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Abstract--Our objective is to determine the minimum clamping force that keep the workpiece stable during 
the metal cutting process. In analyzing the stability of the workpiece, one usually proves that no instant 
center of motion can occur on the clamping plane. However, previous search algorithms for the instant 
center of motion either lack theoretical sufficiency or computational efficiency. This paper presents a new 
method derived from the correlation between cutting force and clamping moment. This method increases 
the search efficiency by pruning inadequate search directions. In addition, examples are provided to illustrate 
minimum clamping force analysis under different fixturing conditions. 
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NOMENCLATURE 

centrode of the distributed clamping friction force 
cutting force vector 
maximum allowable cutting force 
clamping force (or clamping force in brief) 
total clamping force of a clamping region, applied at its centrode D 
(maximum) clamping friction force 
(maximum) clamping friction force due to Fr~.D 
gradient of the cutting moment 
gradient of the clamping moment 
gradient of the clamping moment according to FCD 
Gt. D at point P 
instant center of motion 
iso-moment lines for cutting force 
iso-maximum-moment lines for maximum clamping friction force Ff 
cutting moment due to Fc 
clamping moment 
position vector 
position vector from any point to centrode D 
half-length of the major axis of elliptic clamping region 
intensity of the distributed clamping force 
the clamping plane 
friction coefficient 

INTRODUCTION 

Fixtures can exert force, referred to as the clamping force, to keep a workpiece stable, 
or constrain the unwanted motion of the workpiece using a set of contacts. However, 
the excessive clamping force can cause the workpiece to deform and therefore reduce 
the machining precision. Our objective is to determine the minimum clamping force 
that guarantees the workpiece won't slip during the machining process. The difficulty 
in the minimum clamping force analysis is that both the magnitude and the direction 
of the static friction force are indeterminate. The direction of the friction force can be 
determined only when the location of the instant center of motion (ICM) is assumed. 

In analyzing the clamping force, Nguyen [1, 2] has proposed a force-closure method 
to check for the existence of an equilibrium condition for the stability of the general 
fixturing. Linder and Cipra [3] have proposed a graphical method to analyze the 
stability of a workpiece under a particular type of three-point frictional constraint. 
Mason [5] has stated that any pressure distribution that satisfies the equilibrium con- 
ditions can be approximated by a tripod. Based on the approximation, Lee and 
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Cutkosky [6] proposed the limit surface method, derived from the instant center of 
motion (ICM) properties, in force/moment space as a formalism to verify the stability 
of the workpiece. Cogun [7] has investigated mathematically and experimentally the 
effects of the application sequence of clamping forces on the mounting accuracy of a 
workpiece. Carlyle [8] and Chou [9] have described a prototype automated fixturing 
system that has been implemented for prismatic workpieces. 

Existing methods [5, 6] for clamping force analysis require either a search in the 
infinite clamping plane, which is inefficient, or, since the position of the tripod contact 
points is a function of the position of the instant center of motion, the assumption of 
a fixed tripod location is incorrect. In this paper, according to the property of instant 
center of motion, we develop a minimum clamping force analysis that needs neither 
the tripod simplification nor a search in the infinite domain. In the beginning, we 
introduce a new stability condition, referred to as the ICM property, and then proceed 
to the definition of the cutting moment, clamping moment, and their gradients. Based 
on these definitions, we examine several typical fixturing cases with single clamping 
area and derive their stability conditions individually. Moreover, the clamping force 
analysis is carried out in the general multiple clamping area cases. 

INSTANT CENTER OF MOTION (ICM) AND CORRESPONDING FRICTION FORCE 

It is well known that any planar motion of two rigid bodies is equivalent to rolling 
moving centrodes on the instant center of motion (ICM). The product of the static 
friction coefficient p~ and the clamping force FN is known as the maximum clamping 
friction force Ff. In Fig. 1, the maximum clamping friction force FfA is equal to I$,FN.I. 
The direction of the friction force depends on the assumed positon of the ICM. Note 
that the ICM does not actually exist for a stable clamping. It is well known that any 
plane motion can be transformed into pure rotation about an ICM; therefore, it is 
sufficient to consider only the moment balance, and the force balance can be ignored. 

ICM Property: l f  V points P E clamping plane H such that M~ >- M e, then the clamping 
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Fig. 1. (a) Cutting force and clamping forces. (b) Clamping plane. 
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is stable. Equivalently, if  ~ a point P E H for which M~ < Me, then the clamping is 
unstable. 

GRADIENT OF THE CU'ITING MOMENT 

As shown in Fig. 2(a), the cutting moment about an arbitrary point P can be written 
as 

M P = IPK x Fd = IPKI IFc l  sin0 = Fed (1) 

where point K is the cutting position and 0 is the intersection angle. 
The iso-moment lines (IMLs) are the lines parallel to the direction of the cutting 

force, as shown in Fig. 2(a). The gradient of the cutting moment family is defined as 
follows. 

= II VMc 11. (2 )  

SINGLE CONCENTRATED-FORCE CLAMPING (SCFC) 

In Fig. 2(b), the clamping force FN is applied to the clamping plane II at point D. 
If P is an ICM then point D must tend to move in the direction perpendicular to r. 
The clamping moment Mf about point P is as follows 

M~" = r x Ff : rFf = DrF N . ( 3 )  

It can be shown that the clamping moment about D is zero. Therefore, any non- 
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Fig. 2. (a) The iso-moment lines (IML) for the cutting force. (b) The iso-maximum-moment lines (IMML) 
for the single clamping normal force. 
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zero cutting force will cause the ICM to occur at D. Hence, SCFC can never be a 
stable clamping. The iso-maximum-moment lines (IMMLs) for the clamping moment 
are a family of circles. The gradient of the clamping moment is defined as follows 

Gf = I1V Mf 11. (4) 

CLAMPING BY DISTRIBUTED-FORCE ON CIRCULAR AREA (CDFC) 

Refer to Fig. 3(a), the intensity PN is uniform. The clamping moment is the integration 
of the elementary force dFN, as follows 

M~ = i~ pNfA rdA (5) 

where r denotes the distance between point P and the position of the elementary force. 
As shown in Fig. 3(b), the clamping force is distributed in a circular area with a 

total clamping force FN.D applied at the centrode D. A point K is arbitrarily chosen 
so that F~ _1_ K'D, where Fc denotes the cutting force. 

CDFC Stability Criterion: I f  ~q point R (E K'O, where G~ >- G~, such that V point Q 
E DR, where M~ > M°~, then the clamping is stable. 

The above criterion can be proven in three steps, as follows. 

(1) Proof that no ICM can be within or on the circle C2, as shown in Fig. 3(b): 
At an arbitrary circle C~ within the circle C2 

g c  o °  = + G D" * I QQI cos0  

Y 

(A) 

/ 

{B) 

Fig. 3. (a) IMML for CDFC, (b) CDFC stability analysis. 

(6) 
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point Q is at 0 = 0, 

Q - Q°  - ( 1  - c o s 0 )  * G p  * ID-'QI 0 .  (7) 

Since the IMML are symmetric about D, we have 

MfO = Mf o0 . (8) 

Since it is given that Mf ° > M ° ,  equations (7) and (8) yield 

MfO o > M °O . (9) 

According to the ICM property, the ICM of the workpiece will not fall within the 
circle (72. 

(2) Proof that no ICM can be on RP: 
Since F~ _1_ DR, equation (5) yields 

Mc P = M R + G~ * I -Pl (10) 

MPt = MfR + (G,  + AGfR--'P) *I-h--P[ . (11) 

It can be verified 
obtain M P > M~ 
of the workpiece 

(3) Proof that 
Since 

that AG~ --'P > 0. From the conditions Mf R > MS and Gf R -> GR, we 
based on equations (10) and (11). By the ICM property, the ICM 
should not fall within the semi-infinite line segment i /p.  
no ICM can be outside of (72: 

P P0 Mc > Mc (12) 

and similar to equation (8) 

M P = Mf P° (13) 

then from the above proof, we can deduce that 

M P° > M p° (14) 

for any point P0 on circle (73. 

CLAMPING BY DISTRIBUTED-FORCE ON ELLIPTICAL AREA (EDFC) 

The IMML of the elliptic distributed clamping force is shown in Fig. 4(a). Let r~ 
and rb denote the half-length of the major and minor axes of the elliptical clamping 
area, respectively. The numerical analysis, based on equation (5), shows that when 
0.02 < rJr, < 50 and ro > 2 r~, the variation in the clamping moment Mf on the same 
circle is within 5%. Hence the IMMLs are nearly circles for ro > 2 r~. 

In Fig. 4(b), L~ denotes the major axis of the elliptical clamping region when the 
centrode of the distributed clamping force is at point D. The intersection points between 
the circles Cl, C2, (73 and the line Ll are denoted by Qo, Po and Ro, respectively. 
Again, a point K' is arbitrarily chosen so that Fc _1_ K'D, where Fc denotes the cutting 
force. 



1218 Shyr-Long Jeng et al. 

Minor axis 
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LI 

Fig. 4. (a) IMML for EDFC. (b) EDFC stability analysis. 

EDFC Stability Criterion: If  ~I point R 1 E K'D, where G~ ° >- G R~ such that V points 
Q1 E DR1, where M ~  ) > MO~ 1, then the clamping is stable. 

The EDFC stability criterion can be proven following a line of reasoning similar to 
that used to prove the CDFC stability criterion. Since the ratio of the lengths of the 
major/minor axes of elliptic clamping region is between 0.02 and 50 and r D > 2 r~, 
the variation in the clamping moment Mf is less than 5%. Therefore, the constraints 
on EDFC stability criterion are reasonably tight. 

CLAMPING BY MULTIPLE CONCENTRATED-FORCE (MCFC) 

In Fig. 5(a), let M[i, i -- 1, 2, ..., n, denote the clamping moment due to the ith 
concentrated clamping force FN.i applied at (xi, Yi). Let D denote the centrode of all 
concentrated forces. Let MfP, D denote the clamping moment due to the total concentrated 
force FN. o applied at the centrode D, where 

FN.o = FN,i. 
i=l 

MCFC property: V P ~ rl, 

• M ~ i  > P -- Mr. D • 
i=1 

(The sum of the clamping moment due to each individual concentrated force is no less 
than the clamping moment of the sum of the concentrated forces applied at the centrode. ) 
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Fig. 5. MCFC property. 

In the following, we show that the combination of any two concentrated forces at 
the centrode of the two concentrated forces will introduce a smaller clamping moment. 
As shown in Fig. 5(b), when n = 2, the first clamping force Fsa  applied at (xm,0) and 
the second clamping force FN,2, equal to kF~.x, must be located on the x-axis (-Xl/ 
k, 0). The centrode is at the origin (0,0), where k is an arbitrary positive real 
number. The stationary condition of the clamping moment for an arbitrary point P 
with coordinate (x,y) is written as 

0 Z M f P i  0 (X__X1)2 + y2 + k x + + y2 

i=1 

OX] OX l 
Ff,, = 0.  (15) 

Since Ffa = P, FN,I, 4= O, 

{,xx: ,16, 

The above equation yields x~ = x~/k, which implies that x I = 0. The second derivative 
of equation (15) is semi-positive definite at x~ = 0, hence the concentrated force 
provides a minimum clamping moment. Therefore, the combination of two concentrated 
forces at the centrode of the two concentrated forces, i.e. to cause x= = 0, will introduce 
a smaller clamping moment. 

For the case of n > 2, the proof can be continued by deduction, i.e. the combination 
of any two of the n concentrated forces at the centrode of the two concentrated forces 
will introduce a smaller clamping moment. Therefore, the MCFC property holds. 

CLAMPING BY DISTRIBUTED-FORCE ON MULTIPLE AREA (MDFC) 

In Fig. 7, ph denotes the intensity of the ith distributed clamping regions Ri, Ai 
denotes the area of clamping regions Ri, and ~ denotes the friction coefficient of 
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L3 

Q4¢ " ~ _  
L2 N 

: the vertical lines indicates the region for possible ICM. 

Fig. 6. MDFC stability analysis. 

(A) 

: clamping region 
: approximation 

(B) 

Fig. 7. ADFC. (a) Rectangular clamping area. (b) Arbitrary clamping area 

clamping regions Ri. The friction force, due to a total normal force, applied at the 
centrode Di is defined as 

 ,of i . = I~iPN.DdAi (17) 

MLD denotes the clamping moment due to the above friction forces and M~ denotes 
the actual clamping moment due to the distributed clamping region Ri. 

In Fig. 6, D denotes the centrode of all clamping forces. The line L 3 is parallel to 
Ft. The lines L~ and L2 are perpendicular to Fc and chosen so as to bound a minimum 
area which includes all forces. Circles C and G are centered at centrode point D. The 
radius of circle C is ID--RI. A point K' is arbitrarily chosen so that Fc _1. K'D, where Fc 
denotes the cutting force. 
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MDFC Stability Criterion: l f  ~l a point R E K'D, where Ff, D I-D--R[ = F~ ]K'R such that V 
points P with the region bounded by the lines LI, L2 and the circle C where 

~ M~,i > M~, then the clamping is stable. 
i ~  1 

The condition for the above criterion can be proven by showing that the ICM must 
be bounded by the circle C and bounded by the lines L1 and L 2. To shorten the paper, 
the proof is reserved for exercises. 

CLAMPING BY DISTRIBUTED-FORCE ON AN ARBITRARY AREA (ADFC) 

As shown in Fig. 7(a), a rectangular clamping area can be replaced by an inscribed 
elliptical clamping region with the same intensity clamping force. Since the area of the 
elliptical region is always smaller than that of the rectangular one, the EDFC conversion 
increases the efficiency at the cost of a reduction in accuracy. As shown in Fig. 7(b), 
the arbitrary clamping area, which should not be inscribed by one ellipse, can always 
be separated into many disconnected clamping areas. Consequently, the MDFC stability 
criterion can then be applied. 

CLAMPING FORCE ANALYSIS 

Two types of clamping force analysis problem, with different input conditions, are 
examined in the following sections. For a given cutting path (or contour), the cutting 
forces can be derived from the cutting conditions, such as feedrate, material, tool blade 
type, and material removal rate [12]. 

As shown in Fig. 8, once the fixture types and the fixture locations are known, then 
the clamping region is identified. If the fixture is as simple as a wrench with two 
identical clamping areas on each side of the workpiece, such as in the layout shown 
in Fig. 8(a), then it can be equivalent to a single clamping region. If there are multiple 
fixtures, such as in the layout shown in Fig. 8(b), then we have to calculate the 

/Z~ Y tool . 

clamping region 

I (A) 

Bolt 

~ Y cutting Z / ~  

w o r k p i e c e ~  clamping region 

(B) 

Fig. 8. Two fixturing examples. 
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centrodes for each of the fixtures in order to convert the problem into one with the 
MCFC property. 

Two stability criteria are used in the analysis. The EDFC stability criterion can 
consequently be converted into a line search with the bounds corresponding to the 
gradients G¢ and Gf. The line search algorithm can be as simple as an optimization 
algorithm for finding the maximum of the Me to Mf ratio. If the maximum is greater 
than one, then the clamping is unstable. The MDFC stability criterion can also be 
verified through an area search algorithm with the bounds corresponding to the MCFC 
properties and gradients G~ and Gf. 

MINIMUM CLAMPING FRICTION FORCE 

The fixturing layout and cutting conditions are shown in Fig. 9. As shown in Fig. 10, 
for the straight-line cutting paths, e.g. path Nos 1-3, the MDFC stability criterion is 
applied to each 2 mm interval of cutting path. For the circular paths, e.g. path Nos 
4-6, the stability criterion is applied to each 20 ° interval. Here, 0t denotes the intersec- 
tion angle between the line from cutter center to contact point and the horizontal line. 
We obtain the intersection angle between the horizontal line and the direction of any 
cutting force as follows 

0¢ = 0t + 90 ° -  0 r 

and 

Xc = Xr + 5.0 COS(--0,) 

Y¢ = Yr + 5.0 s in(-0t)  . (18) 

Substituting 0t = 30 °, 0.~ = 5 ° and F¢ = 100 Nt, an arbitrary selection, into the above 
equation, we calculate the minimum total clamping friction forces corresponding to 
different fixturing cases as shown in Table 1. Table 1 shows that the maximum M¢/Mf 
occurs when the tool is just about to move away from the workpiece (at the end of 
path No. 3). According to Table 1, the fixturing layout case 1 requires the largest 
clamping friction force for the following reasons. 

(1) In case 1, the centrode D is farthest from the geometric center of the entire 

. . . -  ° 

fixture 1 . ~ 2 0  4 0 ~  "~'~5~t'~x~ u re 3 20 

D :  Clamping Region 

~ ] :  Ishmd (prese~'ed material) 

F-]  : Material to remove 
t _ _ _ ~  

Fig. 9. Example of fixturing layout and cutting conditions for minimum clamping force analysis. 
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Fig. 10. Cutt ing paths. 

Table 1. Min imum clamping force analysis for different clamping layout cases 

Analysis fixturing layout Layout  case 1 Layout  case 2 Layout case 3 

Clamping area 

Clamping force distribution 
intensities ratio 

R1 : R2 : R3 
Centrode of individual fixture 

clamping force 

Centrode of all clamping force 
Minimum total clamping forcer 
Cutting position corresponding 

to the maximum Me~Mr 

RI:  200 mm 2 (20"10) rectangular 
R 2 : 2 0 0  mm 2 (20"10) rectangular 

R 3 : 2 5  ~r mm 2 ( rad ius=5)  circular 
1.50 : 1.00 : 1.27 1.50 : 1.00 : 1.27 1.00 : 1.00 : 1.00 

D I ( 55.0,-30.0)  D j (55.0,-30.0)  D1 (55.0,8.5) 
D 2 ( - 5 5 . 0 , - 3 0 . 0 )  D2(-55 .0 ,17 .5)  D 2 ( - 5 5 . 0 , - 3 0 . 0 )  
D 3 ( -  10.00,55.0) D~(-55.0 ,55 .0)  D3(0.0,55.0) 

D ( 7 . 5 , -  15.8) D(0.0,0.0) D(0 .0 , -0 .1  ) 
196.60 Nt 172.80 Nt 165.00 Nt 

( -39 .3 ,40 .0 )  ( -39 .3 ,40 .0 )  ( -39 .3 ,40 .0 )  

~The clamping force for each individual fixture can be calculated through their intensity ratio and area. 

cutting region. Based on the IML property, the same cutting force applied at more 
distant locations makes it easier to induce a larger cutting moment about D. Therefore, 
a larger total clamping friction force is required to keep the workpiece stable. 

(2) The ratio of the clamping friction force intensities in different clamping regions 
is 1.5:1:1.27 for case 1 and 1:1:1 for case 3. Case 3 has a more uniform clamping force 
distribution than case 1. According to the MCFC property, if the total clamping friction 
forces for clamping cases 1 and 3 are the same, then the clamping moment of case 1 
is smaller than that of case 3. This reason holds for when the minimum total clamping 
friction force of case 2 is larger than that of case 3. 
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CONCLUSION 

According to the proper ty  of instant center of motion,  we have examined several 
typical types of fixturing with single clamping area and derived their stability conditions 
individually. It is also found that an arbitrary shape of clamping area can be replaced 
by several elliptical areas. Subsequently, the problem can be analyzed based on the 
stability conditions for multiple clamping areas. Toward the multiple clamping area 
analysis, we have first derived the MCFC property that properly bounds the stability 
clamping moment .  According to the bounds,  we derived the general stability condition 
for the clamping by distributed force on multiple areas. Finally, we presented a fixturing 
design example to demonstra te  the minimum force analysis for different fixturing 
layouts. This new method for clamping force analysis transforms a clamping analysis 
problem into a simple line search or finite region search, therefore it is highly efficient. 
In addition, in our model the tripod simplification is unnecessary, so the accuracy of 
the analysis result is also improved.  This new method can directly support  on-line 
fixturing design. Once the cutting paths have been generated by the path generation 
program and the cutting conditions given, the clamping force analysis can be used to 
estimate the required clamping force and to evaluate the corresponding fixturing design. 
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