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Manipulators used in the industrial field usually have a very stiff structure but without an equivalent
payload on their end-effectors. This is because the stiff structure is used to prevent excessive deformation
which will negatively impact the positioning accuracy of the manipulator, especially when the manipu-
lator is fully extended. However, the stiff structure increases the weight of the manipulator and consumes
much of the output of the constituent joint actuators in order to overcome the gravitational force result-
ing from the heavy structure. To cope with this problem, the concept of gravity balance was proposed
decades ago, and there have been several approaches suggested to eliminate the influence of the self-
weight of the structure. With the help of gravity balance, the output of the constituent joint actuators
can fully be used to drive the manipulator and save considerable energy when the manipulator is in static
or low-speed applications.

For decades, many papers have discussed how to make a manipulator in gravity balance or how to
design and apply a gravity balance mechanism to satisfy a certain application. However, none of them
discuss what the influence on the dynamic performance of a manipulator is after it is equipped with a
gravity balance mechanism or how to evaluate that influence. To rectify this insufficiency, this article uti-
lizes acceleration radius to be the index of measuring the dynamic performance before and after a manip-
ulator is equipped with a gravity balance mechanism and proposes a new index, the maneuverability
ratio, to provide quantitative information to measure whether the dynamic performance of the manipu-
lator increases or not after the gravity balance mechanism is applied.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In the industrial field, many kinds of manipulators are designed
to do assembly jobs on production lines. One common characteris-
tic of these manipulators is that the weight of their arms is much
greater than the payload at their end-effectors. This heavy weight
results from the stiff structure which is used to prevent excessive
deformation from negatively impacting positioning accuracy, espe-
cially when the manipulator is fully extended. The heavy structure
increases the demand of the output of the constituent joint actua-
tors which are used to counterbalance the influence of the heavy
self-weight. For many applications, manipulators spend most of
their work time on static or low-speed jobs and consume consider-
able amounts of energy to counterbalance their self-weight [1],
thus increasing the operational cost.

To cope with this problem, the concept of gravity balance is pro-
posed and successfully counteracts the adverse effects of self-
weight. For decades, the gravity balance model and theory have
ll rights reserved.
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been studied in a large volume of literature [2–22], and many spe-
cial designs have been developed to successfully satisfy the
requirements of different applications [1,23–31]. Meanwhile, the
required actuator output which is used to perform a specific task
before and after a manipulator has been equipped with a gravity
balance mechanism has also been investigated in some studies
[32]. However, as far as the author knows, none of the literature
discusses what the variation in dynamic performance is before
and after a manipulator is equipped with a gravity balance mech-
anism, and they all focus on how to eliminate the influence of the
self-weight or the required actuator output used to perform a spe-
cific task after a gravity balance mechanism is applied. Because
manipulators are not just designed for or dedicated to static or
low-speed applications and certainly not just designed for a spe-
cific task, this will lead to insufficient conclusions. How the gravity
balance mechanism influences the dynamic performance of a
manipulator needs to be considered. To rectify this insufficiency,
this article utilizes acceleration radius to evaluate the dynamic
performance before and after a manipulator is equipped with a
gravity balance mechanism, and this article also proposes a new
index, the maneuverability ratio, to provide quantitative informa-
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tion about whether being equipped with the gravity balance mech-
anism would increase or decrease the dynamic performance of the
manipulator.

In order to effectively interpret the concept of gravity balance
and explain the proposed methodology of evaluating the variation
of the dynamic performance after a manipulator is equipped with a
gravity balance mechanism, this article is arranged as follows: Sec-
tion 2 provides a brief introduction of the fundamentals of gravity
balance; Section 3 explains how to derive acceleration radius and
conduct maneuverability ratio; Section 4 demonstrates the method
proposed in this article with the use of a PUMA 560 robot arm; Sec-
tion 5 presents the conclusions of this article.
2. Fundamentals of gravity balance

Utilizing the concept of gravity balance to eliminate the self-
weight influence of a manipulator usually takes two approaches.
One is using counterweights to offset the gravitational force result-
ing from the self-weight, and the other is utilizing springs and aux-
iliary links, which include wires and cams, to keep the summation
of the gravitational potential energy of the manipulator system and
the elastic potential energy of the spring system constant.
Although there are still other approaches which are able to keep
the manipulator in gravity balance [19,21,25,26], they are rarely
used in practice. In the following subsections, the fundamentals
of each of the two approaches will be introduced.
2.1. The counterweight approach

Placing the center of mass of a manipulator system at the joint
which connects the base and the first link by using counterweights
to counterbalance the gravitational force resulting from the weight
of each constituent link is possible and feasible. Because the center
of mass of the manipulator system is fixed to the base, a static
joint, the potential energy of the system will be invariant in any
posture. This means no external force needs to be exerted on the
manipulator to do any work to change its posture. In this approach,
the weight of each counterweight being used is unknown because
it depends on the dimensions, configurations, and weights of the
constituent links and needs to be calculated. To more clearly dem-
onstrate this approach, a two-link example is shown in Fig. 1, and
the weights of the counterweights used in this example are shown
joint 1 

joint 2 
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Fig. 1. Two-link example of the counterweight approach.
in (1) and (2), respectively. For a general case, the weight of each
counterweight can be calculated from (3).

cm1 ¼
m1c1 þ ðcm2 þm2Þl1

wc1
ð1Þ

cm2 ¼
m2c2

wc2
ð2Þ

cmi ¼
mici þ li �

Pn
j¼iþ1ðcmj þmjÞ
wci

ð3Þ

where n is the link number; cmi and cmj are the weights of the coun-
terweights of link i and link j respectively; mi is the weight of link i;
ci is the distance between the center of mass of link i and joint i; li is
the length of link i; wci is the distance between the center of mass of
the counterweight of link i to joint i.

2.2. The spring and auxiliary link approach

Because the elastic potential energy of a spring is proportional
to the square of its deformation, and the relation between the pos-
ture and the gravitational potential energy of a manipulator sys-
tem is highly non-linear, there must be some kind of mechanism
which is used to transform and match these two energies. Roughly
speaking, there are two types of mechanisms which are used to
transform and match these two energies. The first one is to utilize
cams with specific contours [10,11,24,31], and the other is to use
the orthosis or parallelogram mechanisms to accomplish this job
[1,2,4,6,7,12–17,20,22,27–29].

In the cam approach, the contours of the cams in use are spe-
cialized according to the configuration and the weight arrange-
ment of a manipulator, and the springs will be dragged along
with the corresponding contours and compensate for the variation
in gravitational potential energy of the manipulator system. A sin-
gle link system is shown in Fig. 2 and the contour of the cam is de-
picted in Fig. 3. Assuming the diameter of the wire connecting the
spring and the cam is negligible, the contour of the cam for the sin-
gle link system can be conducted by following (4)–(6) [24].

r ¼
ffiffiffiffiffiffiffiffi
mgl
2k

r
� sin

h
2
� cos

h
2

� �
ð4Þ

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mgl
8k
ð5� 3 sin hÞ

r
ð5Þ

d ¼ tan�1 �1
2
ðcsc hþ tan hÞ

� �
ð6Þ

where r is the effective radius of the cam; k is the stiffness coeffi-
cient of the spring; mg is the effective gravitational force of the
self-weight; l is the distance from the joint axis to the location of
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θ
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Fig. 2. Single link example of the cam approach.
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Fig. 3. Contour of the cam.
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Fig. 5. Two-link example of the parallelogram approach.
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the effective weight; h is the angle between the link and the hori-
zontal plane; c is the real leave point of the wire to the cam; rc is
the actual radius following the cam shape; d is the angle deviation
between r and rc.

The orthosis approach utilizes auxiliary links to create one or
several parallelograms among the constituent links of a manipula-
tor to find out or point to the effective center of mass of the manip-
ulator system. It then uses one end of a zero-free-length spring to
connect to the joint which corresponds to the center of mass of the
manipulator system, and the other end of the spring connects to a
certain inertial place. It also uses other zero-free-length springs to
connect each parallelogram to a certain place which depends on
the link number, configuration, and weight arrangement of the
manipulator. Fig. 4 shows a special case of a two-link example
which can be used to lift up heavy weight and external force in
the gravitational direction with relatively small input force, and
the lengths of the auxiliary links (l1 � s1 and s2) are expressed in
(7) and (8) respectively, and the stiffness coefficients of the springs
(k1 and k2) can be calculated by (9) and (10) respectively [33].

l1 � s1 ¼ l1 �
s2ðm1gc1 þm2gl1 þ fl1Þ

m2gc2 þ fl2
ð7Þ

0 < s2 < l2; and s2 must satisfy 0 < s1 < l1 ð8Þ

k1 ¼
s1ðm2gc2 þ fl2Þ

hs2ðl1 � s1Þ
ð9Þ

k2 ¼
m2gc2 þ fl2

hs2
ð10Þ

where f is the external force exerted on the end of link 2 in the grav-
itational direction; m1 and m2 are the masses of link 1 and link 2
respectively; c1 and c2 are the distance from the center of mass of
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Fig. 4. Two-link example of the orthosis approach.
link 1 to joint 1 and the distance from the center of mass of link 2
to joint 2 respectively; l1 and l2 are the lengths of link 1 and link
2 respectively; h is the vertical distance from one end of spring 2
to the base; h1 and h2 are the angles from the base to link 1 and
the angle from link 1 to link 2 respectively.

As with the orthosis approach, the parallelogram approach also
uses auxiliary links to create one or more parallelograms. Differing
from the orthosis approach, these parallelograms are not used to
identify the center of mass of the manipulator system. Instead they
create an environment in which each constituent link of the
manipulator can be considered independently. Fig. 5 shows a
two-link example of this approach. In this approach, the masses
of the auxiliary links and the springs are usually assumed to be
negligible. When the masses of the auxiliary links and the springs
are negligible as in this example, the stiffness coefficients of the
springs can be expressed as (11) and (12), respectively. Also, when
the masses of the auxiliary links and the springs are negligible, the
general form of calculating the stiffness coefficient of each spring is
shown in (13) [22].
k1 ¼
m1g � l1c þm2g � l1

lc1 � lp1
ð11Þ

k2 ¼
m2g � l2c

lc2 � lp2
ð12Þ

ki ¼
mig � lic þ

Pn
j¼iþ1mjg � li

lpi � lci
ð13Þ
where ki is the stiffness coefficient of the spring i; mi and mj are the
masses of link i and link j respectively; lic is the distance between
joint i - 1 and the center of mass of link i; li is the length of link i;
lpi is the height which is from the one end of spring i to the connect-
ing joint of link lpi and link i in the gravitational direction; lci is the
distance which is along link i and between the one end of spring i to
the connecting joint of link lpi and link i.

Using cams and springs to achieve gravity balance is feasible,
but accurately fabricating the cam is usually very difficult because
of its highly non-linear surface contour. Using orthosises is feasible
and practical, but its application is usually limited to manipulators
with few constituent links. This is because the arrangement of the
spring highly depends on the configuration and weight arrange-
ment of the manipulator to which it would be applied, and it is
not easy to find a feasible one when there are more than two links.
For a manipulator with more than two links, the parallelogram ap-
proach is usually used to keep the manipulator in gravity balance.

For the majority of manipulators used in the industrial field,
there are usually three or more links to assure that they can reach
any point in a three-dimensional workspace. Therefore, only the
counterweight and auxiliary parallelogram approaches are practi-
cal and suitable for manipulators used in the industrial field. As a
result, only the counterweight and auxiliary parallelogram ap-
proaches will be discussed hereafter.
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3. Acceleration radius and maneuverability ratio

This section will introduce how to conduct the acceleration ra-
dius and maneuverability ratio of a manipulator. Because most of
the manipulators used in the industrial field do not use a redun-
dant configuration to reduce the complexity of control and in-
crease the system reliability, the following will only discuss the
acceleration radius and maneuverability ratio of manipulators with
non-redundant configurations.

Acceleration radius is a dynamic performance index which is
utilized to measure the ability of a manipulator to accelerate its
end-effector, and it is defined as the maximum achievable end-
effector acceleration in all directions in a certain posture under cer-
tain output limits of the constituent joint actuators. A larger accel-
eration radius implies better dynamic performance. For a given
posture, if the value of the acceleration radius is less than the re-
quired acceleration, then a manipulator may be unable to perform
its assigned dynamic task because of the insufficient acceleration
ability in that posture. The following will introduce how to conduct
acceleration radius.

The velocity and acceleration equations of the end-effector of a
manipulator can be expressed as (14) and (15) respectively [34–
36].

_xn ¼ Jn�nðqÞ _qn ð14Þ
€xn ¼ _Jn�nðqÞ _qn þ Jn�nðqÞ€qn ð15Þ

where n is the link number; q is the vector of the joint variable; x is
the vector of the position variable of the end-effector in the refer-
ence frame; _x is the vector of the end-effector velocity in the refer-
ence frame; €x is the vector of the end-effector acceleration in the
reference frame; Jn�n is the n � n Jacobian matrix.

The kinetic equation of a manipulator can be expressed as (16).

sn ¼ Mn�nðqÞ€qþ cn q; _qð Þ þ gnðqÞ ð16Þ

where s is the vector of the torque of the constituent joint actua-
tors; M(q) is the n � n inertia matrix of the manipulator; cðq; _qÞ is
the vector of the torque resulting from the centrifugal and Coriolis
forces; g(q) is the vector of the torque resulting from the self-weight
of the manipulator and the external force.

Rearrange (16), €q can be presented as (17).
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Fig. 6. Zero position with attached frames of the PUMA 560 robot arm.
€q ¼ M�1ðs� c � gÞ ð17Þ

Substitute (17) into (15), €x can be presented as (18).

€x ¼ JM�1ðs� c � gÞ þ _J _q

¼ JM�1sþ ð�JM�1c þ _J _qÞ þ �JM�1g
� �

ð18Þ

where JM�1s is the vector of the acceleration which is contributed
by the constituent joint actuators; �JM�1c þ _J _q is the vector of the
acceleration caused by the centrifugal and Coriolis forces; �JM�1g
is the vector of acceleration resulting from the self-weight of the
manipulator and the external force.

Actuators used in the industrial field almost always have the
same upper and lower output limits, and they can be expressed
as (19).

�slimit
i 6 si 6 slimit

i ; i ¼ 1 � n ð19Þ

After normalizing (19), the normalized output vector of the con-
stituent joint actuators, ŝ, can be presented as (20).

ŝ ¼ L�1s ð20Þ

where L is a diagonal matrix, and the value of each diagonal element
is equal to the output limit of the corresponding actuator and can be
expressed as (21).

L ¼

slimit
i 0 0

0 . .
.

0
0 0 slimit

n

2
664

3
775 ð21Þ

From (19) and (20), ŝ has the characteristic shown in (22).

ŝT ŝ 6 1 ð22Þ

Substitute (20) into (18), then €x and €s can be presented as (23)
and (24) respectively.

€x ¼ JM�1Lŝþ �JM�1c þ _J _q
� �

þ �JM�1g
� �

ð23Þ

ŝ ¼ L�1MJ�1 €xþ JM�1c � _J _qþ JM�1g
� �

ð24Þ

Substitute (24) into (22), the acceleration ellipsoid can be con-
ducted and expressed as (25).

€xþ JM�1c� _J _qþ JM�1g
� �T

J�T MT L�T L�1MJ�1 €xþ JM�1c� _J _qþ JM�1g
� �

61

ð25Þ

Substitute Q = J�TMTL�TL�1MJ�1 into (25), a simpler form can be
presented in (26).

€xþ JM�1c � _J _qþ JM�1g
� �T

Q €xþ JM�1c � _J _qþ JM�1g
� �

6 1 ð26Þ

The value of the acceleration radius is equal to the value of the
radius of the smallest inner tangent sphere of the acceleration
ellipsoid, and the center of the sphere is coincident with origin of
the reference frame.

When a manipulator is equipped with counterweights to
achieve gravity balance, extra mass is added to each link which will
cause an increase in the moment of inertia, but this mass will elim-
inate the deleterious effects of the self-weight of each link. The
Table 1
D-H parameters of the first three links of PUMA 560 robot arm.

Frame i di (m) hi (�) ai (m) ai (�)

1 0 h1 0 �90
2 0.2435 h2 0.4318 0
3 �0.0934 h3 0 90
4 0.4331 h4 �0.0203 �90



Table 2
Inertial parameters of the first three links and wrist of PUMA 560 robot arm.

Link i M (kg) rx (m) ry (m) rz (m) Ixx (kg m2) Iyy (kg m2) Izz (kg m2) Ixy = Iyz = Izx (kg m2) Torque Limit (N m)

1 0 0 0 0 0 0 0.35 0 ±97.6
2 17.4 0.068 0.006 0.2275 0.13 0.524 0.539 0 ±186.4
3 4.8 0 �0.070 �0.0794 0.066 0.0125 0.086 0 ±89.4
Wrist 1.25 0 �0.0203 0.4141 0 0 0 0 –

wc2

cm2

cm1

wc1

mwrist

m2

m1

Fig. 7. Skeleton drawing of the PUMA 560 robot arm which is equipped with the
counterweights.

Table 3
Parameters of the counterweights.

Counterweight (kg) Distance (m)

mc1 mc2 wc1 wc2

70.62 18.45 0.2 0.05

l1

k1
lp1

l1c

m1
lc1

Fig. 8. Skeleton drawing of the PUMA 560 robot arm w

Table 4
Parameters of the auxiliary parallelograms.

Auxiliary link length (m) Stiffness coefficient of spring (N/m)

lp1 lc1 lp2 lc2 k1 k1

0.2 0.3 0.2 0.2 1074.34 220.42

Table 5
Angular speed of each joint in the different speed cases.

Joint i Moderate speed (rad/s) High speed (rad/s)

0 2 4
1 2 4
2 1 2
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acceleration ellipsoid of a manipulator which is equipped with
counterweights can be expressed as (27).

€xþ JM�1
cw ccw � _J _q

� �T
Q cw €xþ JM�1

cw ccw � _J _q
� �

6 1 ð27Þ

where Mcw is the inertia matrix of the manipulator which is
equipped with the counterweights; ccw is the vector of the torque
caused by the centrifugal and Coriolis forces after the counter-
weights are applied; Qcw ¼ J�T MT

cwL�T L�1McwJ�1.
Because the auxiliary links used in the auxiliary parallelogram

approach are employed merely to create an environment which
can compress or stretch the springs to store the energy, there is
no need to have a very stiff structure. Based on this reasoning,
the mass of the auxiliary links is very small when it is compared
with the mass of the manipulator, and it can be omitted without
any significant influence on the dynamic performance. Because
the mass of the auxiliary links can be omitted, a manipulator which
k2

lc2

lp2

m2l2c l2

mwrist 

hich is equipped with the auxiliary parallelograms.
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is equipped with auxiliary links will have the same inertia matrix
and vector of the torque resulting from the centrifugal and Coriolis
forces as the unbalanced one. The acceleration ellipsoid of a manip-
ulator which is equipped with auxiliary parallelograms can be ex-
pressed as (28).
€xþ JM�1c � _J _q
� �T

Q €xþ JM�1c � _J _q
� �

6 1 ð28Þ

Once the acceleration radius of a manipulator is calculated for
before and after it is equipped with the gravity balance mecha-
nism, the maneuverability ratio in a certain posture can be defined
as (29), and the one in a certain workspace can be expressed as
(30). With the help of this index, it is easy to quantitatively evalu-
Fig. 9a. Maneuverability ratio distribution in the s

Fig. 9b. Maneuverability ratio distribution in the stand
ate how much the dynamic performance of a manipulator im-
proves or deteriorates after being equipped with a gravity
balance mechanism.

MRP ¼
rg � ro

ro
ð29Þ

where MRP is the maneuverability ratio in a specific posture; rg and
ro are the acceleration radiuses after and before being equipped
with a gravity balance mechanism respectively.

MRW ¼
I

W
ð30Þ

where MRW is the maneuverability ratio in a prescribed workspace;
I =
R

w(MR)dw is the integral of the maneuverability ratio over the
workspace; W =

R
wdw presents the workspace; MR is the
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maneuverability ratio at dw; dw presents the differential area of the
workspace.

If MRP or MRW is positive, this means that equipping a manipu-
lator with the gravity balance mechanism will not only eliminate
the influence of the self-weight of the manipulator but also im-
prove its dynamic performance. If MRP or MRW is negative, this
means that the self-weight of the manipulator is eliminated by
applying the gravity balance mechanism, but it also sacrifices the
dynamic performance of the manipulator.
4. Example

In this section, a PUMA 560 robot arm will be used as an exam-
ple to demonstrate how to evaluate the dynamic performance var-
iation of a manipulator before and after being equipped with a
gravity balance mechanism. Because the last three links of a PUMA
560 robot arm which compose the wrist are not used to achieve or
satisfy dynamic performance requirements but are used instead to
control the orientation of the end-effector, the last three links will
be considered as a mass point on the end of the third link of the
PUMA 560 robot arm in the following discussion. Furthermore,
the frictional force is omitted, and the workspace in this discussion
is limited to the region which covers what is the most used in the
pick and place application [36].

The skeleton drawing with the attached frames of a PUMA 560
robot arm in the zero position is shown in Fig. 6. The parameters of
Denavit–Hartenberg transformation matrix (D-H parameters) of
the PUMA 560 robot arm are shown in Table 1. Table 2 shows
the inertial parameters of the constituent links and the output lim-
its of the actuators used in the PUMA 560 robot arm [36–38]. Be-
cause the axis of the first joint is parallel to the gravitational
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direction, the gravitational force does not induce any torque on this
joint actuator, and the gravity balance mechanism does not need to
be applied to this joint. Fig. 7 shows the skeleton drawing of the
PUMA 560 robot arm which is equipped with the counterweights.
The corresponding parameters of the counterweights are shown in
Table 3. The skeleton drawing of the PUMA 560 robot arm which is
equipped with the auxiliary parallelograms is shown in Fig. 8, and
the corresponding parameters of the auxiliary parallelograms are
shown in Table 4.

There are three cases to consider in the following simulation,
and they are respectively: at standing, at moderate speed, and at
high speed. Each joint angular speed in the moderate and high
speed cases is shown in Table 5. The maneuverability ratio distri-
bution of the robot arm which is equipped with the counter-
weights in the standing case is shown in Fig. 9a. Fig. 9b shows
the maneuverability ratio distribution of the robot arm which is
equipped with the auxiliary parallelograms in the standing case.
The simulation result of the maneuverability ratio distribution of
the robot arm which is equipped with the counterweights at mod-
erate speed is shown in Fig. 10a. Fig. 10b expresses the simulation
result of the maneuverability ratio distribution of the robot arm
which is equipped with the auxiliary parallelograms at moderate
speed. The simulation result of the maneuverability ratio distribu-
tion of the robot arm which is equipped with the counterweights at
high speed is expressed in Fig. 11a. When the robot arm is
equipped with the auxiliary parallelograms at high speed, the sim-
ulation result of the maneuverability ratio distribution is shown in
Fig. 11b.

In the standing case, the MRW of the manipulators equipped
with the counterweights and the auxiliary parallelograms are
�0.6276 and 0.0568 respectively. The MRW in the moderate speed
case is �0.6698 when the manipulator is equipped with the
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counterweights, and the MRW is 0.0567 when the manipulator is
equipped with the auxiliary parallelograms. In the high speed case,
the MRW is �0.7783 when the manipulator is equipped with the
counterweights, and the MRW is 0.0544 when the manipulator is
equipped with the auxiliary parallelograms. From the simulation
results, it is easy to deduce that the dynamic performance of the
robot arm which is equipped with the counterweights decreases
significantly, and the dynamic performance of the robot arm which
is equipped with the auxiliary parallelograms increases moder-
ately. When the angular speed of the constituent joints increases,
the dynamic performance of the manipulator which is equipped
with the counterweights drops, and the dynamic performance de-
creases slightly when the manipulator is equipped with the auxil-
iary parallelograms.

After investigating the simulation results further, some findings
were derived and are stated as follows: For the PUMA 560 robot
arm, the output torque limit of the actuator at joint 0 is just a little
higher than the output limit of the actuator at joint 2 and is just
about half of the limit at joint 1. However, joint 0 has the greatest
moment of inertia value compared with other two joints in the
inertia matrix. This means that, excluding other factors, the output
limit of the actuator at joint 0 dominates the dynamic performance
of the PUMA 560 robot arm. Because the weight of each link of the
PUMA 560 is modest, the influence of self-weight on the dynamic
performance is not so significant. When including the influence of
self-weight, the output limit of the actuator at joint 0 still domi-
nates the dynamic performance of the PUMA 560 robot arm. This
is why the auxiliary parallelogram approach does not promote
the dynamic performance as well as expected even though it elim-
inates the self-weight influence and does not add any extra mass to
the robot arm. However, the counterweight approach adds signifi-
cant mass to the robot arm, especially to link 1, and increases the
moment of inertia in joint 0. This is why the dynamic performance
is much worse after the robot arm is equipped with the
counterweights.

The dynamic performance of the PUMA 560 robot arm which is
equipped with the counterweights drops with the increase of the
angular speed of the constituent joints because the mass has been
increased in each constituent link. When the mass of each link in-
creases, the influence of the centrifugal and Coriolis forces in-
creases and reduces the dynamic performance. This phenomenon
can be observed by comparing Fig. 9a with Figs. 10a and 11a; it
is obvious that dynamic performance drops significantly with the
increase of the angular speed of the constituent joints, especially
in certain postures. Because the output limit of the actuator at joint
0 still dominates the dynamic performance in these angular speed
ranges, eliminating the influence of the self-weight of each constit-
uent link does not mitigate the load it bears or improve the dy-
namic performance of the PUMA 560 robot arm. This is the
reason why the maneuverability ratio of the PUMA 560 robot
arm which is equipped with the auxiliary parallelograms decreases
slightly in the simulation results.
5. Conclusions

Gravity balance can help a manipulator consume less energy
and reduce the output requirements of the actuators in use when
the manipulator is used in static and low-speed conditions. How-
ever, manipulators are not designed solely for static and low-speed
applications. In many applications, manipulators have to satisfy
many dynamic requirements. To rectify this insufficiency, this arti-
cle utilizes acceleration radius to evaluate the dynamic perfor-
mance of a manipulator before and after being equipped with a
gravity balance mechanism. This article also proposes an index,
the maneuverability ratio, to measure the dynamic performance
variation before and after a manipulator is equipped with a gravity
balance mechanism. An interpretation of the fundamentals of grav-
ity balance is provided in this article, and two of the most practical
gravity balance approaches, the counterweight and the auxiliary
parallelogram approaches, are chosen to discuss the influence of
the gravity balance mechanism on the dynamic performance of a
manipulator. In the example, it is easy to deduce that the counter-
weight approach can eliminate the influence of self-weight, but it
also significantly decreases the dynamic performance. The dy-
namic performance becomes worse with the increase of the joint
angular speed when the PUMA 560 robot arm is equipped with
the counterweights. When the PUMA 560 robot arm is equipped
with the auxiliary parallelograms to counterbalance the self-
weight, there is moderate increase in the dynamic performance
of the robot arm.

This article provides the methodology and an index to evaluate
the influence of the gravity balance mechanism on the dynamic
performance of a manipulator. This can not only help the designer
of a manipulator to judge whether using a gravity balance mecha-
nism to eliminate the influence of self-weight is beneficial, but it
can also help the designer to adjust the setup of the controller
which is used to perform the trajectory planning automatically
after a gravity balance mechanism is applied. With the help of this
article, the designer can also evaluate which kind of gravity bal-
ance mechanism will be most beneficial for a given application.
From the example, it can be observed that the suitable arrange-
ment of the constituent joint actuators which have different output
limits can help a manipulator improve the dynamic performance
even after this manipulator is equipped with a gravity balance
mechanism, and it also can be observed that the auxiliary parallel-
ogram approach is feasible and better than the counterweight ap-
proach in the PUMA 560 robot arm.
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