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Abstract

We perform the mathematical derivation of the compressible and incompressible Euler equations from the modulated nonlinear
Klein—Gordon equation. Before the formation of singularities in the limit system, the nonrelativistic-semiclassical limit is shown
to be the compressible Euler equations. If we further rescale the time variable, then in the semiclassical limit (the light speed
kept fixed), the incompressible Euler equations are recovered. The proof involves the modulated energy introduced by Brenier
(2000) [1].
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

On obtient une dérivation mathématique des équations d’Euler compressibles et incompressibles a partir de I’équation de Klein—
Gordon non linéaire modulée. Avant la formation de singularités pour le systéme limite, on démontre dans la limite non relativiste
et semi-classique la convergence vers les équations d’Euler compressibles. Au moyen d’un changement d’échelle supplémentaire
en temps, on démontre la limite semi-classique la vitesse de la lumiere restant fixée, la limite vers les équations d’Euler incompres-
sibles. La démonstration utilise I’énergie modulée introduite par Brenier (2000) [1].
© 2012 Elsevier Masson SAS. All rights reserved.

Keywords: Klein—-Gordon equation; Hydrodynamic limits; Euler equations

1. Introduction

In this paper, we study the nonlinear Klein—Gordon equation

By 1 Aq/+mcztp+v’(|tp|2)w—o (1.1)
2me? ! 2m 2 o ’
where m is mass, ¢ is the speed of light, # is the Planck constant and ¥ (x,?) is a complex-valued vector field
over a spatial domain £2 C R". The nonlinear function V' is the first derivative of a twice differentiable nonlinear

real-valued function over R™. Thus, V' is the potential energy and V is the potential energy density of the fields.
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The Klein—Gordon equation for the complex scalar field is the relativistic version of the Schrodinger equation, which
is used to describe spinless particles. The reader should refer to [23,25] for the physical background and [27] for
a general introduction to nonlinear wave equations. Since the Planck constant / has the dimension of action, [/] =
[energy] x [time] = [action], it is easy to check that (1.1) is dimensionally balanced. Furthermore, mc?t and the
Planck constant # have the same dimensions, [mc2r] = [A] = [action], so we may consider the modulated wave
function

¥ (x, 1) =¥ (x,t)exp(imc?t/h),

where the factor exp(imc?t /1) describes the oscillations of the wave function, then v satisfies the modulated nonlinear
Klein—Gordon equation

ihd W + " Ay =V (v )y "
1 —_— — =
! 2m 2mc?

The relations between different terms in (1.2) are best seen when the equation is written in terms of dimensionless
variables, which will be adorned with carets. The dimensionless independent variables are given by

32y (1.2)

x =Lx, t=TT7,

where L and T denote the reference length and time respectively. We also define the reference velocity by U =L/ T
and rescale the potential energy as

V' =mU?V'.

Substituting all of these rescaled quantities into the original equation (1.2), and dropping all carets, yields

iedy + %&Aw —V(Iy1P)y = %gz\ﬂaﬁp. (1.3)

Note that the first important dimensionless parameter v is given by the ratio of reference velocity and speed of light,
v = U/c, and the scaled Planck constant ¢ = m;‘—zT is the second important dimensionless parameter. The two dimen-
sionless parameters v and ¢ show the relativistic and quantum effects respectively. Formally letting v — 0 or ¢ — o0
(more precisely U « c¢), i.e., the so-called nonrelativistic limit, the modulated nonlinear Klein—Gordon equation (1.3)
will reduce to the nonlinear Schrodinger equation

iedy + %SZAI/I —V'(ly1*)y =0, (1.4)

though one has to be extremely careful with heuristics due to the double time derivative on the right-hand side
of (1.3).

Over the last twenty years, there has been a vast amount of research concerning the nonrelativistic limit of the
Cauchy problem for the nonlinear Klein—-Gordon equation. In particular, in [18] Machihara—Nakanishi—-Ozawa proved
that any finite energy solution converges to the corresponding solution of the nonlinear Schrédinger equation in the
energy space, after infinite oscillations in time are removed. The Strichartz estimate plays the most important role
to obtain the uniform bound in space and time (see also [22,24] and references therein). However, to the best of our
knowledge, the semiclassical limit ¢ — 0 is not well studied and is not clear from (1.3). On the other hand, based
on the hydrodynamical structure, the semiclassical limit, ¢ — 0, of the defocusing nonlinear Schrodinger equation is
quite well understood (see [4] for the review). In [6], Jin—-Levermore—McLaughlin applied the inverse scattering to
establish the semiclassical limit of the defocusing cubic nonlinear Schrodinger equation; the complete integrability
was exploited to obtain the global characterization of the weak limits of the entire cubic NLS hierarchy. Therefore to
study the various singular (hydrodynamics) limits of the nonlinear Klein—Gordon equation (1.1), it is better to start
from (1.3) because of its analogue to the nonlinear Schrodinger equation (1.4).

For the defocusing nonlinear Schrodinger equation, the semiclassical limit for initial data with Sobolev regularity
in short time has been studied by Grenier [5]. In this limit, the Euler equations for an isentropic compressible flow are
recovered. The basic idea is introducing the modified Madelung transform and rewrite the hydrodynamical equations
as a linear dispersive perturbation of the quasilinear symmetric hyperbolic system. The same method also works well
to other Schrodinger type equations [3,8,9,11]. But unfortunately, this method cannot be applied to the modulated
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nonlinear Klein—Gordon equation (1.3). The main difficulty is that we are not able to rewrite it as a quasilinear
symmetric hyperbolic system and thus the standard energy estimate cannot be applied.

We proved in [12,28] that the semiclassical limit of the modulated cubic nonlinear Klein—-Gordon equation is a
relativistic wave map and the associated phase function satisfies a linear relativistic wave equation. The nonrelativistic-
semiclassical limit is the classical wave map for the limit wave function and the typical linear wave equation for the
associated phase function. In this paper, we consider the singular limits from the point of view of hydrodynamics (see
[13] for the fluid approximation). As has been pointed out by Masmoudi and Nakanishi in [21] (see also [12]), the
Klein—Gordon equation behaves like the Schrédinger equation in the nonrelativistic region, and like the wave equation
in the relativistic region. Thus, we consider the nonrelativistic-semiclassical limit, i.e. the two parameters ¢,v — 0
simultaneously, of the modulated nonlinear Klein—-Gordon equation (1.3). To avoid carrying out a double limit, we
restrict the case when the two parameters v and ¢ are related. In this situation, the compressible Euler equations are
recovered as the nonrelativistic-semiclassical limit. On the other hand, if we rescale the time variable, then the extra
degree of the parameter ¢ enables us to discuss the semiclassical limit no matter when v is of order O (1) or tends to
zero as € — (0 and the limit of the current is shown to satisfy the incompressible Euler equations.

The modulated energy method was introduced by Brenier [1] to prove the convergence of the Vlasov—Poisson
system to the incompressible Euler equations. It was immediately extended by Masmoudi in [20] to general ini-
tial data allowing the presence of high oscillations in time (see also [10] for the quantum hydrodynamic model
of semiconductor). The same idea is also applied to study various singular limits of other equations, for example
the Schrodinger—Poisson equation [26], the Gross—Pitaevskii equation [14] and the coupled nonlinear Schrodinger
equation [7,15]. In fact, we will employ this method to study the hydrodynamic limits of the modulated nonlinear
Klein—Gordon equation (1.3). Similar to [1], we limit ourselves in this paper to the case when the initial data is well
prepared. For general initial condition, the method used in [10,20] should be applicable and it will be our next research
project.

The modulated energy is designed to control the propagation of the charge and current (or momentum) for Vlasov—
Poisson, Schrodinger and the related nonrelativistic type equations. Since the charge (current) of the Klein—Gordon
equation is constituted by the Schrodinger and relativistic parts, thus, the main idea is to show that the relativistic
charge and current are small and the main contribution of the nonrelativistic-semiclassical limit comes from the
Schrodinger part. In contrast with the Schrodinger equation and its variants, we have to introduce one correction term
of the modulated energy which controls the propagation of the relativistic charge and current. In fact, the relativistic
parts vanishes as ¢ tends to zero. Thus we prove the convergence of the charge and the current defined by the modulated
nonlinear Klein—Gordon equation towards the solution of the y-law compressible Euler equations. The range of the
adiabatic exponent y is different: y > 1 for even spatial dimension n and y > ;2 for odd n.

Turning to the incompressible limit, we have to rescale the time variable and consider the potential energy designed
to represent in the form of pressure instead of the charge (or density). In this case, we show that the current converges
to the incompressible Euler equations in the semiclassical limit. For the potential energy given in terms of the power of
density, we have a similar result. However, the associated adiabatic exponent y is different because of the convexity
of the potential energy discussed. The difference between the compressible and incompressible flow is typified by
consideration of the way in which an acoustic wave travels in the fluid. Besides the correction term of the modulated
energy as discussed in the compressible Euler limit, we have to introduce one more correction term which describes
the propagation of the density fluctuation in order to obtain the incompressible limit. This is similar to the zero Mach
number limit of the compressible fluid [2,17,19]. The convergent result can be improved for n = 2 by the standard
bootstrap process.

The rest of the paper is organized as follows. In Section 2, we derive the hydrodynamical structure of the modulated
nonlinear Klein—Gordon equation and discuss their relation to the compressible and incompressible Euler equations.
The proof of the convergence of the modulated nonlinear Klein—Gordon equation to the compressible Euler equations
is established in Section 3. In Section 4, we prove the convergence of the time-scaled modulated nonlinear Klein—
Gordon equation to the incompressible Euler equations.

Notation. In this paper, L?(£2) (p > 1) denotes the classical Lebesgue space with norm | f|, = (f_Q [ £1P dx)'/P,
the Sobolev space of functions with all its k-th partial derivatives in L2(£2) will be denoted by H k(§2). We abbreviate
“< C 7 to “<”, where C is a positive constant depending only on a fixed parameter.
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2. Hydrodynamical structure

A fluid mechanical interpretation for the linear Schrodinger equation was put forth by Madelung in 1927, and
applies to nonlinear Schrodinger equations. Indeed, as shown in [5], the same idea also applied to the modulated non-
linear Klein—Gordon equation (1.3). We introduce the complex wave function, the so-called Madelung transformation,

¥ = Aexp(iS/e), 2.1)

in which both A, the amplitude, and S, the action function, are real-valued functions. It is important that the amplitude
is assumed to be non-negative at every point: A > 0. Plugging (2.1) into modulated nonlinear Klein—Gordon equation
(1.3) and separating the real and imagine parts, we obtain

A 242 2
8,A+E(AS—V 37S)+VA-VS—v°0,A9,S =0, (2.2)
1 1 e20,A
S+ =|VS)? — =12(8,8)> + V/(A?) = — =, 23
¢ +2| | 2V(t )"+ ( ) > A (2.3)

where the d’Alerbertian [, is defined by O, = A — v28t2. Egs. (2.2) and (2.3) are equivalent to the modulated
nonlinear Klein—Gordon equation (1.3) for smooth functions A and S. Eq. (2.2) turns out to be the continuity equation
for the relativistic quantum fluid and Eq. (2.3) is the relativistic quantum Hamilton—Jacobi equation. Introducing the
new functions

p=A=yy =y,
ie 1 _
u=vVsS= Ew—lz(wvw —UVi),

)
LEV — —_
px =V*A%9,S = —— WAy — vy,

we can rewrite (2.2)—(2.3) as the dispersive perturbation of the compressible Euler type equations

0(p— pk) + V- (pu) =0, v23zu=V(p7K), (2.4)
82 821)2
0 (pu — pxuw) +V - (pu ®u) + VP(p) = V- (pV*logp) — 7~ 0(pVarlog p), (2.5)

where P(p) = pV'(p) — V(p) is the pressure and V? denotes the Hessian. Egs. (2.4)—(2.5) are constituted by the
Euler, relativistic and quantum parts. If the “Euler part” of these equations is to be hyperbolic, then the pressure P (p)
must be a strictly increasing function of p; in that case, P’'(p) = pV"(p) > 0. This means that V must be a strictly
convex function of p and corresponds to a defocusing nonlinear Klein—Gordon equation. Defining the Schrodinger
part energy density Eg and relativistic part energy density Eg respectively by

1 5 82|V,0|2 &2 2 5
Es=- — 2 4V ==V 1% ,
s=gplul g ==+ V)= Z IV I+ (lv1%)
1 p% 202 |gp)> 27 5
Ex = — K = v
2v4 p 8 o 2

we obtain from (2.4)—(2.5) the conservation of energy

&2 Vp
d(Es+Ex)+V - ((Es+ P(p)u) = V- [uAp -V (pu)T]

In the formal nonrelativistic limit v — 0, the relativistic part energy Ex gives px — 0, and (2.4)—(2.5) reduce to the
quantum hydrodynamical equations

0o+ V- (pu)=0,
2
&
9 (pu) +V - (ou@u) + VP(p) = V- [pV*logp],
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which are exactly the fluid formulation of the defocusing nonlinear Schrodinger equation (1.4). In this case the rela-
tivistic part energy density Ex vanishes and the limit energy density E will be given by

_ e? |Vp|?
I|+8

+ V(p),

and will satisfy

2 A \Y
WE+V - ((E+Po))u) =2 [(pu)%’ ~-v. (pu)Tp}.

Next letting v — 0 and ¢ — 0 simultaneously, both the relativistic and quantum correction terms in (2.4)—(2.5) vanish
and the limit densities p, # and P will satisfy the compressible Euler equations

atp+v : (pu) =09
O (pu) +V - (pu @u) +VP(p) =0,
and the limit energy density E will be given by

1 2
= Splul”+Vip),
and will satisfy

HE+V-((E+P(p)u)=
hence playing the role of a Lax entropy for the Euler system.
In order to investigate the incompressible limit, we introduce the scaling
T=¢%, X=x, a>0.
After dropping the tilde, the modulated nonlinear Klein—Gordon equation (1.3) becomes

82+2a 2

ie! T,y — aw+ Aw V' (1w 1)y =0.

For this model the corresponding fluid dynamlcs equations (2.4)—(2.5) turn out to be
% (p — px)+V - (pu) =0, (2.6)

82—20{
V. (pV2 log ,0), 2.7

s2p? 1
0 (pu — pgu+ TpVBz log,o) + V- (pu®u)+ ﬁVP(p) =

and the associated energy equation becomes

P 22 A v
B (Es+ Ex) + V- ((Es - 8§§)>u> =V [(pm?" -V (pu)%’},

4

where the Schrodinger part energy density Eg and relativistic part energy density Eg are given respectively by

2-2a 2
g |V pl 1
Eg —pI P+ — g =gV (0),
. 1 pg | &8? |a,p|2
K= — t+— .
202g2e p 8 p
It follows immediately from the energy equation that
1 pg &2 3pl? 72 Vo2 Vip)
K — x<C 2.8
/21)282“ o 8 + pluf*+ 8 0 820‘ 28)

for all 0 < ¢ < oo if the initial energy is bounded. Assummg the minimum of the convex function V(o) occurs at
p = 1 then the energy bound (2.8) implies p — 1 and px — 0 as ¢ — 0. Since the density p goes to 1, we expect that
Eq. (2.6) yields the limit: V - u = 0. And writing VP (p) = V(P (p) — P(1)), we deduce from (2.7) that
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Qu+V-u®u)+VP =0,

where P is the limit of w. In other words, we recover the incompressible Euler equations, for which we refer
to [16].

3. Compressible Euler equations

The first result we shall prove rigorously in this paper is the convergence towards the compressible Euler equations.
In fact, we consider the so-called nonrelativistic-semiclassical limit, i.e. v — 0 and ¢ — 0 simultaneously. In order
to avoid carrying out a double limits the parameters v and ¢ must be related. For convenience we set v = ¢* for
some k > 0, 0 < & <« 1 and assume the potential energy V' (|y¢ 12) = |¥¢|> =D Indeed we consider the modulated
nonlinear Klein—-Gordon equation

1 1 _
iaa{ws _ 5‘(:24-2/(81‘2,(#{;‘ + ESZAwg _ |¢3|2(V l)wé‘ — 0’ (31)
supplemented with the initial conditions:
Ye(x, 0) = ¥ (x), HY(x,0)=Yi(x), xeg, (3.2)
satisfying
1 2 1 2 1 2
/EEMKWH + E82|wg| + ;|¢g| Ydx<cC. (3.3)
’ﬂ"l‘l

Here and below, C denotes various positive constants independent of €. To avoid the complications at the boundary,
we concentrate below on the case where x € 2 = T", the n-dimensional torus.

Associated with (3.1) are the local conservation laws corresponding to charge, momentum (current) and energy
conservation. In fact, we have the hydrodynamical variables: Schrodinger part charge p§, relativistic part charge p% ,
Schrodinger part momentum (current) Jg, relativistic part momentum (current) Jg and energy e® given as follows:

2
ps=v°|"

Pk = %e”” (V50 * = yea,v°),

I = (1 T 96.0) = 5 WOV = F709°),

T = i Tz Thon) = 58 250 VT +0, 57997,

= 36 oy P 5w e (3.4)

The local conservation laws of the modulated Klein—-Gordon equation (3.1) are the charge, momentum (current) and
energy given below:

(A) Conservation of charge

5
(05 = pk) + V- J§ =0, 3.5)

(B) Conservation of momentum (current)

I s TR+ 1V @ VI + T @ V) - V()]

dr
1 — -1
+ 1V + TFou) + VTVWVV =0, (3.6)
(C) Conservation of energy
3 1 _
Eee -V [Esz(vwsa,wf + vwsa,w)} =0. (3.7)

They play the crucial role of the hydrodynamics limits. Leu us state the main theorem of this section first.
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Theorem 3.1. Let y > 1 for even spatial dimension n and y > - for odd n. Let \* be the solution of the modulated

nonlinear Klein-Gordon equations (3.1)—(3.2) and the initial condition (15, ¥j) € HH(T") @ HY(T"), s > 5+1,
satisfying (3.3) and (3.11). Then there exists T, > 0 such that

” (,0§ - ,O)(-, 1) ”Ly(’]rn) — 0, ”pK( Z)HLVZII ™ — 0,
T A A

fort €10, Ty) as € | 0, where (p,u) € C([0, Ty); H*(T™)) is the unique local smooth solution of the y -law compress-
ible Euler equations

9p+ V- (ou)=0, xeT", tel0, Ty,
o (pu)+ V- (pu®@u)+ VP(p) =0, (3.8)
p(x,0) = po(x), u(x,0) =up(x), x €T,

where 0 < pg € H*(T™), ug € H*(T") and the equation of states is given by P(p) = VT_IpV.

Motivated by Brenier’s pioneer work [1], we will prove this theorem by modulated energy. It is easy to see that
when the parameter ¢ is small, the wave function ¥¢ and hydrodynamic variables p, u are related according to

e = pi~p, (VEVPE — TEVYE) ~

2 IW 2
The symbol “A &~ B” means that A almost equals B. Moreover, as ¢ tends to zero, the limiting energy will be % plul®+

Loy, Keeping this term in mind and comparing with the energy of the modulated nonlinear Klein—-Gordon equation
(3.1), we have:

1 2 1
ESZIV‘/f‘S‘ %§P|M|2,

1 2 1 1 _
A B 1 G TR N Gl OF

Thus, we have the relation

1 1
Lo - Lo~ (v = 2 2 P e P
2
> S P =i V= V) e Flep)
1
—|(sv — i)y’ |
Therefore we can define the modulated energy of (3.1) as
HE(t) = %/y(gv —iu)lﬂs‘zdx—i—%/|81+"8,1/f£’2dx+/@(p§,p)dx (3.9)
n ’]I‘n ']I‘)l
where
1
O(p5. p) = 2 ((5)" = p7) =" (5 =) (3.10)

is a convex function, minimum occurs at pg = p and satisfies ® (pg) > 0. We also assume

H(0) = f|(eV—mo)¢O| dx + = /|e””wl| dx

Tn

+/@(’1/f§|2,po)dx=0(sﬂ), for some 8 > 0, (3.11)

’]I‘VL
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i.e., we consider the well-prepared initial data. We can rewrite the modulated energy (3.9) in terms of hydrodynamical

variables only as
€ _ 3 _ £ 1 E1,,12 y —1 _ & y—1
Hé(@t)= [ e dx u~Jde+2 pglul”dx + ——p—pg |p" " dx. (3.12)
4
']l‘n

Tn Tn Tn

Therefore to obtain the hydrodynamic limit we have to show that the modulated energy H¢(¢) tends to zero as ¢ — 0.
Indeed, we have the following estimate.

Lemma 3.2. Under the hypothesis of Theorem 3.1 and let A = min{1, &, B}, we have

H*(t) < O(¢") uniformlyint €[0,T].

Proof. We have to check the evolution of the modulated energy H®(¢) given by (3.12). Differentiating the modulate
energy H? with respect to time variable ¢ and using the conservation of energy (3.7), we obtain

d d 1d d y—1

—H'(t)=—— Jéd Elu)*d —f LA r=ldx. 3.13

—H" (1) dt/usx+2dfp5|u| x4 (ypp) x (3.13)
T~ T~

We discuss the right-hand side of (3.13) separately. Integration by parts and using conservation of momentum (3.6),
the first term of the right-hand side of (3.13) becomes

d -1
—E/u'lédx=—/8tqu§dx—/y—(pé)yvoudx
Y
T g g
82 — — 2
—Z/Q(ng@kurvw@vw):W+V|W} -(VV -u)dx
’]I‘n

1 d 2 d
—182+2KE/(3;|1//8| )V-udx—E/wJIidx
Tl‘l T/‘l

+%82+2K/(81|¢£’2)Voa,udx—i—fatu~J,§ dx. (3.14)
" "

Next, by conservation of charge (3.5) and integration by parts, we have

1d 1
237 p§|u|2dx=/p§u.8,udx+§/V|u|2.J§dx
']I'Il 'H‘ll ']I‘Vl
1d e 2 e
+§E prlul“dx — | pgu-dudx. 3.15)
Tll Tl’l
The third term of the right-hand side of (3.13) becomes
d -1
o <VV p— ps)pV 1dx—/(y—1)py *(p— ps)atpdx——/ v=lpt dx
’]I‘VL
+/a,pV Lot — Vo=t Jédx. (3.16)
’]I‘n

From (3.14)—(3.16) we define the correction term of the modulated energy H¢ as

1
Gs(t)———/|u| dx+/ 7 og dx+4€2+2"/(31W8‘2)V'udx+/u~J,s(dx.

Tn Tn T
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It is designed to control the propagation of the relativistic charge and current and will be proved to be small as & — 0.
Using crucially the limit compressible Euler equations (3.8), we have

1
i(Hg(t)JrGf(t)):/(J;—pgu)-(u-W)dx+§/J§-V|u|2dx

dt
’]I‘il ’]I‘ll
y—1 _
—/[T(pé)y —(y = Dp” 1p§}V-udx
"ﬂ‘ﬂ
&2 2 I 515 2
_Z/VW’ (VV-wydx+ e + K/(at]wf} )V - dudx
Tﬂ ’]Tn
—fu-atup%dx+/8tpy_1p%dx—i—fatu-Jls(dx—i—Rl—I—Rg, (3.17)
'ﬂ‘)l T)l 'ﬂ‘Vl

where

2
R = _%/(Wﬁ Q@ VYe+ Ve @ Vy®) : Vuds,
'H‘n

Ry = —/(y — "'V - (o) dix.
T'l

To deal with Ry, we can rewrite R as
1 -
R| = -5 f((gv — Y ® (eV —iu)ye
’JI‘n
+ eV — i)Y ® (V —iu)y®) : Vudx + K| + K> + K3,
where
K = % f((—iu)xpg Q Ve + (i)Yt ® prg) :Vudx,
'H‘n

Ky = % / (i) y® ® (—iu) P + (—iw)y* ® (—iu)y®) : Vudsx,

’]I‘n

2
'ﬂ"n

K3 = ¢ /(V\ﬁg Q (—iu) Y + Ve @ (—iu)y®) : Vudx.
Using integration by part and go back to the hydrodynamic variables (3.4), one can calculate that

1
K1 =—/(u®.]§):Vudx=/§|u|2V~J§dx,
Tn T’l
and

K2+K3=/(p§u®u) :Vudx—/(]f@u):Vudx:/[(u-V)u]~(p§u—]§)dx,
Tn Tn T’l
i.e.

R = —% /((,sv — i)Y @ (eV — i) Ye + (eV — i) Y* @ (eV — iu)y®) : Vudx
TV[

+/ %|u|2V JEdx +/[(u Vu) - (p§u — J§) dx. (3.18)
T "
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Also using the identity
- y—1
(y = Dp? ™'V - (ou) = (Vo) ut (y =07V -,

we have

—1)2
R2=—/(y—l)pV‘IV(pu)dx=—ufﬂyv'“dx-
Y
Tn

Tn

Employing (3.18) and (3.19), we can rewrite (3.17) as

dt
Tn
1
—(y- 1)[[;((p§)y —p¥) = p" (0§ — p)]v ‘udx
’ﬂ‘rl

— %Z/V|1/f€|2 (VV -u)dx —/u - upy dx + / 8;,0}’71,0;< dx
T g T
+ %ng f(a,|1//8|2)v Byudx + / du - T dox.
™ g
One can estimate the first term of the right-hand side of (3.20) as follows

n
|Vu: eV —in)y® @ (6V — i) Y¥| < [|Vullooerny Y [(£0; — iu )y (edg — iug)* |
j.e=1
. 2

<nl|Vullpeom |V —iu)y|”.
Furthermore, for ¢ € [0, Ty), by (3.3), (3.5) and (3.7) we have

_ || o1+ _

||8VW8HL2<W) = e Kat‘ﬂs”LZ(m =0
and
e gy = 0D, 2<q <2y.
Then by Holder inequality we have the following estimates
2 2
£ /V|1/,8| (VV-u)dx < EHWW||L2(qrn>HW”LZV(T")HVV'MHL%(W) < ellullms ey,

’]l‘n
and

/p%u . 3:“ dx < el ||I/£ . atu”LOO(T”) ws ||L2(T”) 81+K8f¢8 ||L2(T”)
’]I‘Vl
S &8l - puell oo crny S £ Nl s -
Similar to (3.23)—(3.24), we also have
_ -1
/ 90" dx S e o1 b,
’]I‘n
SMK/ (O] we[*)V - b dx el oy,
T}l
/atu . J}? dx < 8K||u||HS(']1'n).
’]I‘I’L

i(Hﬁ(r) +GA) = —% /((eV — i)Y @ (eV — i) ye + eV — i)Y @ (eV — iu)y®) : Vudx
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(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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Combing the above estimates we obtain the inequality

d
7 —(H* (1) + G* (1)) S IVul| Loocrny HE () + &° (1l 115 comy + el s (ny + II,OIIHY(Tn )

for ¢t € [0, Ty) and § = min{1, «}. Integrating (3.28) with respect to time variable ¢ yields
HE(t) < HE(0) + G5 (0) — G*(1) + C; / H®(t)dt + Ca26%t.
Similar to (3.23)—(3.27) one can show that G¢(0) — G*(¢) = O(&"); and hence
H () < C / HE(v)dt + H*(0) + C2°t + C3¢".

Employing the initial condition H®(0) and the Gronwall inequality we derive
HE (1) < (CaeP + Cre®t + C36°) (1 + C12e“Y).

This shows H? (1) < 0(8)‘) for ¢t € [0, Ty), where A =min{l,«, 8}. O

It is easy to check that the modulated energy can be rewritten as

g2 ) 1 1 2
H‘E(t)z—/‘v /0§ dx+—/‘—(ﬁ—p8u)
2Tﬂ S 2’]1‘" pg S S

Using (3.29) and Lemma 3.2, we have

T Tn

2

dx — 0, /‘@(pg,p)dx—>0
']In

/‘\/» — psi)

as ¢ — 0. Also the elementary computation shows that ([17])
1 i .
Slos ol <O(o5.p) ify >2
e 2 2—y 3
|05 —p|" SPp™70(p§. p) if1 <y <2and p§ < 2p;
% — p’y SO(ps.p) ifl <y <2and p§ > 2p;

dx+%/\slﬂatw\zdx+/@(p§,p)dx.

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
(3.33)

and hence | p5 — pllLv(Tn) — 0 as & — 0. On the other hand, applying the triangle and Holder inequalities we have

105 =Pl 2, <105 = p50)] %Tn 105 —o)ull 2

< uf e .

which converges to zero as ¢ — 0 by (3.30)—(3.33). Combmg (3.21) and (3.22) we have

(JS ,ogu) ”pS pHLy(Tn)”u” 7)/1

(")

Ik el 2 0 Sl 00 2oy

l/fg || L2y (T™) e Oa

and

17k Ol gy S & 6000 2y

as ¢ — 0. This completes the proof of Theorem 3.1. O

eV ||L2(T,l) -0
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Remark. The main reason why the adiabatic exponent y depending on either spacial dimension is even or odd comes
from the estimates (3.23) and (3.26) given respectively by,

IVV-ull 2 S llullas . IV-Quull 2y S lullas ooy
Ly=1(Tn) L7=T(Tn)

Since VV -u € HS72(T"),s — 2 > ” — 1, we have VV - u € H"/*>(T") for even spatial dimension n, thus VV - u €
LP(T") for any 1 < p < oo by the Sobolev inequality, so we conclude y > 1 for even spatial dimensions. On the
other hand forodd n, VV -u € H #=D/2(T"), the Sobolev inequality implies VV - u € L?(T"), 1 < p < 2n, so we

need 1 < 2n, and hence y > ;=5 for odd spatial dimensions. The argument for the estimate of V - d,u is similar.
4. Incompressible Euler equations

The second result we want to address in this paper concerns the convergence towards the incompressible Euler
equations. We still consider only the n-dimensional torus T" as discussed in the previous section. To obtain the
incompressible limit, the time variable need to be rescaled, + — &%f, @ > 0, and potential energy is given by
V/(IYe1?) = (we” — D[ye|Y =2,y > 2. More precisely, we will investigate the time-scaled modulated nonlinear
Klein—Gordon equation

2+2a 2

2

. e
il Ty, yf —

2yt + o Aw — (jy°) = )" Py =0, (4.1)
supplemented with initial conditions

wa(x’0)=w(§(x)» 3t1ﬁ8(x,0)=1p1s(x)7 xeTn9

satisfying the uniform bound

1 1 1
/ z\)252|wf|2 + 5(92*20‘|V1p3|2 +—=(|lv§]” —1)%dx < C. (4.2)
ye
Tn
We will consider the limit as the scaled Planck constant ¢ — 0 and the parameter v is kept fixed. To prove the
incompressible limit of (4.1) we have to define the hydrodynamical variables; Schrodinger part charge pg, relativistic
part charge o}, Schrodinger part momentum (current) Jg, relativistic part momentum Jg and energy e® as follows:

i —
Ps= pi = Ve T (WO IE — Yo y),
J§ = (i T e J5) = 56" (WO VIE = TEVY),
1)282 J— —
Je =k Ik Ika) = —(3tlﬁsv¢8 + 9 YEVY),

1
¢ =0y + 5 82 vy + 2a(|1/f =)

The local conservation laws associated with the rescaled modulated nonlinear Klein—Gordon equation (4.1) are the
charge, momentum and energy given respectively by:

(A) Conservation of charge

a
o5 pR) Y SE=0, @3

(B) Conservation of momentum
d

1 — _
ar S = T) 3V - [2Ve © VI VT @ Vi) = V(|y )]

V(y = Dy — v = 2)|p°|) =0, (4.4)

1 - 1
eV TP +
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(C) Conservation of energy

%ee -V. Bg““(wfa,ﬁ + VIF&;I//S)} =0. (4.5)

We now state the main theorem of this section.

Theorem 4.1. Let « > 0, y > 2 and ¢ be the solution of the time scale modulated nonlinear Klein—-Gordon equation
(4.1) with initial condition (Y5, ;) € HSPH T @ HS(T"), s > + 1, satisfying (4.2) and (4.8). Then there exists
T. > 0 such that

[(o5 =1 Dlrny = 0. ok 0] ZII(T")_)Q

| (75 = psu)( t)“ 2 ony -0, |7k D 1y = 0

fort €10, Ty) as e | 0, where u € C([0, T); H*(T")) is the unique local smooth solution of the incompressible Euler
equations

{8,u+(u-V)u+V7T:O, V.u=0, 4.6)

u(x,0) =ugpx), V-ug=0.

Similar to the previous section, we define the modulated energy

r
He(t) =~ /| ey —iu)ye | dx +—/|a,1/f I dx /((p§)2 —1)%dx 4.7
T}l ’]I‘Il Tll
which satisfies the well-prepared initial condition

H®(0) = /\ (e'V — iug)y§ |’ dx+” /\xp]] dx+ /(]wo\y 1)*dx = 0(c), (4.8)
™ T

for some B > 0. The modulated energy can be further rewritten in terms of the hydrodynamic variables as
1
Hg(t)zfegdx—/u-1§dx+E/,O§|u|2dx. (4.9)
YK " "
Lemma 4.2. Under the hypothesis of Theorem 4.1 and let A = min{g, §}, where § =2a/y, we have

H () < 0(e"), telo,Tl.

Proof. Differentiating the modulated energy (4.9) with respect to ¢ and using conservation of energy (4.5), we obtain

d d d [1
—H () =—— Jédx+ — | =pblulPdx=1 + b.
TR dz/” Sx+dt/2p5|u| ¥=h+h

Tn Tn

By conservation of momentum (4.4), integration by part and using the fact that « is divergence free, we obtain

d J— R
11=—/3zu-(Jé_Jg)dx—E/u-J;(dx— /2(V¢€®ng+vws®vwe):Vudx'
L T Tn

22«

Next employing conservation of charge (4.3) and integration by part, we have

1 d 1
12=/p§u.atudx—}—/§V|u|2.J§dx+5/5p§<|u|2dx—/p§<u.B,udx.
g g T g

As before we define the relativistic correction term of the modulation energy by
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1
Gs(t):—E/,of{|u|2dx+/u~Jf(dx,
Tn ']1‘11

then using crucially the incompressible Euler system (4.6), we have

d 82—20{ o o
E(Ha(t) +G*(1) =— 5 f(vw Q VY + Ve @ Vy®) : Vudx
’ﬂ‘n
1
+/(J§—pgu)-(u-Vu)dx+/§J§-V|u|2dx
Y "

+/(J§—,0§u).Vﬂdx—/pf(u-atudx—i—/atu-lf(dx.

Tn Tn Tn

To deal with the first integral of the right-hand side of (4.10), we need the following equality

2—2a
_¢ /(vw@vFJrvlF@vw):de
Tn
— _% f((gl—“v —iu) Y ® (e170V — iu)ye
T’l

+ (e1=oV —iu) Y ® (e'7*V —iu)y®) : Vudx

+/%|u|2V~J§dx+[[(u-V)u] - (pfu — J§) dx.
T}‘l TV!
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(4.10)

@.11)

This equality similar to (3.18) as discussed in previous section. Combining (4.10) and (4.11), we have the equality

SO +60) =3 /((gl—av —iu)yt @ (F oV — in) g
'ﬂ"n

+ (e17V —iu) Yt ® (¢! 7OV —iu)y®) : Vudx

+f(J§—p§u)~Vndx—/pf(uﬂtudx—f—/atwﬁ(dx.
"JI‘)I Tﬂ TV’

4.12)

Now we will estimate the second, third and fourth integral of right side of (4.12) separately. By (4.2) and (4.5), we

have for t € [0, Ty)

1199 gy = 8 ey = OO
and
Y
I(05)* — 1HL2(’]I‘") = 0(e").
We deduce from the inequality

r
2

o5 — 1|7 < [(05)* — 1],

and (4.14) that

20
0§ — l”LV(’]I"’) =0(e7).

Hence by (4.13), (4.14) and Holder inequality, we arrive at the inequality

(4.13)

(4.14)

(4.15)
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/p?(u-Vﬂ)dx:/(pfg— 1)(u-Vm)+u-Vrdx

T}l 'ﬂ‘n
2a
=/(p§—1)(u-V7t)dx§87||u-V7t|| v
LY=T1(Tn)
’]Tll
To go further, we need the relation
/J§ -Vmdx =f718,(,0§ —1) — 7o py dx
’]I‘n ’H‘)l
d
= n(pg—l)—p%ndx—/atn(pg— 1) — p oy dx. (4.16)
T}l T}l

The last integral of (4.16) can be estimated by Holder inequality

2a
/817T[(;0§ — 1) =pkldxSev gl
']I'Il

+ %107 || Loo (T,
()

and the estimates of the third and fourth integrals of the right-hand side of (4.12) are given respectively by
/P;(“ ~Opudx S e ||lu - dpull Loy,

’]l‘n
and

f 8,14 . Jiv dx S &” ||8tu ||L°°(']1"”)~
’]I‘n
To obtain the incompressible limit we have to introduce one more correction term of the modulated energy defined by

Weé() = /[p% — (,og - 1)]71 dx.
Tn
The correction term W¢(¢) can be served as the acoustic part (density fluctuation) of the modulated energy H®(¢). It
is designed to control the propagation of the acoustic wave. Hence for ¢ € [0, 7;.) we have

d e . . €
E(H )+ G (1) + WD) S IVull Lo HE (1)

+&(lu-Vrll »  +ldml
Ly-1 (T™) —1 (T

+ 1877 || oo ()
LY )
+ Nl - dgull ooy + 197ull Loo(Tm)) 4.17)

where § = 2«//y . Integrating (4.17) yields
!
H®(t) < H®(0) + G*(0) + W2(0) — G®(t) — We(t) + Cy / Hé(t)dt + Ca6%t.
0
One can show that G (0) + W2 (0) — G¢(r) — We(¢) = O(&®), and hence
t
H: (1) < C) / HE(t)dt + H?(0) + C26%t + C36°.
0

Applying the Gronwall inequality and the decay rate of H¢(0) we derive the inequality
HE (1) < (CaeP + Cre°t + C36°) (1 + CyreM).
Thus Hé(1) < O(g*) for t € [0, Ty), where A =min{B,8}. O
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It is easy to rewrite the modulated energy (4.7) as

2 2a
HS(;)_ /‘Vf} dx + = /I\/_ Jg — ,osu) dx

/|3ﬂ/f } dx —1—/ ((ps)% — 1)2dx, (4.18)

then from Lemma 4.2 and (4.18) we have
2

'\/_ PS“) dx —>0 (4.19)

as ¢ = 0. We deduce from (4.19) and Holder inequality that
I8 =50l 2, <l | 08 = i

) LZ(T”)

which converges to zero as ¢ — 0. Finally, combmg (4.13) and (4.1 5), we have
| ok ¢ - N ||L2(’]I‘”) Ve “LZV(T") -0

(™)
and

[FHCD) ”Ll('JI‘") Set ”‘QBIwSHLZ(T") |817uV‘/’8“L2(W) —0

as ¢ — 0. This completes the proof of Theorem 4.1. O

When « > 1 — %, we deduce from (4.18) that

f|V\F| dx—

as ¢ — 0, and

[Ves-1] 2 <]

TW,HJ@ 1ol o )

2
by Holder inequality. Thus, pg — 1 strongly in Wl’y_l1 (T™). Furthermore, by Sobolev inequality we can show that

L2(T7)

2n
ps — 1 strongly in L"(VH)y 2y (T") for n > 2. In particular n = 2, iterating the estimate (4.20) by the so-called “boot-
strap process”, we have pg — 1in L? (T?) for any 1 < p < 00, and hence we have the following improvement of
Theorem 4.1.

Theorem 4.3. Assume the same hypothesis of Theorem 4.1 and Lemma 4.2. Let o« > 1 — % and n = 2 then there exists
Ty > 0 such that for any n > 0,

165 =160l

| (75 = p5u)C.0) HLQ*"('JIQ) — 0, |7k C0) ||L1(11‘2) =0,

07 ||p;{(a t) “LZ—n(TZ) - 07

fort €10, T,) as ¢ — 0, where u is the unique local smooth solution of the incompressible Euler equations (4.6).

If we replace the potential energy (|y¢]” — 1)€Y =2 by (|¢¢[*¥ =D — 1) then all the previous analysis still works
for this model with small modification. Indeed, we investigate the time-scaled modulated nonlinear Klein—Gordon
equation
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242« 1)2

i81+a8;1//8 _ 2

2
e _
83w5+7Aw5—(|¢‘9|2(V D 1)yt =0, 421)
supplemented with initial conditions

¥ (x, 0) =95 (x), WY (x,0)=yi(x), xeT"

It follows from the energy conservation law that we may assume the initial condition satisfies the uniform bound

1
/§v282|1/ff|2+ 222 yye)? +y (W) + &y =D =) dx < C. (4.22)
’]I‘rl

In this case the associated modulated energy is defined by

He ()=~ /| (e'7ov — w|dx+—f|8,W|dx

1
[ 0 =D =yet)

+
Yeé
™

and is well-prepared, i.e.,
2.2
H®(0) = %f|(gl—“v —iug)yE [ dx + %f|wf|2dx
™ ™

1

+ 7/8201

2 2
J Ul + = 0= ylusyax = 0(e?), 423)
’H‘n
for some B > 0. Then employing the same argument as previous discussion, we can show that
H(1) < O0(e"), 1€l0,T],
where 6 = 2«//y and A = min{p, §}.
Theorem 4.4. Let y > 1 for even spatial dimension n, y > "5 for odd spacial dimension n. Let a > 0 and ¥° be

the solution of the time scale modulated nonlinear Klein-Gordon equation (4.21) with initial condition (Y5, ¥{) €
HL(TY @ HS (T, s > %’ + 1, satisfying (4.22) and (4.23). Then there exists T, > 0 such that

5= D600y =0 lok0l g, =0
[ (75 = p5u) (. 1) im0 H‘,K(" D] 1y > 0
fort €[0,T,) as € | 0, where u € C([0, Ty); H* (T™)) is the unique local smooth solution of the incompressible Euler
equations (4.6). In particular, when n =2 and o > 1 — %, the convergent results can be improved as follows:
o5 =60y 0 =0 1ok GOl oy = 0.
|5 = o50) GO onroy = 0 R C D] 1oy = 0,

foranyn>0andt e[0,T,) as ¢ — 0.
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