
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2011 1335

Critical-Trunk-Based Obstacle-Avoiding Rectilinear
Steiner Tree Routings and Buffer Insertion for

Delay and Slack Optimization
Yen-Hung Lin, Student Member, IEEE , Shu-Hsin Chang, Yih-Lang Li, Member, IEEE

Abstract—For modern designs, delay optimization significantly
facilitates success in design closure owing to its more realistic
metric than wirelength in routing. Obstacle-avoiding rectilin-
ear Steiner tree (OARST) construction is an essential routing
problem. With the trends toward Internet protocol-block-based
system-on-chip designs, OARST with buffer insertion has been
surveyed to diminish the delay of long wires. Previous works
on performance-driven (PD) OARST without and with buffer
insertion can only handle small circuits. This paper develops a
novel routing algorithm in obstacle-avoiding spanning graph to
construct OARST with optimized delay efficiently. The proposed
multisource single-target maze routing is first employed to iden-
tify the critical trunks, and the critical-trunk-based tree growth
mechanism connects the unconnected pins to critical trunks
under delay constraints of every sink. We apply the proposed
critical-trunk-based tree growth mechanism to solve PD and
slack-driven (SD) OARST problems. The proposed algorithms
are extended to consider buffer insertion during PD and SD
OARST constructions. Experimental results demonstrate that the
proposed algorithms achieve an average 25.84% improvement in
the maximum delay over obstacle-avoiding rectilinear Steiner
minimal tree in the PD OARST problem and successfully solve
66.67% worst negative slack violations in the SD OARST prob-
lem. Compared to the simultaneous routing and buffer insertion
approach, the proposed buffer-aware (BA) algorithm generates
satisfactory timing results with almost identical wire length (WL).
Moreover, the proposed BA SD OARST algorithm utilizes less
WL than the BA rectilinear Steiner tree construction does by
17.99% on average. The runtime comparison with previous works
shows the efficiency and scalability of this paper.

Index Terms—Buffer insertion, Elmore delay model, obstacle-
avoiding rectilinear Steiner tree, performance-driven routing,
timing constraint.

I. Introduction

EVER SINCE THE feature size of processes dramatically
decreased, the interconnection delay has dominated the

circuit performance in nanometer designs. Topology optimiza-
tion is one of primary approaches used in performance-driven
(PD) interconnect design [1]. Cong et al. [2] defined an A-tree
as a rectilinear Steiner tree (RST) where every path connecting
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the driver and any sink is the shortest path. Cong derived
the delay upper bound from a distributed resistor–capacitor
(RC) circuit and exploited the derived bound to optimize the
delay of a Steiner tree. Pan et al. [1] efficiently constructed
an A-tree based on FLUTE [3]. Considering the sink posi-
tion, required time, and load capacitance, Pan modified the
constructed A-tree to improve its timing by branch moving.
Alpert et al. [4] analyzed the delay in distributed RC tree
structures, demonstrating how the tree cost and the tree radius
affect the signal delay. They proposed that AHHK trees are
an effective combination of the Prim minimum spanning tree
(MST) algorithm and the Dijkstra shortest path tree algorithm.
Alpert et al. [5] proposed a bounded radius-ratio Steiner
minimum tree based on a rectilinear minimum spanning tree
(RMST) and the radius-ratio for each sink. The radius of each
sink was defined as the path length from the driver to the
sink, and the radius-ratio of each sink was its radius divided
by the Manhattan distance from the driver to the sink. If the
ratio exceeded a given value, they disconnected the sink and
reconnected all disconnected sinks with a direct path to the
driver. Considering the varying importance of sinks, Boese
et al. [6] presented the critical-sink routing tree problem. The
criticality of sinks is regarded as a weight, if necessary, and
the routing tree is constructed by finding the one with the
minimum weighted sum of sink delays. They assumed that
critical sinks are already known. Hentschke et al. [7] proposed
AMAZE applying maze routing on a grid model to construct
RSTs. In addition to introducing a sharing factor and a path-
length factor to achieve a tradeoff between wire length (WL)
and delay, similar to [6], that work assigned criticality to sinks
as the priority of delay optimization.

In modern intellectual property (IP)-block-based system-on-
chip (SoC) designs, IP cores, logic blocks, and prerouted wires
placed in the core before routing are considered as obsta-
cles, which significantly lengthen wires and induce increas-
ing delays. The obstacle-avoiding spanning graph (OASG)
adopted by obstacle-avoiding rectilinear Steiner minimal tree
(OARSMT) constructions [8]–[10] has a global view in terms
of pins and obstacles and reduces WL effectively.

SoC designs must consider delay minimization and
obstacle avoidance simultaneously. Directly applying previous
timing-driven algorithms on an OASG is infeasible. Cong
et al. [2] analyzed the delay in distributed RC circuits and
observed that the delay upper bound is minimal if the tree
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is both a shortest path tree (SPT) with minimal path length
from the driver to a sink as well as an optimal Steiner tree
(OST) with minimal WL. Therefore, the A-tree algorithm
proposed in [2] maintains a SPT while steadily approaching
an OST. However, identifying a SPT or an OST under
obstacle-avoiding constraint is difficult because the obstacles
may induce detours and worsen the delay of the constructed
Steiner tree. In OASG, a vertex may be an obstacle’s corner
or a pin. Directly applying the algorithms proposed by
previous works to solve the problem of PD RST construction
without obstacles cannot be expected to obtain good results
because a routing connecting two vertices may connect a pin
to an obstacle’s corner rather than another pin.

Xu et al. [11] first considered delay minimization and
obstacle avoidance simultaneously. A dynamic searching and
computation procedure was proposed to solve the minimal
delay tree from the driver to the critical sink recursively. They
also assumed that a given net only has a known critical sink.
AMAZE [7] handled obstacles well due to the nature of maze
routing and assigned each sink a weight to determine their
criticality for delay optimization.

In SoC designs, buffer insertion is the major approach to
optimize the delay of a long wire. There are two categories
of buffered PD interconnection designs: one is to consider
buffer insertion and Steiner tree construction simultaneously
[12]–[14], and the other is to insert buffers after Steiner
tree construction [15]–[17]. Cong and Yuan [12] considered
obstacles and constructed buffered routing trees with fixed
buffer constraints. Hrkic and Lillis [13] synthesized buffered
tree with additional considerations, i.e., temporal locality, sink
polarity requirements, and congestion. Dechu et al. [14] devel-
oped a PD routing tree with simultaneous buffer insertion and
wire sizing in the presence of obstacles. However, the sizes of
nets that can be solved by these methods are very limited. The
maximum pin numbers of the circuits used in [12]–[14] are
very small (10 in [12], 21 in [13], and 25 in [14]). Alpert et al.
[15] demonstrated that the two-step approach of constructing a
timing-driven RST first and then adopting van Ginneken style
buffer insertion [18] can achieve almost the same quality of
the approach which considers Steiner tree construction and
buffer insertion simultaneously. When constructing timing-
driven Steiner tree, Alpert et al. [16] considered porosity
to insert buffers with obstacle-avoiding capability. They first
constructed a timing-driven Steiner tree and then adjusted it
based on obstacles and porosity. Finally, they applied van
Ginneken style buffer insertion to improve timing. Alpert et al.
[17] enabled critical nets to pass through blockages for hole
usage by routing non-critical nets around blockages.

This paper first proposes a novel critical-trunk-based tree
growth, an effective method for optimizing the Steiner tree de-
lay by avoiding existing obstacles. Moreover, given the driver’s
arrival time and the required times for sinks, the critical-
trunk-based tree growth can also be applied to optimize
the worst negative slack (WNS) for an OARST. A routing
algorithm is applied instead of the two-stage tree construction
to seek the Steiner tree and thus have more control over
the efficiency of the routing procedure. For SoC designs, the
proposed algorithms are enhanced to consider buffer inser-

tion during OARST construction. Experiments reveal that the
proposed algorithms achieve an average 25.84% improvement
in maximum delay over OARSMT. The algorithms can solve
66.67% of WNS problems. The runtime comparison with pre-
vious works shows the efficiency and scalability of this work.

The rest of this paper is organized as follows. Section II
presents problem formulations. The critical-trunk-based tree
growth is presented in Section III. The algorithms for op-
timizing delay and WNS are presented in Sections IV and
V, respectively. The buffer insertion extension is presented
in Section VI. Timing complexity analysis and experimental
results are presented in Sections VII and VIII, respectively.
Conclusions are finally drawn in Section IX.

II. Problem Formulations

As the efficiency of solving the obstacle-avoiding routing
problem using spanning graph has been certified, this paper
utilizes the OASG generation procedure in [10]. Elmore delay
model [19] is adopted to estimate the wire delay in this
paper. The proposed critical-trunk-based tree growth can be
effectively applied to solve the following two problems.

A. Problem 1: PD/SD OARST
Let P = {p0, . . . , pm} be a set of pins where p0 is the driver,

and the other m nodes are sinks. Let B = {b1, . . . , bk} be a set
of rectangular blockages. Timing-related information, such as
unit wire resistance, unit wire capacitance, sink output loading,
driver resistance, and some technology parameters, are given.
The objective of PD OARST problem is to identify a RST
that connects all pins in P and evades all obstacles in B in
order to minimize max(delay(i)), where delay(i) is the delay
of pi. For SD OARST, the given input additionally includes
the driver arrival time T arr(0) and sink required time T req(i),
i = 1, . . . , m. The slack of sink i is defined as slack(i) =
T req(i) − T arr, (i) = 1, . . . , m, where T arr(i) is the arrival time
of sink i. The objective of this problem is to identify a RST
that connects all pins in P and evades all obstacles in B in
order to minimize the WNS.

B. Problem 2: Buffer-Aware PD/SD OARST

Given P, B, and timing-related information, the default type
of buffer, denoted as bd , and the upper bound capacitance,
denoted as Cub, represents the driving power of bd . The
objective of buffer-aware (BA) PD problem is to identify
a buffered RST that connects all pins in P and evades all
obstacles in B in order to minimize the maximum delay of all
sinks. For BA SD OARST, additional given the driver arrival
time and sink required time. The objective of this problem
is to identify a buffered RST that connects all pin in P and
evades all obstacles in B in order to minimize WNS.

III. Critical-Trunk-Based Tree

The topology of a Steiner tree affects the delays of all sinks.
The critical-trunk-based tree growth mechanism is proposed to
control the tree’s topology for minimizing the maximum delay.

A. Critical Trunk

An important relation between the radius and the circuit
delay is observed. This relation is common when constructing
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Fig. 1. Relation between radius and delay in SPT. (a) Enlarged rectan-
gles within dotted circle are sinks with 80% of the worst radius in SPT.
(b) Enlarged rectangles within dotted circle are sinks with 95% of the WD in
SPT.

Fig. 2. Relation between radius and delay in MST. (a) Enlarged rectangles
within dotted circle are sinks with 80% of the worst radius in MST.
(b) Enlarged rectangles within dotted circle are sinks with 95% of the WD in
MST.

Steiner trees with or without obstacles. In Figs. 1 and 2, the
bold rectangular node in the upper left of each design is the
driver. In Figs. 1(a)/2(a) and 1(b)/2(b), the circled and bold
nodes in the lower/upper right are the sinks in which the
radiuses are longer than 80% of the worst radius and those
in which the delays are larger than 95% of the worst delay
(WD) in a SPT/MST, respectively. Figs. 1 and 2 show that a
long radius of a sink indicates a large delay for both a SPT and
a MST. The long paths between the driver and the large radius
sinks have higher possibility of connecting many subtrees than
short paths do. Thus, the delays of sinks with large radiuses are
easily raised by the increased downstream capacitance (DSC).

B. Subtree Topology

The topology of each subtree that subsequently grows
starting at the path between the driver and the sinks with large
radiuses must be well controlled to prevent from deteriorating
the delays of these sinks. To grow subtrees properly, we utilize
the following lemma.

Lemma 1: Given a set of pins P of a net. For a path ρ

from the driver D to any sink s, the positions of large subtrees
connecting to ρ affect the delay of s. If one large subtree
approaches D, the delay of s decreases. If one large subtree
approaches s, the delay of s increases.

Proof: In Fig. 3(a), there are n subtrees, T1, T2, . . . ,

and Tn, connecting the path between the driver D and the
sink s by pins, p1, p2, . . . , and pn, respectively. We derive
the RC network in Fig. 3(b) from the tree in Fig. 3(a) using
the π model. The delay of sink s, denoted as delay (s), is
computed as follows:

delay(s) = Rp1 · (Cp1
+ CT1 + Cp2 + CT2 + · · · + Cpn

+ CTn

+Cs) + Rp2 · (Cp2 + CT2 + · · · + Cpn
+ CTn

+ Cs)

+ · · · + Rpn
· (Cpn

+ CTn
+ Cs) + Rs · (Cs). (1)

Fig. 3. Illustration of proof of Lemma 1. (a) T 1, T 2, . . . , and T n are
subtrees connecting the path between driver D and sink s by pins,
p1, p2, . . . , and pn, and pn, respectively. (b) RC network transformed from
the above tree using π model.

Fig. 4. Ideal tree topology for critical-trunk-based tree growth.

Then we can rewrite (1) as follows:

delay(s) = Rp1 × (Cp1 + CT1 ) + (Rp1 + RP2 ) × (Cp2 + CT2 )

+ · · · +
n∑

i=1

Rpi
× (Cpn

+ CTn
)

+

(
n∑

i=1

Rpi
+ Rs

)
× Cs. (2)

We can note that the capacitance of each subtree contributes
to the delay of the sink s based on its position. The Elmore
delay multiplies the resistance of each pin by its DSC. When
a subtree is closer to the sink, the subtree’s capacitance needs
to be multiplied more times. A subtree closer to the sink s
has more impact on the delay of sink s than that closer to the
driver D. In other words, if we have smaller subtrees close to
the sink, a smaller delay can be obtained.

C. Critical-Trunk-Based Tree Growth Mechanism

From the above observation and Lemma 1, a critical-trunk-
based tree growth is derived. Initially, to bound the delay of
the sinks with the longest radius, the paths connecting the
driver and these large-radius sinks are prerouted. The large-
radius sinks are defined as critical sinks, and the prerouted
paths are defined as critical trunks. For other unconnected
sinks, subtrees are constructed to connect the unconnected
sinks. These subtrees are then connected to the critical trunks
according to the proposed tree topology to minimize delay in
each sink. Fig. 4 depicts the ideal tree topology.

IV. PD OARST

PD OARST minimizes the delay for each sink by applying
the critical-trunk-based tree growth mechanism. Fig. 5 dis-
plays the flow of the proposed performance-driven OARST
algorithm. As mentioned above, the technique developed in
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Fig. 5. Overall flow of PD OARST algorithm.

[10] is used to construct the OASG. The critical trunk in PD
OARST is called the PD critical trunk. The growth of PD
critical trunk on the OASG is the most crucial part of this
algorithm, and the objective is to first connect the sinks with
long radiuses due to their potential large delays. To conform to
the ideal tree topology proposed in the critical-trunk-based
tree mechanism, the size of each PD subtree connected to
the PD critical trunks is well controlled. After constructing
the Steiner tree, all slant edges in the OASG are transformed
into horizontal and vertical edges, and a refinement operation
removes redundant edges.

A. PD Critical Trunk Growth

An initial Steiner tree is constructed with adapted maze
routing algorithm. Maze routing suffers from large runtime
for large graphs. Line probe algorithm can better the runtime
issue but the line extension approach to fit OASG that is not
an array structure needs to be refined. An extended single-
source single-target maze routing, called multisource single-
target maze routing, is adopted to increase the flexibility of
initial Steiner-tree construction. We then identify PD critical
trunks of the initial Steiner tree and rip up the edges not in
PD critical trunks.

1) Initial Steiner Tree Construction: A maze routing
algorithm is adopted to construct the OARST; hence, the
two-pin net generation is required for the PD critical trunk
growth. The multiple-pin net is decomposed into several two-
pin nets. The path in any two-pin net may generate detours
to avoid obstacles, so the corners of each obstacle are also
considered vertices of the OASG. The Prim algorithm starts
at the driver and seeks a minimum-cost-spanning tree with m
pin-to-pin connections (two-pin nets) in the OASG. The cost
of an edge in the OASG is the Manhattan distance of its two
end vertices. A two-pin net contains more than two OASG
edges if it passes through at least one obstacle corner. The
number of OASG edges is controlled by carefully selecting
the OASG construction so that the two-pin net generation can
be accomplished efficiently. Based on the generated two-pin
nets, a maze routing with A* search is employed to construct
an initial obstacle-avoiding Steiner tree, and the routing order
is the same as that of the Prim algorithm.

2) Multisource Single-Target Maze Routing: For the in-
creased flexibility of constructing an initial Steiner tree, each
two-pin net is routed by the multisource single-target maze
routing. Fig. 6 illustrates this method. In Fig. 6(a), node D is
the driver of the routed net, the other gray nodes are the sinks
and the corners of obstacles, the solid lines are the completed
routing edges in the OASG, and the dotted line is the currently
routed two-pin net where its source and target nodes are
labeled S and T, respectively. In Fig. 6(b), a bounding box is

Fig. 6. Multisource single-target maze routing. (a) Dotted line is the cur-
rently routed two-pin net. (b) Source window is obtained by enlarging the
enclosing bounding box of S and T with a factor α. (c) Node A is identified
as another source for current routing.

constructed to enclose S and T , and then expand it by a user-
defined parameter α to form a source window. In the source
window, the vertex nodes within the source window which
connect to D are identified as new source nodes. The source
window is accomplished by R-tree [20] which is a spatial
access method based on tree structures. Fig. 6(c) includes an
additional source node connected to T .

3) PD Critical Trunk Construction: The first step to
identify the PD critical trunks in a Steiner tree is recognizing
PD critical sinks. Several important definitions for the PD
OARST problem are given in the following.

Definition 1: PD criticality threshold factor (PDCTF): The
PDCTF of a Steiner tree is the ratio of its average sink delay
to its worst sink delay.

Definition 2: PD critical radius: The PD critical radius of
a Steiner tree is the product of the maximum radius of the
Steiner tree and the PDCTF.

Definition 3: PD critical sink: A sink is said to be PD
critical if its radius exceeds the PD critical radius.

Definition 4: PD critical trunk: A path on the Steiner tree
connecting the driver and any PD critical sink is a PD critical
trunk.

The PDCTF represents the delay characteristics of the
Steiner tree and determines the number of PD critical trunks to
constrain the delay of PD critical sinks. The delay for Steiner
trees with varying PDCTFs is analyzed as follows.

a) If the PDCTF approaches one, the average sink delay
approximates the worst sink delay. In this case, all sinks
have fairly consistent delays, and few critical trunks
require prerouting. Prerouting PD critical trunks does not
significantly enhance the performance and may worsen
the average delay (AD) because the usage of PD critical
trunks increases the total WL. Fig. 7(a) illustrates the
PD critical trunks with a large PDCTF, where the bold
paths are the PD critical trunks.

b) If the PDCTF approximates zero, the average sink delay
is much smaller than the worst sink delay. Since the
variations in sink delay are all significant, many PD
critical trunks must be prerouted to reduce the longest
radius and then the maximum delay, which are usually
generated by the sinks with large radius. The AD can
then be further improved. Fig. 7(b) illustrates the PD
critical trunks with a small PDCTF. All paths originally
connecting to the PD critical trunks are ripped up, and
their reroutings are performed after the PD critical trunk
growth. Fig. 8 displays the algorithm of the PD critical
trunk growth.
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Fig. 7. Relation between PD critical trunk and PDCTF. (a) PD critical trunks
for PDCTF = 0.854. (b) PD critical trunks for PDCTF = 0.473.

Fig. 8. Algorithm of PD critical trunk growth.

B. PD Subtree Growth

To control the delay of critical sinks, the critical-trunk-
based tree favors large and small subtrees near the driver and
critical sinks, respectively. Therefore, we propose a mechanism
to constrain the topologies of subtrees connecting to the PD
critical trunks. The delay penalty factor (DPF) is proposed
to guide the maze routing to choose the proper connecting
candidate, followed by how to adopt DPF in routing cost
function.

1) DPF: The DPF is proposed to control the subtree
topology. The DPF of node i is initially defined as follows:

DPF (i) =

⎧⎨
⎩

R(i)

Rmax
, i ∈ Ncr

0, otherwise
(3)

where R(i) is the radius of node i on the Steiner tree, Rmax

is the maximum radius of the Steiner tree, and Ncr is the
set of nodes on the critical trunks. The DPF(i) increases
as the distance between node i and the driver increases.
During PD subtree growth, the ripped-up two-pin nets with
the same order of previously generated two-pin nets by the
Prim algorithm are rerouted. To control the tree topology
during the PD subtree growth, DPF and DPF inheritance
are employed in the multisource single-target maze routing.
The DPF inheritance modifies the connected node, as Fig. 9
shows. Fig. 9 contains one driver and six sinks. In Fig. 9(a),
the node labeled D is the driver, the node labeled sc is the
PD critical sink, the path labeled PDCT is the PD critical
trunk, and the DPF of each node (except the driver) is self-
labeled. Fig. 9(a) shows the initial DPF computed by (3).

Fig. 9. DPF inheritance. (a) PD critical sink, PDCS, PD critical trunk, PDCT,
and initial DPFs. (b) Updated DPF of newly connected node. (c) DPFs of all
vertices after completing the routing tree. (d) Minimum-length routing tree
excluding the dotted line and the length between corresponding vertices.

After completing one two-pin net routing, the newly connected
node inherits the DPF from its neighboring node in the PD
critical trunk as Fig. 9(b) shows. In the process of PD subtree
growth, the DPF of the newly connected node inherits from
its original neighboring node in the routing tree. Fig. 9(c)
shows the final DPFs after all two-pin nets are routed. With
the DPF inheritance, DPFs and the multisource single-target
maze routing can be applied simultaneously to connect each
disconnected node to the node in the routing tree with least
routing cost integrating DPF, which is introduced in next
section, to comply with the proposed tree topology. If multiple
PD critical trunks are identified, for delay optimization, DPF
guides each unconnected pin to connect to a proper vertex
of some one growing critical trunk within the source window
used in multisource single-target maze routing.

Fig. 9(d) shows a routing tree with the objective of mini-
mizing the total WL. Assume the capacitance and resistance
of every pin in Fig. 9 are Cp and Rp, respectively. The delay
of critical sink sc in Fig. 9(d) can be computed by the Elmore
delay using the π model as follows:

delay(sc) = Rp × (7 · Cp + 6 · σ · c) + Rp × (6 · Cp

+5 · σ · c) + Rp × (5 · Cp + 4 · σ · c) + Rp

×(Cp + 0.5 · σ · c) = 19 · Rp · Cp + 15.5 · Rp · σ · c

(4)

where c is the wire unit-length capacitance and σ is the given
WL. However, the delay of critical sink sc in Fig. 9(c) can be
computed similarly as follows:

delay(sc) = Rp × (7 · Cp + 7 · σ · c) + Rp × (6 · Cp + 6 · σ · c)
+Rp × (3 · Cp + 2 · σ · c) + Rp × (Cp + 0.5 · σ · c)
= 17 · Rp · Cp + 15.5 · Rp · σ · c. (5)

Although the WL of the routing tree in Fig. 9(c) is larger
than that in Fig. 9(d), the delay of critical sink sc in Fig. 9(c)
is smaller than that in Fig. 9(d). With DPF inheritance, the
adjusted topology of subtrees decreases the delay of sc.

2) Routing Cost Considering DPF: In the multisource
single-target maze routing, a delay-driven A* search-like
method is applied for each two-pin net. The cost function for
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Fig. 10. Algorithm of PD subtree growth.

node x of A* search-like method is f (x) = g(x) + h(x), where
g(x) is the cost function of the routed path, and h(x) is the
admissible heuristic distance estimation from node x to the
target. The path-cost function g(x) is reinforced to consider
the delay effect by adding delay penalty cost as follows:

g(x) = distsx + distds × DPF (s)2 × ImpFactor (6)

where distsx is the distance cost from the source to node x,
distds is the distance cost from the driver to the source, DPF(s)
is the DPF of the source, and ImpFactor is the impact factor to
balance total WL (total wire capacitance) and the WD. If the
source is on a PD critical trunk and near the PD critical sinks,
the subtree connecting this PD critical trunk at this source is
imposed by high DPF upon the increase in WL. The DPF is
used to obtain the trees that resemble the one in Fig. 4, and is
reinforced in a square form because the delay is proportional
to the square of WL. The g(x) with a low impact factor lowers
the importance of WD, and thus encourages reducing the total
WL of Steiner tree with the penalty of increased worse delay.
On the contrary, a high impact factor lowers the WD at the
cost of increased total WL. Generally, AD increases as total
WL increases. Fig. 10 shows PD subtree growth algorithm.

C. Rectilinearization

This stage transforms all edges into horizontal and vertical
edges. For additional refinement, redundant edges are also re-
moved. The U-shaped patterns are generated most frequently.
A U-shaped pattern can be removed by breaking the L-shape
in it. If a pin is not located at the corner of the L-shape,
the L-shape can be replaced by a straight edge. Otherwise,
the L-shape can be transformed into two parallel edges if the
total WL after transformation is reduced. Fig. 11 shows these
two cases. This paper adopts the Manhattan distance between
two terminal vertices of an edge as the edge cost, thus the
estimated delay before the rectilinearization is the same as
that after rectilinearization without removing U-shapes. After
performing the operation of removing U-shapes, the delay may
be less than that before rectilinearization.

V. SD OARST

Minimizing the maximum delay in a Steiner tree may
violate the timing constraint. To satisfy the timing constraints,
the arrival time of each sink cannot exceed its required time:
the slacks of all sinks should be at least zero. Figs. 12(a) and
(b) presents two Steiner trees with different objectives—one to

Fig. 11. Removal of redundant edges. (a) Remove the bold L-shape edge and
connect the disconnected vertex with a vertical edge. (b) Remove the bold
horizontal edge and connect the disconnected vertex with a vertical edge.

Fig. 12. Steiner tree with different objective where node D is the driver,
node M is the sink with maximum delay, and node C is the sink with delay
less than M. (a) Minimizing the maximum delay. (b) Satisfying the timing
constraint.

minimize the maximum delay and the other to satisfy timing
constraints. In Fig. 12(a), node D is the driver, node M is
the sink with maximum delay, node C is the sink with delay
less than M, and T req (C) is less than T req(M). If T arr(M) =
delay(M)+T arr(0) is less than T req(M), where delay(M) is
the delay of node M, and T arr(C)= delay(C)+T arr(0) exceeds
T req(C) where delay(C) is the delay of node C, this Steiner
tree violates the timing constraint at C (T arr(C) > T req(C))
rather than the worst-delay node M. In Fig. 12(b), delay(M) is
increased and delay(C) is decreased, and the new Steiner tree
satisfies the timing constraint. Unlike in the minimization of
the maximum delay, the required time of every sink determines
its importance while considering the timing constraints. A
large required time of a sink corresponds to a large allowable
delay of the sink. The slack is a good indicator of the allowable
delay. If slack(i) of sink i is less than zero, then delay(i) is too
large and should be reduced to satisfy the timing constraint. A
positive slack(i) implies that delay(i) is legal and has a margin
to be increased to reduce the other path delay and thereby
improve related sink slacks.

This section presents a critical-trunk-based SD OARST
algorithm to minimize the WNS of an OARST. Fig. 13 depicts
the proposed SD OARST algorithm. The OASG construction
is the same as that in the performance-driven OARST al-
gorithm. The critical trunk in SD OARST is called the SD
critical trunk. The growth of SD critical trunk is also the most
important part of this algorithm, whose underlying concept is
first to connect the sinks with small slacks to control their
delays. The size of a SD subtree that is connected to the
SD critical trunk is effectively controlled to satisfy the timing
constraints. After the Steiner tree has been constructed, the
same rectilinearization as that of the PD OARST algorithm is
performed. Finally, the WNS of an OARST is minimized via
a redirection mechanism.

A. SD Critical Trunk Growth

In PD OARST algorithm, the WL is used as the metric
for Prim’s algorithm because the delay is proportional to the
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Fig. 13. Overall flow of SD OARST algorithm.

square of WL. The purpose of SD critical trunk growth is
to well bound the delay of sinks with small required time to
ensure the timing constraint can be satisfied, so the WL is
not a proper metric. We can adopt required times to guide
the two-pin nets generation in Prim’s algorithm. Notably,
only sinks in an OASG have required times while corners
of obstacles do not. We propose the pseudo required time
computation mechanism to guide the two-pin nets generation.
According to the generated two-pin nets, the initial Steiner tree
is constructed, and the critical trunks are identified according
to the slack of each sink.

1) Pseudo Required Time Computation: To satisfy the tim-
ing constraint, the sinks with small required time prefer small
delay in the constructed Steiner tree. Thus, the Prim algorithm
is performed with edge cost simultaneously considering WL
and the required time. But there is no information about
required time except sinks in an OASG. Thus, we propose the
pseudo required time computation mechanism to determine
the possible required time for the vertices which represent the
corners of obstacles in an OASG.

For the optimistic estimation of the required time for each
vertex, the shortest delay path from the driver to each sink is
first found. Then we estimate the possible required time for
the vertex along the shortest delay path for each sink. The
wave propagation used in the conventional routing algorithm
is a good approach to find the shortest delay path. To obtain
the upper bound of required time for each vertex, we adopt
the modified wave propagation, called potential delay prop-
agation, starting at the driver to compute the smallest delay
for each vertex. Fig. 14 displays the algorithm of the potential
delay propagation, where the pdelay(i) is the potential delay
for vertex i and dist(i, j) is the distance from i to j. All edges
in an OASG are initially enabled, and the pdelay of each vertex
is set as infinite. In the beginning, the potential delay of the
driver is set to zero, and the driver is inserted into a queue Q.
In each iteration, vertex v is fetched from Q, and every edge
e, connected to v, is checked whether e is enabled. If e is
enabled and the potential delay of the other connected vertex
vadj , says pdelay(vadj), exceeds pdelay(v) + dist(v, vadj)2, then
pdelay(vadj) is updated as pdelay(v) + distv(v, vadj)2 and vadj

records v as its source. If pdelay(vadj) is updated, the edge
e connecting v and vadj is set as disable to prevent one path
from passing e several times. Then vadj is inserted into Q. This
process continues until Q is empty. Then, each sink traces back
by the source of each vertex to find the shortest path.

The pseudo required time, denoted as T p req, for each vertex
in an OASG can be computed based on the potential smallest
delay from the driver to any vertex. Initially, T p req s of every

Fig. 14. Algorithm of potential delay propagation.

sink and every corner are set as its required time and infinity,
respectively. For each sink i, its shortest path generated from
the potential delay propagation is spi, and the temporarily
pseudo required time, denoted as tp req, for every vertex j in
spi is computed as follows:

tp req(j) = Treq(i) − SMdist(i, j)2 × r × c/2 (7)

where SMdist(i, j) is the sum of the Manhattan distance along
spi from i to j and r is the wire unit-length resistance. After
tp req (j) is computed, the pseudo required time of vertex j
can be updated as follows:

Tp req(j) = min(Tp req(j), tp req(j)). (8)

2) Initial Steiner Tree Construction: The pseudo required
time for each vertex implicitly indicates the allowable
delay. The vertex with a small pseudo required time needs
connecting to the driver directly. If only pseudo required times
are considered in the Prim algorithm, then the tree topology
preferentially connects all sinks to the driver directly. The tree
delay may increase dramatically, and the timing constraints
are thus eventually violated. The WL of the tree and the
pseudo required time should be considered simultaneously in
the Prim algorithm to reach the objective of this algorithm.
In the Prim algorithm, the OASG edge cost is computed
dynamically as follows:

ci,j =

⎧⎪⎨
⎪⎩

dist(i, j), if Tp req(j) = ∞,

dist(i, j) × Tp req(j) − minprtV(Tp req)

maxprtS(Tp req)
, otherwise

(9)

where ci,j is the edge cost, i is the original in-tree node, j
is the connected node, dist(i, j) is the Manhattan distance
between i and j, minprtV (Tp req) is the minimum pseudo
required time among all vertices, and maxprtS(T p req) is the
maximum pseudo required time among all sinks. Initially,
the edge costs of all edges connecting to the driver are set
according to (9). The driver is set as visited, and the other
vertices are set as unvisited. The edge with minimum cost
and their connected vertices that are unvisited are included in
the spanning tree, and the costs of all edges that connect the
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Fig. 15. Algorithm of SD critical trunk growth.

newly included vertex are assigned using (9) thereafter. The
newly included vertex is also set as visited. The Prim algorithm
repeats the identification of new edges and the assignment of
vertex and edge costs until a minimum-cost spanning tree is
identified. Based on the two-pin nets generated by required-
time weighted Prim algorithm, multisource single-target maze
routing with A* search can identify a good initial obstacle-
avoiding Steiner tree to optimize slack.

3) SD Critical Trunk Construction: With the constructed
Steiner tree, the priority of each sink, say i, is defined as
priority(i) = T p reqi) − delayi). A negative priority implies a
gap between the current arrival time and the ideal arrival time
(pseudo required time) to satisfy the timing constraint. As in
the PD OARST construction algorithm, the first step in iden-
tifying the SD critical trunks in the constructed Steiner tree is
to identify the critical sinks. Several important definitions used
in solving the slack-driven OARST problem are as follows.

Definition 5: SD critical priority (SDCP): The SDCP of a
Steiner tree is the average priority of all sinks.

Definition 6: SD critical sink: A sink is said to be SD
critical if its priority is smaller than SDCP.

Definition 7: SD critical trunk: A path on the Steiner tree
that connects the driver to any SD critical sink is a SD critical
trunk.

On the initial obstacle-avoiding Steiner tree, all paths that
are connected to SD critical trunks are ripped up and rerouted
after the SD critical trunk growth. Fig. 15 displays the al-
gorithm of the SD critical trunk growth. As in Fig. 7(b), the
algorithm may identify multiple critical sinks and their trunks.

B. Enhanced SD Critical Trunk Growth

The potential delay propagation used in the SD critical trunk
growth is derived from the wave propagation in maze routing
algorithm. The wave propagation is good at identifying the

shortest delay path, but only considers the edge costs and
ignores the number of passed vertices. Vertices of an OASG
include pins and corners of obstacles. Obstacle corners are
used to escape obstacles during routing and do not appear
in physical paths, so we only consider pins in the following
discussion. A shortest path may pass many pins and thus
have worse delay as the number of passed pins increases. The
following lemma shows the situation.

Lemma 2: For a fixed-length path connecting the driver to a
sink, its delay increases as the number of passed pins increases.

Proof: Assume a path from the driver D to a sink s has
a WL of l, and the capacitances of all sinks are equal. For
simplicity and without loss of generality, n sinks are supposed
to be evenly inserted in this path, the delay of s is shown
to exceed that of the original path by nlR�Cpin/2w in the
following, where R� is the sheet resistance [21], Cpin is the
capacitance of all sinks, and w is the wire width.

First, we derive the delay of s in Fig. 16(a) by transforming
it into a RC network using the π model as shown in Fig. 16(b),
where Rs equals lR�/N, and Cs is the sum of the capacitances
from the wire (lwc/2) and the sink s (Cpin). The delay of sink
s in Fig. 16(b) is calculated as follows:

delayorg(s) = Rs × Cs = (lR�/w) × (lwc/2 + Cpin)
= l2R�c/2 + lR�CPin/w.

(10)

After inserting n sinks, we derive the RC network as shown
in Fig. 16(d) from Fig. 16(c). The path in Fig. 16(c) are evenly
divided into (n + 1) segments, the resistances of all segments
are equal. We derive the equations as follows:

Rs1 = Rs2 = Rs3 = · · · = Rsn = Rs = lR�/((n + 1)w) (11)

Cs1 = Cs2 = Cs3 = · · · = Csn = lwc/(n + 1) + Cpin (12)

Cs = lwc/2(n + 1) + Cpin. (13)

The delay of sink s in Fig. 16(d) is calculated as follows:

delayinserted(s) = Rs1 × (Cs1 + Cs2 + Cs3 + · · · + Csn + Cs)+
Rs2 × (Cs2 + Cs3 + · · · + Csn + Cs) + · · · +
Rsn × (Csn + Cs) + Rs × Cs.

(14)

After substituting (11) and (12) into (14), we can derive the
equation as follows:

delayinserted(s) = Rs1 × [Cs1 + 2Cs2 + 3Cs3 + ... + nCsn

+(n + 1)Cs] = Rs1 × [(n(n + 1)/2)

×Cs1 + (n + 1)Cs]. (15)

Then substituting (11), (12), and (13) into (15), the delay
of sink s in Fig. 16(c) is

delayinserted(s) = l2R�c/2 + (n + 2)lR�Cpin/2w

= l2R�c/2 + lR�Cpin/w + nlR�Cpin/2w.
(16)
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Fig. 16. Illustration of Lemma 2. (a) Path between driver D and sink s.
(b) RC network of Fig. 16(a) using π model. (c) Path between D and s with
averagely inserting n pins. (d) RC network of Fig. 16(c) using π model.

Fig. 17. Algorithm of potential delay propagation with pins consideration.

Lemma 2 indicates that the delay of a sink increases as the
number of passed pins from the driver to the sink increases
with the used WL fixed. We propose an enhanced SD critical
trunk construction by controlling the number of passed pins to
prevent from obtaining a small edge-cost path but with many
passed pins. Fig. 17 displays the algorithm of the potential
delay propagation with pins consideration, where the pdelay(i)
is the potential delay for vertex i, pinpassed(i) is the number of
passed pins from D toi, and dist(i, j) is the Manhattan distance
from i to j. pinpassed of each vertex is initially set as infinity.
Constant β is used to tradeoff the path length and the number
of passed pins. In the experiments, β is set to 8. For an enabled
edge e that connects currently visited vertex v with its adjacent
vertex vadj , if the potential delay of vadj , says pdelay(vadj),
exceeds pdelay(v) + dist(v,vadj)2 and the number of passed
pins of v is smaller than that of vadj plus β, then pdelay(vadj)
is updated as pdelay(v) +dist(v, vadj)2, pinpassed(vadj) is set as
pinpassedv) + 1, or pinpassed(v) depending on whether vadj is a
pin or not, v is set as the source of vadj , edge e is disabled to
avoid being re-visited, and finally vadj is inserted into Q. This
process continues until Q is empty. Then, each sink traces back
by the sources of each vertex to find the minimum potential-
delay path.

Fig. 18. Example of SD subtree growth.

C. SD Subtree Growth

After the growth of SD critical trunks, all disconnected pins
are connected based on the two-pin nets generated by the
required-time weighted Prim algorithm. To control the delay
of each sink to fit its timing constraint effectively, each two-
pin net is routed by single-source single-target maze routing.
The required time determines principally the allowable delay
of a sink in SD OARST problem. The SD critical trunk
growth adopts the multisource single-target maze routing to
increase the flexibility of constructing an initial Steiner tree.
However, the source window of multisource single-target maze
routing in a SD subtree growth may reduce the target delay
of identified sources but increase the delays of other sinks.
The timing constraint is eventually violated, and the WNS
becomes worse. In Fig. 18, the dotted two-pin net between
the driver D and the sink A are routed. If the multisource
single-target maze routing is adopted, the sink B may become
the extra source for connecting A and connect to A directly.
The connection between A and B increases the DSC of C.
Then the timing constraint for C may be violated due to the
increased capacitance.

D. Redirection

After the Steiner tree has been rectilinearized, the Elmore
delay model is applied to analyze the timing of SD OARST
and then compute the arrival time and slack of each sink. If
the slack of any sink is negative, then the redirect mechanism
is exploited to improve the WNS. The redirection iteratively
identifies the sink with the WNS, says sWNS , disconnects sWNS ,
and reconnects sWNS to reduce its delay. sWNS is disconnected
by removing the routing path between sWNS and its first upper
stream node, which is a sink or a corner of an obstacle. The
reconnection of sWNS requires first selecting a candidate to be
connected. To take full advantage of the previously constructed
OASG, the nodes that are immediately connected to sWNS are
selected as candidates, and then the node with the smallest
delay is chosen as the target to connect sWNS . Following
the reconnection, the newly connected edge is rectilinearized,
and the timing is analyzed again to determine whether the
redirection should be terminated. During the redirection, a sink
may be reconnected to its original first upper stream node. In
this case, further redirection will remove the paths between
the sink and its second upper stream node, rather than its
first node, to disconnect the sink from the Steiner tree. The
redirection iterates until all negative slacks are solved or the
runtime has reached a threshold value. Notably, the redirection
mechanism does not change the tree topology because of
the local modification. Experimental results show that the
redirection mechanism improves the worst slacks in one and
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Fig. 19. Flow of redirection mechanism.

Fig. 20. Effect of buffer insertion to a PD OARST. (a) No buffer is inserted.
(b) One buffer is inserted.

three cases of SD and BA SD OARST problems, respectively.
Fig. 19 shows the redirection flow.

VI. Buffer-Insertion-Aware OARST

The PD/SD OARST algorithm assumes that one net contains
one driving node. In the case with buffers inserted on a routing
tree, the routing tree contains multiple driving nodes since each
inserted buffer can be regarded as a driving node. Constructing
PD/SD OARST without considering buffer insertion may
lengthen the routing tree when OARST construction and buffer
insertion are not considered simultaneously and performed se-
quentially. Fig. 20 illustrates the effect of inserting a buffer to a
PD OARST. In Fig. 20(a), after constructing PD critical trunk
(the bold lines), the circled vertex by dotted lines connects
to the driver due to the DPF effect and inherits the DPF of
the driver. In Fig. 20(b), one buffer is inserted, and the DPF
of each vertex in the trunk is re-computed by regarding the
inserted buffer as a driving node. The circled vertex connects
to the middle vertex, resulting in decreasing the total WL.
Thus, the ideal routing trees with and without inserted buffers
for constructing PD/SD OARST might be quite different. The
proposed algorithms are extended to consider buffer insertion
during routing tree construction. The default type of buffer, de-
noted as bd , is adopted, and the upper bound capacitance, de-
noted as Cub, represents the driving power of bd . The locations
of inserted buffers (additional driving nodes) are predicted
based on Cub. A pseudo buffer insertion (PSBI) is proposed
followed by the extensions of PD and SD OARST algorithms.

A. PSBI

An initial Steiner tree on the OASG, denoted as T init , is
constructed before PD/SD subtree growth in the same way
as in PD/SD OARST. Since T init significantly dominates the
final outcome of PD/SD OARST, the proposed PSBI algorithm
determines the positions of potential buffers on T init . The
DSCs of all nodes in T init are first computed from each sink
node toward the driver node. The DSC of one node v in T init ,
denoted as dsc(v), exceeding Cub means one pseudo buffer
needs to be inserted directly downstream to v. Fig. 21 depicts
the algorithm of PSBI. The root (driver node) of T init is the

Fig. 21. Algorithm of PSBI.

input of the algorithm. For each child ch of the input node VT

in T init , if dsc(ch) exceeds Cub, one pseudo buffer is inserted
near ch, and then dsc(ch) is returned as the reduced DSC
(RDSC) for neighboring upstream nodes. After computing the
RDSC of each child, new dsc(VT ) is obtained by subtracting
the total RDSCs of all children from original dsc(VT ) and
then is examined if dsc(VT ) is larger than Cub and a pseudo
buffer is required to be inserted around VT . PSBI is a recursive
procedure to insert buffers upward (from leaf to driver node)
at the root of each subtree whose DSC after buffer insertion
may exceed Cub.

B. BA PD OARST

In BA PD OARST algorithm, pseudo buffers are inserted in
the initial Steiner tree which is constructed to compute PDCTF.
Only one driving node is considered using (3) to compute
the DPF for controlling the subtree topology. With additional
driving nodes, the buffered radius of node i, RBUF (i), is defined
as the distance from i to its upstream driving node in the
Steiner tree. The upstream driving node could be the driver or
a pseudo buffer. The DPF in (3) is thus modified to consider
pseudo buffers as follows:

DPF (i) =

⎧⎨
⎩

RBUF (i)

RBUFmax

, i ∈ Ncr

0, otherwise
(17)

where RBUFmax is the maximum buffered radius of the Steiner
tree. The original path-cost function of maze routing in (6) is
modified for pseudo buffers as follows:

g(x) = distsx + distbuf2s × DPF (s)2 × ImpFactor (18)

where distbuf2s is the distance cost from the source to its up-
stream driving node and DPF(s) is the source DPF computed
by (17). Therefore, a BA PD OARST is constructed based on
the flow of PD OARST.

C. BA SD OARST

In SD OARST algorithm, the potential delay propagation
constructs an initial Steiner tree for pseudo required time com-
putation. The BA SD OARST algorithm applies PSBI to the
Steiner tree. The temporarily pseudo required time is computed
using (7) for every node j in spi of each sink i. The BA SD
OARST considers pseudo buffers by modifying (7) as follows:

tp req(j) = Treq(i) − SMdist(iBUF , j)2 × r × c/2 (19)
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TABLE I

Statistics of Benchmarks

Case rc01 rc02 rc03 rc04 rc05 rc06
Pin 10 30 50 70 100 100
Obs. 10 10 10 10 10 500
Case rc07 rc08 rc09 rc10 rc11 rc12
Pin 200 200 200 500 1000 1000
Obs. 500 800 1000 100 100 10 000

where SMdist(iBUF , j) is the sum of the Manhattan distance
along spi from iBUF to j. Sink i is the initial node iBUF .
If node j is pseudo buffered, iBUF becomes j, which means
that a pseudo buffer resets the delay. Therefore, the proposed
algorithm can predict the delay considering inserted pseudo
buffers to guide 2-pin net generation. The BA SD OARST
can be constructed based on the original flow.

VII. Time Complexity Analysis

This paper adopts [10] for OASG construction, and its time
complexity is O(V log V ) by bounding the edge number of
OASG where V is the vertex number of the OASG. The
multiple-pin net with Pn pins is decomposed into (Pn−1) 2-pin
nets by Prim’s algorithm with the reduced time complexity
of O(E + V log V ) by using Fibonacci heap and adjacency
list, where E denotes the edge number of the OASG. The
time complexity of conventional maze routing in a x × y

grid plane is O(xy), i.e., O(E), and the time complexity can
be reduced as O(logE) by applying A* search. With (Pn−1)
2-pin nets, the time complexity of maze routing is O(Pn

logE). Updating timing information for performance and SD
OARST algorithms and PSBI require O(V + E) to trace the
Steiner tree. Therefore, the time complexity of this work is
O(PnlogE + E + V log V ).

VIII. Experimental Results

The algorithms herein were implemented in C++ language
on a SUN UltraSPARC-III workstation with 1015 MHz central
processing unit and 2 GB memory. A total 12 benchmarks
(rc01–rc12) are adopted in OARSMT problems, and the
corresponding statistics are shown in Table I. We adopt van
Ginneken style buffer insertion (VGBI) [18], and the used
buffer has 2.34 Ff load capacitance, 3.64 ps intrinsic delay, and
18 ohms resistance.

In (6), the ImpFactor is employed to balance total WL
and WD. We vary the impact factor of the second term by
setting ImpFactor to 20 different values, ranging from 0.05
to 1, and draw the variations of average improvement rates
in WL, AD, and WD in Fig. 22. The base for comparison
is the routing results using simplified (6) that only contains
the first term (distsx). The average improvement rate for each
item under a given ImpFactor is calculated as follows. For
example, the WL improvement rate of each circuit is first
computed as follows: wire len imp = ((wire lenbase −
wire lenimpFact)/wire lenbase) × 100. The average WL im-
provement rate can then be acquired by averaging the WL
improvement rates of all circuits. As Fig. 22 shows, an ascend-
ing impact factor lengthens total WL and also increases AD
while the approximated linear function of WD (dotted line)
implies a slow increasing WD improvement rate is achieved

Fig. 22. In PD OARST problem, average improvement rates of WL, AD,
and WD are impacted by different ImpFactor (IF) values.

TABLE II

Comparison of WL, WDs, and Runtimes Among MOARSMT (MO),

PD OARST (PD), and PD OARST Without U-Shape Remove (PDU)

Case WL WD Runtime

MO (um) PD inc PDU inc MO (ps) PD imp PDU imp MO (s) PD imp PDU imp

rc01 26 810 8.69 9.55 3709.40 8.78 7.89 0.01 0 0

rc02 42 280 1.63 5.63 4757.91 14.14 11.50 0.01 −100 −100

rc03 56 160 10.88 14.26 8906.42 34.94 31.71 0.01 −200 −200

rc04 60 710 21.68 25.76 8124.20 27.27 25.59 0.02 −100 −100

rc05 77 330 12.92 14.82 11690.13 42.14 39.91 0.03 −66.7 −66.7
rc06 86 299 9.78 12.60 10685.59 −6.65 −11.99 0.21 −114 −110

rc07 116 801 10.34 13.13 13450.84 18.10 16.18 0.20 −240 −235

rc08 123 004 11.47 15.25 16169.9 29.66 27.05 0.29 −269 −266

rc09 120 062 24.33 27.68 20957.15 26.65 24.64 0.59 −227 −225

rc10 170 600 9.04 12.08 25946.16 39.05 34.94 0.11 −390 −364

rc11 238 905 5.92 8.42 36459.46 11.69 6.83 0.38 −208 −197

rc12 858 310 51.13 52.74 464903.00 64.25 63.97 15.95 −748 −743

Average 14.82 17.66 25.84 23.19 −222 −217

[PD/PDU] WL inc = ([PD/PDU]-MO)/ MO × 100.
[PD/PDU] WD imp = (MO-[PD/PDU])/ MO × 100.
[PD/PDU] runtime imp = (MO-[PD/PDU])/MO × 100.

as the ImpFactor increases. The best WD improvement rate
occurs at the point ImpFactor = 0.8, thus we set ImpFactor to
0.8 in the following experiments.

To demonstrate the efficiency of the proposed algorithm,
a maze-routing based OARSMT algorithm (MOARSMT) is
implemented by removing the PD critical trunk growth and the
PD subtree growth, and performing multisource single-target
routings using A* search algorithm without timing informa-
tion. Table II compares the proposed PD OARST algorithm
(PD) with MOARSMT and the OARSMT (PDU), U-shapes
are not removed while performing PD. The experimental envi-
ronment settings are as follows: 440 ohms for driver resistance,
0.076 ohms/um for unit wire resistance, 0.118 Ff/um for unit
wire capacitance, and 1 Ff for the loading capacitance of
sink. The delay is calculated by the Elmore delay model.
The increases in average WL and runtime are 14.82% and
222%, respectively. The significant drop in the routing speed
of PD is primarily caused by the DPF inheritance, PD subtree
growth, and timing analysis. The average 25.84% reduction in
the WD indicates the efficiency of the critical-trunk-based tree
growth. The results of PDU display the impact of removing the
U-shapes. PD obtains lower WL and WD than PDU since they
have the same topology, yet PDU has a longer WL.

Table III compares AMAZE and PD in terms of WL,
the WD, AD, and runtime. In the used benchmarks, a pin
may be located at the boundary of a blockage. However, in
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TABLE III

Comparison of WL, WDs, ADs, and Runtimes Between AMAZE [7]

(AM) and PD OARST (PD)

Case WL WD AD Runtime

AM (um) PD inc AM (ps) PD imp AM (ps) PD imp AM (s) PD imp

rc01 26 251 11.01 3716.0 8.94 3078.3 2.29 0.15 93.33

rc02 42 570 −1.17 4589.8 10.99 3583.1 −8.88 0.38 94.74

rc03 54 602 10.97 9300.6 37.69 6583.6 26.38 0.64 95.31

rc04 60 082 12.71 7979.9 25.96 6173.71 21.95 1.34 97.01

rc05 74 882 15.84 13471.9 49.79 10032.3 39.23 1.66 96.99
rc06 82 787 9.65 10418.5 −9.38 7400.1 −5.64 31.1 98.55

rc07 112 703 9.01 13933.0 20.94 10284.5 5.44 72.6 99.06

rc08 118 638 8.57 15457.0 26.41 12853.5 17.83 201.7 99.47

rc09 115 516 17.05 24551.9 37.39 17516.1 18.99 302.8 99.36

rc10 165 649 5.95 19136.6 17.36 14397.5 4.44 135.9 99.60

rc11 235 881 3.68 54890.6 41.35 40888.1 45.71 2079.2 99.94

rc12 – – – – – – – –

Average 9.39 24.31 15.25 97.58

PD WL inc = (PD-AM)/AM × 100.
PD WD imp = (AM-PD)/AM × 100.
PD AD imp = (AM-PD)/AM × 100.
PD runtime imp = (AM-PD)/AM × 100

.
TABLE IV

Comparison of WL, WDs After VGBI, Inserted Buffer Numbers

After Buffer Insertion, and Runtimes Between PD OARST (PD)

and BPD

Case WL WD af. VGBI Buffer # Runtime

PD (um) BPD imp PD (ps) BPD imp PD BPD PD (s) BPD imp

rc01 29 140 8.10 288.66 56.27 15 19 0.01 0.00

rc02 42 970 1.61 66.42 62.52 1 2 0.02 0.00

rc03 62 270 9.81 81.44 63.26 3 5 0.03 0.00
rc04 73870 16.8 62.1 48.81 3 7 0.04 0.00

rc05 87 320 11.44 48.81 55.56 4 3 0.05 0.00

rc06 94 742 9.20 42.98 −44.00 9 15 0.45 40.00
rc07 128 875 9.85 28.32 29.80 4 3 0.68 42.65

rc08 137 116 10.8 32.66 1.75 6 9 1.07 45.79

rc09 149 274 19.57 33.17 −14.35 7 12 1.93 64.25

rc10 186 030 8.31 50.92 61.21 10 4 0.54 25.93
rc11 253 039 5.62 28.24 34.21 3 3 1.17 23.93

rc12 1 297 170 33.92 116.83 68.38 30 7 135.31 86.69

Average 12.03 35.29 7.92 7.42 27.44

BPD WL imp = (PD-BDP)/PD × 100.
BPD WD after VGBI imp = (PD-BPD)/PD × 100.
BPD runtime imp = (PD-BPD)/PD × 100.

AMAZE, the boundaries of blockages are not allowed for
routing. We shrink the boundary of a blockage by one unit
if a pin is located on it in order to satisfy the blockage
constraint. Sharing and path-length factors are set to 0 and
1, respectively, as suggested in AMAZE. AMAZE involves
performing experiments with generated nets and determined
critical sinks randomly. For comparison, the Manhattan dis-
tance between the driver and each sink is used to determine
the criticality of each sink for AMAZE, i.e., the sink with the
longest/shortest Manhattan distance owns the highest/lowest
criticality. AMAZE does not identify a feasible result within
12 h for the case rc12. Notably, PD increases in average WL by
9.39%. The average reduction rates in the worst and ADs, i.e.,
24.31% and 15.25%, respectively, demonstrate the efficiency
of the proposed algorithm. The runtime of PD is faster than
AMAZE by 97.58% on average.

Table IV compares PD and buffer-aware PD (BPD) in terms
of WL, the WD after VGBI, inserted buffer number after
VGBI, and runtime. BPD effectively reduces the average WL
and the WD after VGBI by 12.03% and 35.29%, respectively.

The WDs after VGBI of BPD in rc06 and rc09 are worse
than those of PD because the increasing number of obstacle
corners affects the accuracy of pseudo buffer locations. The
inserted buffer numbers of PD and BPD are almost the same
on average. Exchanging distds in (6) by distbuf2s in (18)
enlarges the routing cost difference of adjacent vertices and
then accelerates the routing process. Therefore, the runtime of
BPD is averagely faster than PD by 27.44%.

For the comparison of OARST construction with and
without slack consideration, the benchmarks (rc01–rc12) for
OARSMT are reinforced as new benchmarks (rc01t–rc12t)
under the constraint of the required time of every sink. The
required time of each sink is computed by finding the SPT
on the OASG and then calculating the delay of each sink by
the Elmore delay model. Table V compares the proposed SD
OARST algorithm (SD) to PD in terms of WL, the WD, the
WNS, and runtime. The SD exhibits an increase of 16.26%
in WL on average and solves the WNS-violation problems in
eight cases while PD does only in three cases. The runtime
of SD is faster than PD by 23.89% on average. Moreover, the
WD of SD is 1.35% better on average than that of PD, because
the Elmore delay is implicitly adopted to find an SPT in the
required-time weighted Prim algorithm, and the Elmore delay
is more effective to estimate wire delay than WL.

Table V also lists the routing result of the SD OARST
algorithm with the enhanced SD critical trunk construction
(ESD). ESD constrains the growth of the number of passed
pins to gain small delay, and the WL of EDS is thus shorter
than that of SD. Moreover, the WD of ESD is almost the same
with that of SD, and one WNS violation that cannot be solved
by SD is solved by EDS. The runtimes of ESD and SD are
almost the same.

Table VI compares SD, buffer-aware SD (BSD), and S-tree
[13] in terms of WL, the worst slack after VGBI, inserted
buffer number after VGBI, and runtime, where S-tree consid-
ers tree construction and buffer insertion simultaneously. The
results of [13] are obtained by performing the tool provided by
the authors. S-tree cannot complete rc05t–rc12t within 12 h.
Compared to SD, BSD effectively reduces the average WL
by 10.59% at the cost of 0.01% increase of the worst slack
after VGBI. Moreover, BSD also reduces the inserted buffers
on average. When the pins exceed obstacle corners in OASG,
e.g., circuits rc05t and rc11t, BSD spends more runtime than
SD in PSBI and related timing update. S-tree adopts dynamic
programming approach, which can explore more solution
space than those of the proposed heuristic algorithm, to obtain
better WL and worst slack using less inserted buffers than
BSD at the cost of large computation time. For instance, S-
tree requires more than 220 min completing rc04t while BSD
only demands 0.02 s. Table VI demonstrates that BSD obtains
comparable quality to S-tree in very short runtime.

Herein, we also compare SD and BSD to C-tree [15], a
combination of timing-driven Steiner tree construction and
buffer insertion without considering obstacles. The results of
C-tree are obtained by performing the tool provided by the
authors. A comparison with the lookup-table-based mechanism
[1] would also be of value, but the binary code and test cases
are unavailable. A new set of benchmarks (rc01tn–rc12tn) is
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TABLE V

Comparison of WL, WDs, Worst Slacks, and Runtimes Among PD OARST (PD), SD OARST (SD), and SD OARST with Enhanced SD

Critical Trunk Construction (ESD)

Case WL WD Worst Slack Runtime
PD (um) SD inc ESD inc PD (ps) SD imp ESD imp PD (ps) SD (ps) ESD (ps) PD (s) SD imp ESD imp

rc01t 29 140 3.88 3.88 3383.65 9.08 9.08 −635.78 16.84 16.84 0.01 0.00 0.00
rc02t 42 970 12.27 12.27 4085.18 −11.01 −11.01 −567.09 −540.89 −540.89 0.02 50.00 50.00
rc03t 62 270 8.39 7.76 5794.79 −19.02 −19.02 −1081.18 −563.34 −563.34 0.03 66.67 66.67
rc04t 73 870 5.78 5.78 5908.49 1.38 1.38 −321.38 46.88 46.88 0.04 50.00 75.00
rc05t 87 320 11.48 11.48 6763.97 −1.54 −1.54 233.28 377.25 377.25 0.05 60.0 60.0
rc06t 94 742 28.47 28.47 11396.00 17.02 17.02 −1412.06 547.83 547.83 0.45 2.22 2.22
rc07t 128 875 37.92 37.92 11015.90 −14.91 −14.91 298.42 555.13 555.13 0.68 −7.35 −8.82
rc08t 137 116 32.33 32.33 11374.60 −14.70 −14.70 1595.35 1019.36 1019.36 1.07 −38.32 −37.38
rc09t 149 274 19.44 19.44 15371.10 3.55 3.55 −1097.07 129.21 129.21 1.93 28.50 28.50
rc10t 186 030 12.10 12.10 15815.30 4.17 4.17 −725.628 584.02 584.02 0.54 44.44 44.44
rc11t 253 039 13.28 13.04 32195.80 36.77 33.27 −11545.70 −489.24 63.69 1.17 32.48 38.46
rc12t 1 297 170 9.83 9.83 166205.00 5.43 5.43 −48206.60 −1135.19 −1135.19 135.31 −1.90 −1.06
Average 16.26 16.19 1.35 1.06 23.89 26.50

SD WL inc = (SD-PD)/PD × 100.
SD WD imp = (PD-SD)/PD × 100.
SD runtime imp = (PD-SD)/PD × 100.
ESD WL inc = (ESD-PD)/PD × 100.
ESD WD imp = (PD-ESD)/PD × 100.
ESD runtime imp = (PD-ESD)/PD × 100.

TABLE VI

Comparison of WL, Worst Slacks After Buffer Insertion, Inserted Buffer Number After Buffer Insertion (VGBI), and Runtimes

Among SD OARST (SD), Buffer-Aware SD OARST (BSD), and S-Tree (ST) [13]

Case WL Worst Slack After VGBI Buffer # Runtime
SD (um) BSD imp ST imp SD (ps) BSD imp ST imp SD BSD ST SD (s) BSD imp ST imp

rc01t 30 270 13.25 12.19 1804.90 0.00 1.14 17 14 2 0.01 0.00 −15800
rc02t 48 240 8.17 10.12 2915.43 0.01 0.76 7 1 2 0.01 0.00 −211600
rc03t 65 620 5.75 13.99 4142.63 −0.05 −4.59 5 6 5 0.01 0.00 −39322900
rc04t 78 140 19.25 20.37 4456.62 0.00 0.36 7 3 2 0.02 0.00 −66143400
rc05t 97 350 8.33 – 6240.45 −0.05 − 15 2 – 0.02 −150.00 –
rc06t 121 633 9.56 – 7871.14 0.00 – 32 9 – 0.44 34.09 –
rc07t 177 741 11.01 – 10570.09 0.00 – 5 2 – 0.73 47.95 –
rc08t 181 445 9.18 – 11974.26 0.01 – 34 29 – 1.48 26.25 –
rc09t 178 289 13.97 – 11785.49 −0.04 – 25 14 – 1.38 30.43 –
rc10t 208 540 2.00 – 13609.72 −0.02 – 1 3 – 0.30 16.67 –
rc11t 286 377 5.85 – 17384.87 0.00 – 2 1 – 0.79 −31.65 –
rc12t 1 424 770 20.73 – 92672.51 −0.04 – 41 20 – 137.90 73.93 –
Average 10.59 14.17 −0.01 −0.58 15.92 8.67 2.75 3.98 −26423425

BSD WL imp = (SD-BSD)/SD × 100.
BSD worst slack imp = (BSD-SD)/SD × 100.
BSD runtime imp = (SD-BSD)/SD × 100.
ST WL imp = (SD-ST)/SD × 100.
ST worst slack imp = (ST-SD)/SD × 100.
ST runtime imp = (SD-ST)/SD × 100. TABLE VII

Comparison of WL, Worst Slacks Before/After Buffer Insertion (VGBI), Inserted Buffer Number After Buffer Insertion, and

Runtimes Among C-Tree (CT) [15], SD OARST (SD), and Buffer-Aware SD OARST (BSD)

Case WL Worst Slack Before VGBI Worst Slack After VGBI Buffer # Runtime
CT (um) SD imp BSD imp CT (ps) SD (ps) BSD (ps) CT (ps) SD imp BSDimp CT SD BSD CT (s) SD imp BSD imp

rc01tn 30 270 6.77 6.31 −214.56 −30.64 −34.55 1785.29 0.00 3.26 13 6 15 0.02 50.00 50
rc02tn 49 830 3.63 16.42 −4474.01 −14.62 −487.00 2694.39 −0.31 0.03 35 3 1 0.07 85.71 85.71
rc03tn 69 820 10.24 13.91 −847.29 −55.22 −1701.3 3421.95 6.35 6.90 63 5 6 0.20 95.00 90.00
rc04tn 74 240 −4.53 2.56 −274.15 −69.69 −1153.08 4119.18 −0.27 0.02 73 2 3 0.26 92.31 88.46
rc05tn 103 640 14.65 25.35 −1186.67 −72.12 186.29 5449.05 0.69 3.01 110 2 7 0.58 96.55 96.55
rc06tn 111 690 24.48 24.84 −1551.37 364.35 −147.23 5131.22 −0.24 0.11 112 2 8 0.46 95.65 96.65
rc07tn 156 136 19.45 20.64 −2239.39 208.08 −2392.87 7710.04 3.27 3.41 201 3 1 1.91 97.38 93.19
rc08tn 156 036 20.82 20.91 −1670.44 213.6 −3710.27 7470.57 −0.45 0.01 207 1 2 1.7 97.06 91.76
rc09tn 167 048 20.05 20.74 −3037.44 −769.52 −2985.36 7932.97 −0.19 0.35 207 2 2 1.9 95.79 92.63
rc10tn 245 220 16.83 20.68 −3695.90 −1610.8 −9044.43 11814.4 1.36 0.01 407 3 3 13.93 97.70 96.20
rc11tn 341 752 19.71 21.28 −6749.56 −531.54 −10173.10 16733.9 −0.02 0.20 709 2 2 78.25 98.62 97.96
rc12tn 1 073 720 18.64 22.26 −49733.9 −38844.7 −273032.0 53324.4 0.39 0.00 1193 7 4 104.79 99.02 97.88
Average 14.23 17.99 −5972.89 −3434.40 −25389.57 0.88 1.44 277.5 3.17 4.5 91.73 89.67

SD WL imp = (CT-SD)/CT × 100.
SD worst slack imp = (SD-CT)/CT × 100.
SD runtime imp = (CT-SD)/CT × 100.
BISD WL imp = (CT-BSD)/CT × 100.
BSD worst slack imp = (BSD-CT)/CT × 100.
BSD runtime imp = (CT-BSD)/CT × 100.
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generated here by removing the obstacles in rc01t–rc12t. The
comparison to C-tree is based on the new benchmark set.
Compared to C-tree, the SD and BSD averagely reduce the
WL by 14.23% and 17.99% and improve the worst slack after
VGBI by 0.88% and 1.44%, respectively. The average worst
slack before VGBI of BSD is extremely worse than those of
C-tree and SD. However, after VGBI, the worst slack of BSD
in all cases is better than those of C-tree and SD, which shows
the efficiency of PSBI. The number of inserted buffers of SD
and BSD are less than those of C-tree by more than 98% on
average. Without conducting global optimization, C-tree clus-
ters sinks into several sets and then constructs a Steiner tree for
each sink set, resulting in suboptimum in both terms of timing
and wirelength. The quality of identified Steiner tree may de-
grade as the sink number increases. For instance, C-tree inserts
298.25 times the number of buffers required by BSD in rc12tn.

IX. Conclusion

This paper proposed a critical-trunk-based tree growth
mechanism and applied it to construct an obstacle-avoiding
Steiner tree with the objectives of minimizing the sink delay
and maximizing the WNS of the Steiner tree, respectively. A
multisource single target maze routing increased the flexibility
of constructing an initial Steiner tree. In the PD OARST algo-
rithm, a DPF inheritance controlled the topology of subtrees
connected to the PD critical trunks. In the SD OARST algo-
rithm, a pseudo required time computation guided the sinks
with small required time to be connected. We also proposed
an enhanced SD critical trunk growth that limited the number
of passed pins in a routing to improve delay. A redirection
mechanism improved the delay of the sink with the WNS
as much as possible. Finally, the proposed algorithms were
enhanced to consider buffer insertion during routing. The ex-
perimental results indicated that the proposed algorithms were
very promising in terms of both solution quality and runtime.
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