ≥ xn > 0 and

σ ′

n =



σnϑn =


1 · · ·

n
2


− 1

n
2

 n
2


+ 1

n
2


+ 2

n
2


+ 3 · · · n

n · · · 5 3 1 2 4 · · · n − 1


if n is odd,

σnϑnτ
−1
n =


1 2 · · ·

n
2


− 1

n
2

 n
2


+ 1

n
2


+ 2

n
2


+ 3 · · · n

n n − 1 · · · 5 3 1 2 4 · · · n − 2


if n is even.

In Section 3, the comparison of numerical radii of unilateral and bilateral weighted (backward) shifts is considered.
Let w = (wi)

∞

i=0 (resp., w = (wi)
∞

i=−∞
= (· · · w−1w0w1 · · ·)), where the wi’s in C for i ∈ N0

≡ {0} ∪ N (resp.,
i ∈ Z), are bounded. Here we underline the 0th component of w for the bilateral case. The unilateral (resp., bilateral)
weighted backward shift with the weight w is the bounded linear operator on ℓ2 ≡ {(x0 x1 · · ·) :


∞

i=0 |xi|2 < ∞} (resp.,
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ℓ2(Z) ≡ {(· · · x−1 x0 x1 · · ·) :


∞

i=−∞
|xi|2 < ∞}) with the matrix representation

A =


0 w0

0 w1

0
. . .

. . .




resp., B =



. . .
. . .

. . . w−1
0 w0

0 w1

0
. . .

. . .




,

where the 0th component of a vector in ℓ2(Z) and the (0, 0)-entry of an infinite matrix for the bilateral case is underlined.
Its numerical range is also a circular disc centered at the origin with radius w(A) (resp., w(B)) (cf. [2,8]). Let SN0 (resp., SZ)
stand for the collection of all rearrangements of the elements of N0 (resp., of Z). If l ∈ SN0 (resp., l ∈ SZ), the unilateral
(resp., bilateral) weighted backward shift with the weight (wl(i))

∞

i=0 (resp., (wl(i))
∞

i=−∞
) is denoted by Aw,l or simply Al

(resp., Bw,l or simply Bl). We will show that there exists a ζ ∈ SN0 satisfying w(Aζ ) = supl∈SN0
w(Al) if and only if

supk∈N0 |wk| = lim supk→∞ |wk| (Theorem 3.1). A corresponding result for the bilateral case is also obtained (Theorem 3.2).
We also represent the values supl∈SN0

w(Al) and supl∈SZ w(Bl) as the numerical radius of some bilateral weighted backward
shift Uw .

2. Weighted cyclic matrices

Throughout this section, for each x = (x1 · · · xn)T ∈ Cn, we define x̂ = (x̂1 · · · x̂n)T and x̃ = (x̃1 · · · x̃n)T by

x̂i =


x1 if i = 1,
xi−1 if 2 ≤ i ≤ n, and x̃i =


xi+1 if 1 ≤ i ≤ n − 1,
xn if i = n.

We also define l(n + 1) ≡ l(1) for each l ∈ Sn. The following theorem is the main result of this section.

Theorem 2.1. Let w = (wi)
n
i=1 with |w1| ≥ |w2| ≥ · · · ≥ |wn| andwn−1 ≠ 0. We have

max
l∈Sn

w(Al) = w(Aσn).

Moreover, the following statements are true:

(a) w(Aζ ) = maxl∈Sn w(Al) for some ζ ∈ Sn if and only if ζ = ψσnϕ for some ψ ∈ Fw and ϕ ∈ Hn, and
(b) if w is nonnegative, then there exists a unique positive unit vector x = (x1 · · · xn)T with x1 ≥ x2 ≥ · · · ≥ xn > 0 such that

w(Aσn) = ⟨Aσnxσ ′
n
, xσ ′

n
⟩ =

n
i=1wix̂ix̃i.

In a word, Theorem 2.1 states that a permutation ζ ∈ Sn satisfies Aζ attains the maximal numerical radius among all
l ∈ Sn if and only if there is a φ ∈ Hn such that the sequence di ≡ |wζφ(i)|, i = 1, 2, . . . , n, satisfies dr ≥ dr−1 ≥ dr+1 ≥

dr−2 ≥ dr+2 ≥ · · · with r = [n/2] + 1. We establish Theorem 2.1 via a series of lemmas. The first involves an interesting
inequality which is quite well known; for example, see [9, Lemma 3.6]. We give a short proof for completeness.

Lemma 2.2. Let u = (ui)
n
i=1, v = (vi)

n
i=1 and w = (wi)

n
i=1 be n-tuples with nonnegative components and with wi’s

nonincreasing. Suppose that
k

i=1 ui ≤
k

i=1 vi for all 1 ≤ k ≤ n. Then

k
i=1

uiwi ≤

k
i=1

viwi

for all 1 ≤ k ≤ n. Furthermore, under the condition
n

i=1 uiwi =
n

i=1 viwi, we have
s

i=1 ui =
s

i=1 vi for all 1 ≤ s < n with
ws > ws+1, and

n
i=1 ui =

n
i=1 vi if wn ≠ 0. In particular, ui = vi for all 1 ≤ i ≤ n if wi’s are positive and strictly decreasing.

Proof. The fact u1w1 ≤ v1w1 is trivial. Fix k = 2, . . . , n. Summing by parts, we have

k
i=1

(vi − ui)wi =

k−1
i=1

(wi − wi+1)

i
j=1

(vj − uj)+ wk

k
i=1

(vi − ui) ≥ 0. (1)

Hence the desired inequality follows. Under the condition
n

i=1 uiwi =
n

i=1 viwi, the inequality in (1) is an equality when
k = n. We get that

s
i=1 ui =

s
i=1 vi for all 1 ≤ s < n with ws > ws+1, and

n
i=1 ui =

n
i=1 vi if wn ≠ 0. Finally, the last

statement holds since
s

i=1 ui =
s

i=1 vi for all 1 ≤ s ≤ n in such a case. �
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Combining the inequality in Lemma 2.2 and the effect of permutations, we obtain the next lemma, which plays an
important role when deriving the main theorem.

Lemma 2.3. Let x = (x1 · · · xn)T be nonnegative and nonincreasing, and let l, η ∈ Sn. For each k = 1, 2, . . . , n, there exist
ν, l1, l2 ∈ Sn such that xl(η(ν(i)))xl(η(ν(i))+1) = x̃l1(i)x̂l2(i) for all 1 ≤ i ≤ n, l1(1) > l1(2) > · · · > l1(k) and

k
i=1

xl(η(i))xl(η(i)+1) =

k
i=1

x̃l1(i)x̂l2(i) ≤

k
i=1

x̃ix̂i.

Proof. Let l, η ∈ Sn. Assume that l(p0) = 1 and l(p1) = n for some 1 ≤ p0, p1 ≤ n. We only consider the case p0 < p1; the
case p0 > p1 can be obtained analogously. There exist φ,ψ ∈ Sn such that

x̃φ(i) =


xl(i) if 1 ≤ i < p0 or p1 ≤ i ≤ n,
xl(i+1) if p0 ≤ i < p1,

and

x̂ψ(i) =


xl(i+1) if 1 ≤ i < p0 or p1 ≤ i ≤ n,
xl(i) if p0 ≤ i < p1.

We obtain that xl(i)xl(i+1) = x̃φ(i)x̂ψ(i) for all 1 ≤ i ≤ n. Fix k = 1, 2, . . . , n. There is a ν ∈ Sn satisfying 1 ≤ ν(i) ≤ k
for all 1 ≤ i ≤ k and φ(η(ν(1))) > φ(η(ν(2))) > · · · > φ(η(ν(k))). Let l1 = φην and l2 = ψην. It is obvious that
xl(η(ν(i)))xl(η(ν(i))+1) = x̃l1(i)x̂l2(i) for all 1 ≤ i ≤ n. Moreover, x̃i ≥ x̃l1(i) for all 1 ≤ i ≤ k since x̃ is nonincreasing. This shows
that

k
i=1

xl(η(i))xl(η(i)+1) =

k
i=1

x̃φ(η(i))x̂ψ(η(i)) =

k
i=1

x̃φ(η(ν(i)))x̂ψ(η(ν(i))) =

k
i=1

x̃l1(i)x̂l2(i) ≤

k
i=1

x̃ix̂l2(i). (2)

Besides, the fact that x̂ is nonincreasing implies that
j

i=1 x̂l2(i) ≤
j

i=1 x̂i for all 1 ≤ j ≤ k. Therefore,
j

i=1 x̃ix̂l2(i) ≤j
i=1 x̃ix̂i for all 1 ≤ j ≤ k by Lemma 2.2. Combining this with (2), we obtain that

k
i=1 xl(η(i))xl(η(i)+1) ≤

k
i=1 x̃ix̂l2(i) ≤k

i=1 x̃ix̂i. Thus the proof is completed. �

In brief, the preceding lemma says that (x̃ix̂i)ni=1 weakly majorizes (xl(η(i))xl(η(i)+1))
n
i=1 (cf. [10, Definition 4.3.24]).

Lemma 2.4. Let 0 < α < y. There is a β > 0 such that β < α and

2y2 = (y + β)2 + (y − α)2. (3)

Moreover, β/α → 1 as α → 0+.

Proof. Since y2 > (y − α)2, (3) holds for some β > 0. Expanding (3) and dividing it by α, we obtain 2y = 2y(β/α) +

β(β/α)+ α. This implies that β/α < 1 and β/α → 1 as α → 0+. �

We apply Lemma 2.4 to derive Lemma 2.5, which describes the relation between the weightw and the unit vector x such
thatw(Aσn) = ⟨Aσnxσ ′

n
, xσ ′

n
⟩.

Lemma 2.5. Let w1 ≥ w2 ≥ · · · ≥ wn ≥ 0 with wn−1 ≠ 0 and let x = (x1 · · · xn)T with x1 ≥ x2 ≥ · · · ≥ xn > 0 be a
positive unit vector such that ⟨Aσnxσ ′

n
, xσ ′

n
⟩ = w(Aσn). Suppose that xi0 = xi0+1 for some 1 ≤ i0 < n.

(a) If i0 is even, thenwi = wi+1 for all odd indices i and xi = xi+1 for all even indices i.
(b) If i0 is odd, thenwi = wi+1 for all even indices i and xi = xi+1 for all odd indices i.

Proof. We only derive (a); (b) can be obtained analogously. (a) will be established if the following statement is true: if i0
is even, then wi0−1 = wi0 , wi0+1 = wi0+2 (for i0 ≤ n − 2), xi0−2 = xi0−1 (for i0 ≥ 4) and xi0+2 = xi0+3 (for i0 ≤ n − 3).
We prove the cases 4 ≤ i0 ≤ n − 3 and i0 = n − 1. The cases i0 = 2 and i0 = n − 2 can be proven in a similar way. If
4 ≤ i0 ≤ n−3 and the assertion fails, then (wi0−1xi0−2 +wi0+1xi0+2)− (wi0xi0−1 +wi0+2xi0+3) > 0. Set y ≡ xi0 = xi0+1 and
let α, β be defined as in Lemma 2.4. We have 0 < β < α < y and 2y2 = (y+β)2 + (y−α)2. Because β/α → 1 as α → 0+,
we may assume that α is sufficiently small such that (wi0−1xi0−2 +wi0+1xi0+2)(β/α)− (wi0xi0−1 +wi0+2xi0+3) > 0. Define
z = (z1 · · · zn)T by

zi =

xi if i ≠ i0, i0 + 1,
y + β if i = i0,
y − α if i = i0 + 1.
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Then z is a unit vector. We get that

w(Aσn) ≥ ⟨Aσnzσ ′
n
, zσ ′

n
⟩ =

n
i=1

wiẑiz̃i

=

n
i=1

wix̂ix̃i + (wi0−1xi0−2 + wi0+1xi0+2)β − (wi0xi0−1 + wi0+2xi0+3)α

>

n
i=1

wix̂ix̃i = ⟨Aσnxσ ′
n
, xσ ′

n
⟩ = w(Aσn),

a contradiction. Hence our assertion holds. Suppose i0 = n− 1. Ifwn−2 ≠ wn−1 or xn−3 ≠ xn−2, thenwn−2xn−3 > wn−1xn−2.
Set y ≡ xn−1 = xn. By Lemma 2.4, there exist α and β such that 0 < β < α < y, 2y2 = (y + β)2 + (y − α)2 and
wn−2xn−3(β/α)− wn−1xn−2 + wn(((β/α)− 1)y − β) > 0. Define z ′

= (z ′

1 · · · z ′
n)

T by

z ′

i =

xi if 1 ≤ i ≤ n − 2,
y + β if i = n − 1,
y − α if i = n.

Then z ′ is a unit vector and

w(Aσn) ≥ ⟨Aσnz
′

σ ′
n
, z ′

σ ′
n
⟩ =

n
i=1

wiẑ ′
iz̃ ′

i

=

n
i=1

wix̂ix̃i + wn−2xn−3β − wn−1xn−2α + wn((β − α)y − αβ)

>

n
i=1

wix̂ix̃i = ⟨Aσnxσ ′
n
, xσ ′

n
⟩ = w(Aσn).

This is impossible and thuswn−2 = wn−1 and xn−3 = xn−2. �

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. Without loss of generality, we may assume that w is nonnegative. Let y = (y1 · · · yn)T be a
nonnegative unit vector with y1 ≥ y2 ≥ · · · ≥ yn. Suppose that l and l1 are in Sn. Notice that ⟨Alyl1 , yl1⟩ =n

i=1wl(i)yl1(i)yl1(i+1) =
n

i=1wiyl1(l−1(i))yl1(l−1(i)+1). Since
k

i=1 yl1(l−1(i))yl1(l−1(i)+1) ≤
k

i=1 ŷiỹi for all 1 ≤ k ≤ n by
Lemma 2.3 andw1 ≥ w2 ≥ · · · ≥ wn ≥ 0, we have

⟨Alyl1 , yl1⟩ ≤

n
i=1

wiŷiỹi = ⟨Aσnyσ ′
n
, yσ ′

n
⟩ (4)

by Lemma 2.2. Consequently, maxl∈Sn w(Al) = w(Aσn).
(b) The irreducibility of Re Aσn and (4) guarantee the existence of a unique positive unit vector x = (x1 · · · xn)T with

x1 ≥ x2 ≥ · · · ≥ xn > 0 such thatw(Aσn) = ⟨Aσnxσ ′
n
, xσ ′

n
⟩ =

n
i=1wix̂ix̃i.

(a) We only need to prove the sufficiency. Suppose that ζ ∈ Sn satisfies w(Aζ ) = maxl∈Sn w(Al). Because of the
irreducibility of Re Aζ , there exist a positive unit vector z = (z1 · · · zn)T with z1 ≥ z2 ≥ · · · ≥ zn > 0 and an l2 ∈ Sn
such thatw(Aζ ) = ⟨Aζ zl2 , zl2⟩. From (4),

w(Aζ ) = ⟨Aζ zl2 , zl2⟩ =

n
i=1

wζ (i)zl2(i)zl2(i+1) =

n
i=1

wizl2(ζ−1(i))zl2(ζ−1(i)+1)

≤

n
i=1

wiẑiz̃i = ⟨Aσnzσ ′
n
, zσ ′

n
⟩ ≤ w(Aσn) = max

l∈Sn
w(Al) = w(Aζ ).

This shows that the inequalities involved are actually equalities and hence
n

i=1wizl2(ζ−1(i))zl2(ζ−1(i)+1) =
n

i=1wiẑiz̃i. We
show that

n
i=1 zl2(ζ−1(i))zl2(ζ−1(i)+1) =

n
i=1 z̃iẑi. Ifwn ≠ 0, then this equality is confirmed by Lemma 2.2. Suppose next that

wn = 0. Sincewn−1 ≠ 0,
n−1

i=1 zl2(ζ−1(i))zl2(ζ−1(i)+1) =
n−1

i=1 z̃iẑi by Lemma 2.2 again and we obtain zl2(ζ−1(n))zl2(ζ−1(n)+1) ≤

z̃nẑn = znzn−1. The situation that zl2(ζ−1(n))zl2(ζ−1(n)+1) < znzn−1 only occurs when zl2(ζ−1(n))zl2(ζ−1(n)+1) = z2n . Because of
l2(ζ−1(n)) ≠ l2(ζ−1(n)+1), we get that zn−1 = zn, a contradiction. This ensures that

n
i=1 zl2(ζ−1(i))zl2(ζ−1(i)+1) =

n
i=1 ẑiz̃i.

From Lemma 2.3, there exist ν, ρ ∈ Sn such that zl2(ζ−1(ν(i)))zl2(ζ−1(ν(i))+1) = z̃iẑρ(i) for all 1 ≤ i ≤ n and

n
i=1

z̃iẑρ(i) =

n
i=1

z̃iẑi. (5)
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We claim that l2 = σ ′
nϕ for some ϕ ∈ Hn. First consider the case that the zi’s are distinct. Since z̃1 > z̃2 > · · · > z̃n−1 = z̃n >

0, we get that
s

i=1 ẑρ(i) =
s

i=1 ẑi for all 1 ≤ s ≤ n with s ≠ n − 1 by (5) and Lemma 2.2. This is equivalent to ẑρ(i) = ẑi
for 1 ≤ i ≤ n − 2 and ẑρ(n−1), ẑρ(n) ∈ {ẑn−1, ẑn} = {zn−2, zn−1}. We derive that (zl2(i)zl2(i+1))

n
i=1 and (z̃iẑρ(i))ni=1 consist of the

same components (up to permutation), which are

z1z2, z1z3, z2z4, . . . , zizi+2, . . . , zn−3zn−1, zρ(n−1)−1zn, zρ(n)−1zn

with zρ(n−1)−1, zρ(n)−1 ∈ {zn−2, zn−1}. This only occurs when zl2 = (zl2(1) · · · zl2(n))
T is such that z2 and z3 are in the positions

near z1, and z4 is next to z2 and on the opposite side of z1, etc. Hence, we get that l2 = σ ′
nϕ for some ϕ ∈ Hn. Now suppose

that zi0 = zi0+1 for some even index i0. By Lemma 2.5, zi = zi+1 for all even indices i. We may assume that zi > zi+1 for
all odd indices i since otherwise, by Lemma 2.5 again, w and z are both constant vectors and this theorem obviously holds.
From (5) and Lemma 2.2, we have

s
i=1 ẑρ(i) =

s
i=1 ẑi for s = n and for all even indices s with 2 ≤ s < n − 1. Hence,

ẑρ(i) = ẑρ(i+1) = ẑi = ẑi+1 for all odd indices iwith 1 ≤ i < n−2, and, in addition, ẑρ(n−1) = ẑρ(n) = ẑn−1 = ẑn when n is even,
and ẑρ(n−2) + ẑρ(n−1) + ẑρ(n) = ẑn−2 + ẑn−1 + ẑn when n is odd. Under the condition that n is even, we obtain ẑρ(i) = ẑi for all
1 ≤ i ≤ n and the same argument above leads us to l2 = σ ′

nϕ for someϕ ∈ Hn (herewe do not distinguish zi and zi+1 for even
indices i since zi = zi+1 in this case). When n is odd, we have ẑρ(n−2), ẑρ(n−1), ẑρ(n) ∈ {ẑn−2, ẑn−1, ẑn} = {zn−3 = zn−2, zn−1},
and the components of (zl2(i)zl2(i+1))

n
i=1 and of (z̃iẑρ(i))ni=1 are (up to permutation) both

z1z2, z1z3, z2z4, . . . , zizi+2, . . . , zn−4zn−2, zρ(n−2)−1zn−1, zρ(n−1)−1zn, zρ(n)−1zn

with zρ(n−2)−1, zρ(n−1)−1, zρ(n)−1 ∈ {zn−3 = zn−2, zn−1}. Because l2(i) ≠ l2(i + 1) for all 1 ≤ i ≤ n, we observe that the third
term from the right implies that ρ(n− 2)− 1 ≠ n− 1 and hence, zρ(n−2)−1 = zn−3. Applying the same arguments as above,
we get l2 = σ ′

nϕ for some ϕ ∈ Hn (we do not distinguish zi and zi+1 for even indices i). For the case that zi0 = zi0+1 for some
odd index i0, the same result can be obtained analogously. Therefore,

⟨Aζ zl2 , zl2⟩ = ⟨Aζ zσ ′
nϕ
, zσ ′

nϕ
⟩ = ⟨Aζϕ−1zσ ′

n
, zσ ′

n
⟩

=

n
i=1

wζ (ϕ−1(i))zσ ′
n(i)zσ ′

n(i+1) =

n
i=1

w
ζ (ϕ−1(σ−1

n (i)))zσ ′
n(σ

−1
n (i))zσ ′

n(σ
−1
n (i)+1).

It can be verified that z
σ ′
n(σ

−1
n (i))zσ ′

n(σ
−1
n (i)+1) = ẑiz̃i for all 1 ≤ i ≤ n. This yields

n
i=1wψ(i)ẑiz̃i =

n
i=1wiẑiz̃i, where

ψ = ζϕ−1σ−1
n . With the help of Lemmas 2.2 and 2.5, we get wψ(i) = wi for all 1 ≤ i ≤ n. Hence ψ ∈ Fw and ζ = ψσnϕ as

asserted. �

3. Unilateral and bilateral weighted backward shifts

In the preceding section, we deal with finite weighted cyclic matrices. Related theory for infinite matrices, that is,
unilateral and bilateral weighted backward shifts, is developed in this section. Before exhibiting the main theorems,
we introduce a bilateral weighted backward shift which is frequently used latter. Suppose that w = (wi)

∞

i=0 (resp.,
w = (wi)

∞

i=−∞
) is bounded. We define a nonnegative sequence (ui)

∞

i=0 as follows. Let s ≡ lim supk→∞ |wk| (resp.,
s ≡ max{lim supk→∞ |wk|, lim supk→−∞ |wk|}). If supk∈N0 |wk| = s (resp., supk∈Z |wk| = s), then select ui = s for all
i ≥ 0. If the setΩ ≡ {i ∈ N0

: |wi| > s} (resp.,Ω ≡ {i ∈ Z : |wi| > s}) is finite, we can arrange {|wi|}i∈Ω in nonincreasing
order, say |wj0 | ≥ |wj1 | ≥ · · · ≥ |wjn |, and select

ui =


|wji | if 0 ≤ i ≤ n,
s if i > n.

IfΩ is infinite, then there exists a one-to-one correspondence λ : N0
→ Ω such that |wλ(0)| ≥ |wλ(1)| ≥ · · · and we select

ui = |wλ(i)| for all i ≥ 0. Obviously, (ui)
∞

i=0 is nonincreasing. Let σ : Z → N0 be the one-to-one correspondence satisfying
σ(i) = 2i if i ≥ 0 and σ(i) = −2i − 1 if i < 0, that is, σ(0) = 0, σ (−1) = 1, σ (1) = 2, σ (−2) = 3, σ (2) = 4, . . . , etc. We
define Uw as the bilateral weighted backward shift with the weight (uσ(i))∞i=−∞

, that is,

Uw =



. . .
. . .

. . . uσ(−1)
0 uσ(0)

0 uσ(1)

0
. . .

. . .


.

Recall that for each l ∈ SN0 (resp., l ∈ SZ), Al (resp., Bl) is the unilateral (resp., bilateral) weighted backward shift with the
weight (wl(i))

∞

i=0 (resp., (wl(i))
∞

i=−∞
). Our main results are Theorems 3.1 and 3.2. They deal with the unilateral and bilateral

weighted backward shifts, respectively.
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Theorem 3.1. Let w = (wi)
∞

i=0 be bounded. We have

sup
l∈SN0

w(Al) = w(Uw).

In addition,w(Aζ ) = supl∈SN0
w(Al) for some ζ ∈ SN0 if and only if supk∈N0 |wk| = lim supk→∞ |wk| ≡ s, and supl∈SN0

w(Al) =

s in this case.

Theorem 3.2. Let w = (wi)
∞

i=−∞
be bounded. We have

sup
l∈SZ

w(Bl) = w(Uw).

In addition,w(Bζ ) = supl∈SZ w(Bl) for some ζ ∈ SZ if and only if one of the following conditions holds:

(1) supk∈Z |wk| = max{lim supk→∞ |wk|, lim supk→−∞ |wk|} ≡ s,
(2) |wi| > lim supk→∞ |wk| = lim supk→−∞ |wk| for all i ∈ Z, and
(3) |wi| ≥ lim supk→∞ |wk| = lim supk→−∞ |wk| = s for all i ∈ Z and there is an i0 ∈ N such that |wi| = s for all |i| ≥ i0.

In case (1), we have supl∈SZ w(Bl) = s.

To establish Theorems 3.1 and 3.2, we introduce several lemmas, some of which are interesting on their own. Because
the numerical ranges of unilateral (resp., bilateral) weighted backward shifts with the weight (wi)

∞

i=0 (resp., (wi)
∞

i=−∞
) and

with the weight (|wi|)
∞

i=0 (resp., (|wi|)
∞

i=−∞
) are the same, we only need to consider the unilateral and bilateral weighted

backward shifts with nonnegative weights. We may further assume that all the wi’s are nonzero. Otherwise, they are the
direct sum of weighted cyclic matrices or unilateral weighted backward shifts, and their numerical ranges are the largest
numerical ranges of these summands. For any B = (Bij)

∞

i,j=0 (resp., B = (Bij)
∞

i,j=−∞
) and 0 ≤ m ≤ n ≤ ∞ (resp.,

−∞ ≤ m ≤ n ≤ ∞), we let B[m, n] denote the matrix (Bij)
n
i,j=m.

Lemma 3.3. Let w = (wi)
∞

i=0 (resp.,w = (wi)
∞

i=−∞
) be positive and bounded. We have

sup
l∈SN0

w(Al) = w(Uw)

resp., sup

l∈SZ

w(Bl) = w(Uw)

.

Proof. Suppose l ∈ SN0 (resp., l ∈ SZ). For a fixed n ∈ N, Al[0, 2n] (resp., Bl[−n, n]) is of the form

Al =


0 wl(0)

0
. . .

. . . wl(2n−1)
0




resp., Bl =



0 wl(−n+1)

0
. . .

. . . wl(0)

0
. . .

. . . wl(n)
0




.

Let (ci)2n+1
i=1 be the rearrangement of {wl(i)}

2n−1
i=0 ∪ {0} (resp., {wl(i)}

n
i=−n+1 ∪ {0}) in nonincreasing order and set

M2n+1 ≡


0 cσ2n+1(1)

0
. . .

. . . cσ2n+1(2n)
cσ2n+1(2n+1) 0

 ,
where σ2n+1 ∈ S2n+1 is defined as in Section 1. Notice that cσ2n+1(2n+1) = c2n+1 = 0. From Theorem 2.1, w(Al[0, 2n]) ≤

w(M2n+1) (resp., w(Bl[−n, n]) ≤ w(M2n+1)). Since each entry of M2n+1 is less than or equal to the corresponding one of
Uw[−n, n], [1, Corollary 3.6] implies thatw(M2n+1) ≤ w(Uw[−n, n]). Hence,

w(Al) = w


∞
n=1

Al[0, 2n]


≤ w


∞
n=1

Uw[−n, n]


= w(Uw)

resp.,w(Bl) = w


∞
n=1

Bl[−n, n]


≤ w


∞
n=1

Uw[−n, n]


= w(Uw)


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by Wang and Wu [8, Lemma 2.6(a)]. We conclude that supl∈SN0
w(Al) ≤ w(Uw) (resp., supl∈SZ w(Bl) ≤ w(Uw)). It

remains to prove the converse. Let ϵ > 0. We may pick an n0 ∈ N such that w(Uw[−n0, n0]) > w(Uw) − ϵ because
w(Uw) = w(


∞

n=1 Uw[−n, n]). We observe that the way to construct Uw guarantees the existence of some l′ ∈ SN0 (resp.,
l′ ∈ SZ) which satisfies w(Al′ [0, 2n0]) > w(Uw[−n0, n0]) − ϵ (resp., w(Bl′ [−n0, n0]) > w(Uw[−n0, n0]) − ϵ) since the
eigenvalues of the real part of a finite matrix depends continuously on its entries (cf. [11]). Consequently,

w(Al′) ≥ w(Al′ [0, 2n0]) > w(Uw[−n0, n0])− ϵ > w(Uw)− 2ϵ
(resp.,w(Bl′) ≥ w(Bl′ [−n0, n0]) > w(Uw[−n0, n0])− ϵ > w(Uw)− 2ϵ)

and we obtain that supl∈SN0
w(Al) ≥ w(Uw) (resp., supl∈SZ w(Bl) ≥ w(Uw)). This completes the proof. �

The next lemma provides a sufficient condition under which w(Aζ ) = supl∈SN0
w(Al) (resp., w(Bζ ) = supl∈SZ w(Bl)) for

some ζ ∈ SN0 (resp., ζ ∈ SZ). In order to simplify the notations, for each s ≥ 0, let A(s) and B(s) be the unilateral and bilateral
weighted backward shifts with the constant weightwi ≡ s, respectively, that is,

A(s) ≡


0 s

0 s

0
. . .

. . .

 and B(s) ≡



. . .
. . .

. . . s
0 s

0 s

0
. . .

. . .


.

We havew(A(s)) = w(B(s)) = s by [8, Corollary 4.7 and Theorem 4.9].

Lemma 3.4. Let w = (wi)
∞

i=0 (resp., w = (wi)
∞

i=−∞
) be positive and bounded. If supk∈N0 wk = lim supk→∞wk ≡ s

(resp., supk∈Zwk = max{lim supk→∞wk, lim supk→−∞wk} ≡ s), then there exists a ζ ∈ SN0 (resp., ζ ∈ SZ) such that
w(Aζ ) = supl∈SN0

w(Al) = w(Uw) = s (resp.,w(Bζ ) = supl∈BZ w(Bl) = w(Uw) = s).

Proof. We only prove the unilateral case; the bilateral case can be done analogously. Letw = (wi)
∞

i=0 be positive, bounded
and satisfy supk∈N0 wk = lim supk→∞wk ≡ s. We get that Uw = A(s) and therefore, supl∈SN0

w(Al) = w(Uw) = s by
Lemma 3.3. Now pick a subsequence (ni)

∞

i=0 of N0 such that wni → s as i → ∞. Let ζ : N0
→ N0 be any one-to-one

correspondence with ζ (2k2
+ j) = n2k2+j for all k = 0, 1, . . . and all j satisfying 0 ≤ j < 2k. For each p = 1, 2, . . . , define

x(p) = (x(p)i )
∞

i=0 by

x(p)i =


2−p/2 if 2p2

≤ i < 2p2
+ 2p

− 1,
0 otherwise.

We have ∥x(p)∥ = 1 and

⟨Aζ x(p), x(p)⟩ =
1
2p
(wn

2p2
+ wn

2p2+1
+ · · · + wn

2p2+2p−2
) → s as p → ∞.

Hencew(Aζ ) = s as required. �

For any complex sequence x = (xi)∞i=0, we define x̂ = (x̂i)∞i=0 and x̃ = (x̃i)∞i=0 by

x̂i =


x0 if i = 0,
xi−1 if i ≥ 1, and x̃i = xi+1 for all i ≥ 0.

A result which is parallel to Lemma 2.3 is also obtained.

Lemma 3.5. Let x = (xi)∞i=0 be nonnegative and nonincreasing, and let l, η ∈ SN0 . For each k = 0, 1, . . . , we have

k
i=0

xl(η(i))xl(η(i)+1) ≤

k
i=0

x̃ix̂i.

In addition, if x is positive and xi → 0 as i → ∞, then there exist k0 ∈ N and µ > 0 such that
k

i=0 xl(η(i))xl(η(i)+1) + µ <k
i=0 x̃ix̂i for all k ≥ k0.
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Proof. The first part of this proof is similar to the one for Lemma 2.3. Let l, η ∈ SN0 and suppose l(p0) = 0. Define y = (yi)∞i=0
by y ≡ x if p0 = 0, and y ≡ (x0 x0 x1 x2 · · · xl(0)−1 xl(0)+1 · · · ) if p0 > 0. That is, y is obtained by deleting the l(0) + 1st
component of x̂. There exist φ,ψ ∈ SN0 satisfying

x̃φ(i) =


xl(i) if 0 ≤ i < p0,
xl(i+1) if i ≥ p0,

and yψ(i) =


xl(i+1) if 0 ≤ i < p0,
xl(i) if i ≥ p0.

It is trivial that xl(i)xl(i+1) = x̃φ(i)yψ(i) for all i ∈ N0. Fix k = 0, 1, . . . . We may choose a ν ∈ N0 satisfying 0 ≤ ν(i) ≤ k for all
0 ≤ i ≤ k and φ(η(ν(0))) > φ(η(ν(1))) > · · · > φ(η(ν(k))). Because x̃i ≥ x̃φ(η(ν(i))) for all 0 ≤ i ≤ k, we have

k
i=0

xl(η(i))xl(η(i)+1) =

k
i=0

x̃φ(η(i))yψ(η(i)) =

k
i=0

x̃l1(i)yl2(i) ≤

k
i=0

x̃iyl2(i),

where l1 = φην and l2 = ψην. Obviously, yi ≤ x̂i for all i ∈ N0 and this implies
j

i=0 yl2(i) ≤
j

i=0 x̂i for all 0 ≤ j ≤ k. By
Lemma 2.2, we obtain

k
i=0

xl(η(i))xl(η(i)+1) ≤

k
i=0

x̃iyl2(i) ≤

k
i=0

x̃ix̂i. (6)

Now assume that xi > 0 for all i ∈ N0 and xi → 0 as i → ∞. There are i0, i1 ∈ N such that l(0) < i0 ≤ i1 − 2, xi0−1 > xi0
and xi1−1 > xi1 . If k ≥ i1, then from (1) and (6),

k
i=0

x̃ix̂i −
k

i=0

xl(η(i))xl(η(i)+1) ≥

k
i=0

x̃ix̂i −
k

i=0

x̃iyl2(i)

=

k−1
i=0

(x̃i − x̃i+1)

i
j=0

(x̂j − yl2(j))+ x̃k
k

i=0

(x̂i − yl2(i))

≥ (x̃i1−2 − x̃i1−1)

i1−2
j=0

(x̂j − yj) = (xi1−1 − xi1)
i1−2

j=l(0)+1

(xj−1 − xj)

≥ (xi1−1 − xi1)(xi0−1 − xi0) > 0.

This completes the proof. �

Lemma 3.5 tells us that for a nonnegative and nonincreasing sequence x = (xi)∞i=0, (x̃ix̂i)
∞

i=0 weakly majorizes
(xl(η(i))xl(η(i)+1))

∞

i=0. In addition, if x is positive and xi → 0 as i → ∞,
k

i=0(x̃ix̂i−xl(η(i))xl(η(i)+1)) is away from0 for sufficiently
large k. In Lemma 3.6, we describe a necessary condition for the existence of some ζ ∈ SN0 such thatw(Aζ ) = supl∈SN0

w(Al).

Lemma 3.6. Let w = (wi)
∞

i=0 be positive and bounded. If w(Aζ ) = supl∈SN0
w(Al) for some ζ ∈ SN0 , then W (Aζ ) is open.

Proof. We show that if W (Aζ ) is closed, then there exists a ζ ′
∈ SN0 such that w(Aζ ) < w(Aζ ′). From [8, Proposition

2.1(b)], there exist a positive unit vector x = (xi)∞i=0 with x0 ≥ x1 ≥ · · · and l1 ∈ SN0 satisfying w(Aζ ) = ⟨Aζ xl1 , xl1⟩ =
∞

i=0wζ (i)xl1(i)xl1(i+1). Since xi → 0 as i → ∞, we have xl1(i)xl1(i+1) → 0 as i → ∞. This guarantees the existence
of some t ∈ SN0 such that (xl1(t(i))xl1(t(i)+1))

∞

i=0 is nonincreasing. By Lemma 3.5,
k

i=0 xl1(t(i))xl1(t(i)+1) ≤
k

i=0 x̂ix̃i for all
k = 0, 1, . . . , and there exist k0 ∈ N and µ > 0 such that

k
i=0 xl1(t(i))xl1(t(i)+1) + µ <

k
i=0 x̂ix̃i for all k ≥ k0. Now

we may pick an N ∈ N satisfying N > k0 and


∞

i=N+1wζ (i)xl1(i)xl1(i+1) <

min0≤i≤k0 wζ (i)


µ. Let ν ∈ SN0 be such that

0 ≤ ν(i) ≤ N for all 0 ≤ i ≤ N and wζ (ν(0)) ≥ wζ (ν(1)) ≥ · · · ≥ wζ (ν(N)). We have wζ (ν(k0)) ≥ min0≤i≤k0 wζ (i) andk
i=0 xl1(ν(i))xl1(ν(i)+1) ≤

k
i=0 xl1(t(i))xl1(t(i)+1) for all k = 0, 1, . . . . From (1),

N
i=0

wζ (ν(i))x̂ix̃i −
N
i=0

wζ (i)xl1(i)xl1(i+1) =

N
i=0

wζ (ν(i))x̂ix̃i −
N
i=0

wζ (ν(i))xl1(ν(i))xl1(ν(i)+1)

=

N−1
i=0

(wζ (ν(i)) − wζ (ν(i+1)))

i
j=0

(x̂ix̃i − xl1(ν(i))xl1(ν(i)+1))

+wζ (ν(N))

N
i=0

(x̂ix̃i − xl1(ν(i))xl1(ν(i)+1))

≥

N−1
i=k0

(wζ (ν(i)) − wζ (ν(i+1)))

i
j=0

(x̂ix̃i − xl1(t(i))xl1(t(i)+1))
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+wζ (ν(N))

N
i=0

(x̂ix̃i − xl1(t(i))xl1(t(i)+1))

>

N−1
i=k0

(wζ (ν(i)) − wζ (ν(i+1)))µ+ wζ (ν(N))µ

= wζ (ν(k0))µ ≥


min

0≤i≤k0
wζ (i)


µ >

∞
i=N+1

wζ (i)xl1(i)xl1(i+1).

Therefore, if ζ ′
∈ SN0 is the rearrangement such that Aw′,σN+1 , wherew′

= (wζ (ν(i)))
N
i=0, is a principal submatrix of Aζ ′ , then

w(Aζ ′) ≥
N

i=0wζ (ν(i))x̂ix̃i > w(Aζ ) as asserted. �

Proof of Theorem 3.1. Wemay suppose thatw is positive. With the help of Lemmas 3.3 and 3.4, we only need to show that
if w(Aζ ) = supl∈SN0

w(Al) for some ζ ∈ SN0 , then supk∈N0 wk = lim supk→∞wk. If otherwise, then there exists an i0 ∈ N0

such that wi0 = supk∈N0 wk > lim supk→∞wk ≡ s. By multiplying a suitable scalar, we may assume that w(Aζ ) = 1. This
implies 1 = w(Aζ ) = w(Uw) ≥ w(B(s)) = s. Suppose that s = 1. Let w′

= (w′

i)
∞

i=0 be defined by w′

0 = wi0 and w′

i = 1 for
all i ≥ 1. We get 1 = w(Uw) ≥ w(Uw′) = (w2

i0
+ 1)/2wi0 > 1 by Wang and Wu [8, Theorem 4.9(b)], which is impossible.

Suppose s < 1 and let s0 ∈ (s, 1). From Lemma 3.6,W (Aζ ) is open and henceW (Aζ ) = W (Aζ [m,∞]) for allm ∈ N byWang
andWu [8, Proposition 2.4]. We getw(Aζ ) = w(Aζ [m0,∞]) ≤ w(A(s0)) = s0 < 1 for sufficiently largem0, a contradiction.
This finishes the proof. �

To prove Theorem 3.2, we need the necessary and sufficient conditions for the existence of some ζ ∈ SZ which satisfies
Uw = Bζ .

Lemma 3.7. Let w = (wi)
∞

i=−∞
be positive and bounded. The following statements are equivalent:

(a) Uw = Bζ for some ζ ∈ SZ,
(b) there exists a one-to-one correspondence φ : N0

→ Z such that wφ(0) ≥ wφ(1) ≥ · · · , and
(c) the condition (2) or (3) in Theorem 3.2 holds.

Proof. (a) ⇐⇒ (b) If Uw = Bζ for some ζ ∈ SZ, we havewφ(0) ≥ wφ(1) ≥ · · ·, where φ = ζσ−1 and σ is defined in the first
paragraph in this section, and φ is the desired one-to-one correspondence from N0 to Z. Conversely, if (b) is true, then we
select ζ = φσ ∈ SZ and get Bζ = Uw .

(b) ⇐⇒ (c) Let s ≡ max{lim supk→∞wk, lim supk→−∞wk}. Because the set {i ∈ Z : wi > s′} is finite for any s′ > s, the
implication (c) ⇒ (b) is trivial. Now suppose that (b) holds. We first claim that wi ≥ s for all i ∈ Z. If otherwise, then we
may choose a p ∈ Z such that wp < s and p = φ(t) for some t ∈ N0. Since there are infinitely many wi’s greater than wp,
we can find some t ′ ∈ N0 satisfying t ′ > t andwφ(t ′) > wp = wφ(t), a contradiction. Hence,wi ≥ s for all i ∈ Z. This implies
that lim supk→∞wk = lim supk→−∞wk = s. Moreover, if wi0 = s for some i0 ∈ Z and the set {i ∈ Z : wi > s} is infinite,
the same argument also leads us to a contradiction. Hence, (c) is true. �

Lemma 3.8. Let B be the bilateral weighted backward shift with the positive and bounded weight w = (wi)
∞

i=−∞
. Suppose that

x(p) = (x(p)i )
∞

i=−∞
, p = 1, 2, . . . , are nonnegative unit vectors such that ⟨Bx(p), x(p)⟩ → w(B) as p → ∞, and suppose that, for

each i ∈ N0, x(p)i → αi as p → ∞ for some αi ≥ 0. We have

(a) αi → 0 as i → ±∞, and
(b) if αi0 = 0 for some i0, then W (B) is open.

Proof. (a) By Fatou’s lemma,


∞

i=−∞
α2
i =


∞

i=−∞
lim infp→∞(x

(p)
i )

2
≤ lim infp→∞


∞

i=−∞
(x(p)i )

2
= 1 (cf. [12, Theorems

5.17 and 10.29]). Therefore,


∞

i=−∞
α2
i converges and αi → 0 as i → ±∞.

(b) Suppose αi0 = 0 for some i0. From ⟨Bx(p), x(p)⟩ → w(B) and x(p)i0
→ 0 as p → ∞, we get that ⟨B̂x(p), x(p)⟩ =i0−2

i=−∞
wix

(p)
i x(p)i+1 +


∞

i=i0+1wix
(p)
i x(p)i+1 → w(B) as p → ∞, where B̂ is the bilateral weighted backward shift with the

weight (· · · w0 · · · wi0−2 ϵ δ wi0+1 · · ·) with 0 < ϵ < wi0−1 and 0 < δ < wi0 . This implies that w(B̂) ≥ w(B). By
[8, Proposition 2.5(a)], we have w(B̂) ≤ w(B) and hence w(B̂) = w(B). Therefore, W (B) is open by Wang and Wu
[8, Proposition 2.5(b)]. �

We remark that the preceding lemma also holds for the unilateral case and the proof can be obtained analogously. It is
now time to derive Theorem 3.2.
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Proof of Theorem 3.2. Wemay assume thatw is positive. From Lemmas 3.3, 3.4 and 3.7, we only need to show that if none
of (1), (2) and (3) holds, thenw(Bζ ) < supl∈SZ w(Bl) for all ζ ∈ SZ. Suppose that this is the case, andw(Bζ ) = supl∈SZ w(Bl)

for some ζ ∈ SZ. Set s ≡ max{lim supk→∞wk, lim supk→−∞wk}. Then s > 0, and there exist indices i1, i2 ∈ N0 and a
subsequence (nj)

∞

j=0 of N0 such that wζ (i1) > s ≥ wζ (i2) and wζ (nj) > wζ (i2) for all j = 0, 1, . . . . Let x(p) = (x(p)i )
∞

i=−∞
, p =

1, 2, . . . , be nonnegative unit vectors satisfying ⟨Bζ x(p), x(p)⟩ → w(Bζ ) as p → ∞. Applying the diagonal process, we may
assume that, for each i ∈ N0, x(p)i → αi as p → ∞ for some αi ≥ 0. Lemma 3.8(a) ensures that αi → 0 as i → ±∞. If
αi0 = 0 for some i0 ∈ N0, then Lemma 3.8(b) says thatW (Bζ ) is open, andw(Bζ ) = w(Bζm) for allm ≥ 1 by [8, Proposition
2.4], where Bζm is the bilateral weighted backward shift with the weight (· · · w−m−1w−mwmwm+1 · · ·). Let s0 be such that
s < s0 < (wζ (i1) + (s2/wζ (i1)))/2. We havew(Bζ ) = w(Bζm0

) ≤ w(B(s0)) = s0 for sufficiently large m0. On the other hand,
definew′

= (w′

i)
∞

i=−∞
byw′

0 = wζ (i1) andw
′

i = s for all i ≠ 0. By Lemma 3.3 and [8, Theorem 4.9(b)], we have

w(Bζ ) = w(Uw) ≥ w(Uw′) = s ·

wζ (i1)
s

2
+ 1


/

2
wζ (i1)

s


=

1
2


wζ (i1) +

s2

wζ (i1)


> s0,

which is impossible. We conclude that αi > 0 for all i ∈ Z. Let j0 be the index such that αnj0
αnj0+1 < αi2αi2+1. Define ζ ′

∈ SZ

by ζ ′(i2) = ζ (nj0), ζ
′(nj0) = ζ (i2) and ζ ′(i) = ζ (i) for all i ≠ i2, nj0 . From elementary calculation, we obtain

⟨Bζ ′x(p), x(p)⟩ = ⟨Bζ x(p), x(p)⟩ + (wζ ′(i2) − wζ (i2))x
(p)
i2

x(p)i2+1 + (wζ ′(nj0 )
− wζ (nj0 )

)x(p)nj0
x(p)nj0+1

= ⟨Bζ x(p), x(p)⟩ + (wζ (nj0 )
− wζ (i2))(x

(p)
i2

x(p)i2+1 − x(p)nj0
x(p)nj0+1)

→ w(Bζ )+ (wζ (nj0 )
− wζ (i2))(αi2αi2+1 − αnj0

αnj0+1) as p → ∞.

Therefore,w(Bζ ′) > w(Bζ ), a contradiction. This completes the proof. �
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