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Abs t rac t - - In  this paper ,  we propose an architecture with two different kinds of neural networks for on-line 
determination of optimal cutting conditions. A back-propagation network with three inputs and four outputs  
is used to model  the cutting process. A second network,  which parallelizes the augmented  Lagrange multiplier 
algorithm, determines  the corresponding optimal cutting parameters  by maximizing the material removal 
rate according to appropriate operating constraints.  Due  to its parallelism, this architecture can greatly 
reduce processing time and make real-time control possible. Numerical  simulations and a series of  exper iments  
are conducted on end milling to confirm the feasibility of  this architecture. 

1. I N T R O D U C T I O N  

THE USE OF COMPUTER numerical control (CNC) systems has grown tremendously in 
recent decades. However, a remaining drawback of these systems is that the operating 
parameters, such as feedrate, speed, and depth of cut, are programmed off-line and 
the selection of these parameters is based on the part programmer's experience and 
knowledge. To prevent damage to the cutting tool, the operating conditions are usually 
set extremely conservatively. As a result, many CNC systems are inefficient and run 
under the operating conditions that are far from the optimal criteria. 

For this reason, adaptive control, which provides on-line adjustment of the operating 
parameters, is being studied with interest. Adaptive control systems can be classified 
into two types [1]: (1)adaptive control with optimization (ACO) and (2)adaptive 
control with constraints (ACC). In ACO systems, the controller adjusts the operating 
parameters to maximize a given performance index under various constraints. In ACC 
systems, on the other hand, the operating parameters are adjusted to regulate one or 
more output parameters (typically cutting force or cutting power) to their limit values. 
In fact, the objective of most ACC systems is also to increase a given performance 
index by assuming that the optimal solution occurs on a constraint boundary. 

Since machining is a time-varying process, most adaptive control methods [2] apply 
the recursive least squares method to in-process estimate the parameters of the special 
empirical formula or the linearized model. However, in many cases, no reliable model 
is available or the reduced linearized model is not accurate enough to depict the 
input/output (I/O) relationship of the cutting process. Furthermore, as more cutting 
constraints are taken into account, the computing time for these methods increases, 
because more parameters must be estimated. Therefore, neural networks, which can 
map the I/O relationship and possesses massive parallel computing capability, have 
attracted much attention in research on machining processes. 

Chryssolouris and Guillot [3] modeled the machining process by a multiple regression 
method and a neural network and concluded that neural networks are superior to 
conventional multiple regression methods. Madey et al. [4] had a neural network learn 
the I/O relationship of a human operator's actions. The neural network could then 
work like the operator. However, this method is limited to the trained cutting con- 
ditions. Rangwala and Dornfeld [5] presented a scheme that used a multilayered 
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perceptron neural network to model the turning process and an augmented Lagrange 
multiplier (ALM) method to optimize the material removal rate. They presented only 
a computer simulation. Later, Choi et al. [6] experimented with this scheme on a 
turning process, but employed a different optimum strategy, the barrier function (one 
of the sequential unconstrained minimization techniques). Since the calculation for 
optimization takes a great deal of time, their scheme was unable to reduce the error 
level between the neural network and actual lathe immediately. Thus this method may 
result in a false optimal result. 

Although neural networks can represent more I/O relationships without increasing 
computing time, the networks employed in all of the previous work in this area require 
a great deal of time to find the optimal cutting conditions. Thus the calculated optimal 
conditions are far from the real optimal conditions. More recently, a special type of 
neural network that parallelizes the optimal algorithm has been used to solve on-line 
optimization problems [7]. 

Tank and Hopfield [8] first found that a neural network can seek to minimize the 
energy function and designed a neural network for finding a function minimum. Chua 
and Lin [9] used integrator cells to model neurons and mapped the cost function and 
constraints into a canonical nonlinear circuit based on the Kuhn-Tucker conditions. 
Kennedy and Chua [10] showed that the linear programming circuit of Tank and 
Hopfield [8], after some modification, can be reduced to the circuit of Chua and Lin 
[9]. Rodriguez-Vazquez et al. [11] replaced the RC-active technique by an SC-reactive 
technique, which is more suitable for VLSI implementation. Most of the above networks 
use the penalty method to solve optimization problems. However, Cichocki and Unbe- 
hauen [12] proposed a structure similar to Rodriguez-Vazquez et al. 's [11], that, unlike 
his, employed an ALM method. Their structure parallelizes existing optimal algorithms 
and constitutes a parallel network. Because of their parallelism, these networks make 
on-line optimization possible. 

In this paper, a neural network based adaptive control with optimization (NNBACO) 
system that includes two different kinds of neural networks is proposed for on-line 
selection of optimal cutting parameters and control of the machining process. A back- 
propagation network with three inputs and four outputs is used as a general-purpose 
model to learn the end milling. A second network, which parallelizes the ALM method, 
finds the corresponding optimal cutting conditions based on the cost function and 
maximum material removal rate (MRR),  subject to certain constraints. Owing to the 
parallel processing ability of this architecture, the processing time will not increase 
when more constraints are added. Numerical simulations and a set of experiments that 
apply this NNBACO system on end milling are presented to demonstrate its capabilities. 
These results show that this system is valid within the cutting conditions examined. 

This paper is organized as follows. Section 2 gives an overview of neural networks. 
Section 3 first presents the circuit used for solving on-line optimization of a cutting 
process and then describes the architecture of the proposed NNBACO system. Section 
4 presents a simulation that illustrates the application of the proposed structure in end 
milling. Section 5 describes the experimental procedure and results. Conclusions are 
given in the last section. 

2. NEURAL NETWORKS 

In an artificial neural network, the unit analogous to the biological neuron is referred 
to as a "processing element" (PE) (see Fig. 1). Like a biological nervous system, an 
artificial neural network consists of a large number of interconnected PEs. A P E  has 
many inputs oj.~_~, but only a single output o~.~, which can fan out to many other PEs 
in the network. The basic function of a neuron is to sum its inputs and to produce an 
output. Let wi4.~ be the weight between the ith input branch in the kth layer connected 
to the jth neuron in the (k - 1) layer. Then the output of the ith neuron oi,k is given 
by 
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FI~. 1. Schematic diagram of the basic model. 

1 (1) 

where f( . )  is called the activation function. 
The operation of neural networks can be divided into two main phases: learning and 

recall. Learning is the process of adapting the weights in response to stimuli at the 
inputs. Once the weights have been adapted, the neural network has learned the I/O 
mapping. Recall refers to how the network processes a stimulus presented at the input 
and creates a response at the output. 

Many kinds of neural network models have been proposed in recent years. A 
supervised processing neural network, back-propagation, is introduced in the following. 
The back-propagation network, shown in Fig. 2, was introduced by Rumelhart and 
McClelland [13] in 1986. A typical back-propagation network is a supervised multilayer 
network that includes an input layer, an output layer, and at least one hidden layer 
and in which each layer is fully connected to the succeeding layer. 

As illustrated by the solid lines in Fig. 2, the stimuli are fed into the input layer and 
propagated forward to the output layer. The output is compared with the desired one 
and then the error signal is propagated backward through the network, as shown by 
the dashed lines, to upgrade the weights of each layer. The name back-propagation is 
derived from the backward propagation of the error signal. 

The main steps in the back-propagation algorithm are summarized as follows: 
STEP 1 Initialize all weights wij .k  with small random values. 
STEP 2 Present input patterns and specify the corresponding desired outputs. 
STEP 3 Calculate the actual outputs of all the nodes, using the present value of the 

weights, by 

Oi.k = f ( n e t i . k )  (2) 

where 

neti.k = ~ [Wij.k " O j . k - l ] .  (3) 
J 

Output layer 

Hidden layer 

Input layer 

FnG. 2. Three-layered back-propagation neural network. 
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STEP 4 Find an error term 8i for an output node using the equation 

8 i .  k = ( d  i - O i . k )  • f (ne t i . k )  . 

For a hidden layer node, find the error term using the equation 

(4) 

8i.k =f(ne t j .k_ , )  • ~ [S,.k+, • W,.i.k+,] (5) 
l 

where l is the number of neurons in the layer above node j. 
STEP 5 Adjust the weights by 

w(k + 1) = w(k)  + ~ • 8Ok • O,.k + 13 " (w(k)  - w ( k -  1)) , (6) 

where rl is the learning rate and 13 is a constant, between 0 and 1, which 
determines the effect of past weight change on the current direction of move- 
ment in the weight space. 

STEP 6 Present another input and go back to STEP 2 cyclically until all the weights 
converge. 

Since neural networks have a highly parallel structure, they are well suited to parallel 
implementation. Such an implementation can result in very fast processing and can 
achieve a very high degree of fault tolerance. In addition, since neural networks can 
naturally process many inputs and have many outputs, they are readily applicable to 
multivariable systems. Because of these promising features, recently neural networks 
have been widely applied in fields such as image compression, character recognition, 
and automatic control [14]. Moreover, specially designed chips for neural networks 
have also been developed. 

3. NEURAL NETWORK BASED ADAPTIVE CONTROL WITH OPTIMIZATION IN END 
MILLING 

In what follows, the mathematical formulation for optimization of cutting conditions 
is described and the parallel structure used for solving the on-line optimization problem 
of a cutting process is developed. The neural network based adaptive control with 
optimization (NNBACO) system applied to the end milling process is proposed in the 
last subsection. 

3.1. Mathematical formulation for optimization of  cutting conditions 

In a cutting process, in order to prevent damage to the cutting tool and maintain 
the minimum acceptable workpiece surface finish, there are upper bounds on the 
cutting forces in the X and Y directions (Fx,Fv), the power (P), and the surface finish 
(Ra). Similarly, because of the variety of cutting tools used and variations in machine 
capacity, the input variables (feedrate per tooth (ft), axial depth of cut (Ao) and radial 
depth of cut (Rd)) also have their own operating ranges. Although there are many 
factors that restrict the operating conditions, a high material removal rate is also 
required. Hence, the above description can be transformed into an optimization prob- 
lem: under the limitations on the inputs and outputs, find a set of optimal inputs that 
will maximize the MRR, i.e. 

maximize the performance index 

F = f t  " Ad " Ro (7) 

subject to the following constraints on the input variables: 

Min. offt - f t  - Max. offt 

Min. of Rd --< Ro - Max. of Rd 

Min. of Aa --< Ao -< Max. of Ao (8) 



Adaptive Control Optimization 641 

and the following constraints on the output variables: 

Fx - Allowable Fx -< 0 

Fy - Allowable Fy -< 0 

P - Allowable P -< 0 

Ra - Allowable Ra -< 0 . (9) 

Since the above optimization problem must be solved on-line during control of a 
machining process, a special type of neural network is introduced to solve this problem 
in the next subsection. 

3.2. Optimization using neural networks 
Nonlinear constrained programming is a basic tool in systems where a set of design 

parameters are optimized subject to inequality constraints. Many numerical algorithms 
have been developed for solving such problems [15]. The main disadvantage in applying 
these conventional optimal algorithms to many industrial applications is that they 
generally converge slowly. However, in many engineering and scientific problems, e.g. 
automatic control, on-line optimization is required. 

The goal of this section is to propose a parallel structure, one that parallels the 
conventional optimal algorithm, to solve this problem. The adapted optimization theory 
is described first. 

Consider the following nonlinear constrained optimization problem: minimize a 
scalar cost function 

F(X) = F ( x l , x 2  . . . . .  x . )  (10) 

subject to the inequality constraints 

Gj(X) -< 0 j = 1...m (11) 

and the equality constraints 

Hk(X) = 0 k = 1...q (12) 

where the vector X is referred to as the vector of design variables. The sequential 
unconstrained minimization technique (SUMT) is one method used to solve constrained 
optimization problems. It turns a constrained problem into an unconstrained one. After 
that, an unconstrained optimization method can be applied. 

The SUMT creates a pseudo-objective function of the form 

A(X,rp) = F(X) + rp • F(X) , (13) 

where F(X) is the original cost function and F(X) is an imposed penalty function, the 
form of which depends on the SUMT employed. The scalar rp is a multiplier that 
determines the magnitude of the penalty. Since the augmented Lagrange multiplier 
(ALM) method is an efficient and reliable SUMT, it will be adapted in the following. 

In the ALM method, the pseudo-objective function is 

A(X,h,rp) = F(X) + ~ { h ] .  (G](X) + z 2) + rp- (G](X) + z~) 2} 
1=1 

q 

+ ~ {hk+m • Hk(X) + rp. (Hk(X)) z) , (14) 
k=l  
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where kj is the Lagrange multiplier and zj is a slack variable. Because the new variable 
zj has been added in equation (14), it greatly increases the number of design variables. 
According to Rockafellar [16], equation (14) is equivalent to 

A(X,h,rp) = F(X) + ~ {hi. *j + rp • ~b~} 
]=1 

q 

+ ~ {~k+m " / - / k ( x )  + rp. (Hk(X)) 2} , ( 1 5 )  
k= l  

where 

(16) 

and the upgrade formulas for hj are 

X p + I  = ~.P + 2 " rp. +~ j= 1...rn 

+1 h~+ m = h~+ m + 2 • rp • Hk(X) k =  1 . . . q .  

(17) 

(18) 

A detailed flow chart of this algorithm is shown in Fig. 3. 
Now, applying a general gradient strategy in the unconstrained part, we develop the 

recursive discrete-time algorithm 

Given: X? LO, rp, y ,r~ lax 

Minimize A(X,~, rp) 
as an unconstrafi~ed 

function 

~ Yes 

;so 
kj= L j+2rp" Max[3(X*),-~,j/(2. r p )] 

j--I ,...,m 

~,k+m-- kk+m+2rp' Hk(X * ) 
k=l ..... 1 

] rp--  rp 
i @ vos2 

r r m a x  p =rp 

Fro. 3. Algorithm for the ALM method [15]. 



Adapt ive  Cont ro l  Opt imiza t ion  643 

X(t + 1) = X(t) - IX,. VA(X,h,rp) (19) 

where Ix, is the step size in the tth iteration and VA(X,h , rp)  is the gradient of A(X,h , rp) ,  
which is defined as 

VA(X,h,rp)=[O~x~ OA 0A] T 
' OX 2 " ' ' '  OX n 

in which 

(20) 

OA _ OF(X) ~ sj • (hi + 2 • r p  • d p j )  • OXi 
3Xi OXi j = 1 

q 
+ ~ (Xk+m + 2 " rp • Hk) • OH k ~  (21) 

k = 1 tPXi 

and 

sj = if G/(X) - i -rp 

otherwise. 

The optimization problem to be solved as given in equations (7)-(9) can be presented 
in a mathematical form as follows: 

maximize the performance index (MRR) 

F(X) = xl "x2 "x3 (22) 

subject to the inequality constraints 

G/(X) = xj - x; j=1,2,3 

G j ( X )  = x;'_3 - x /_3  j=4,5,6 

a j ( x )  ~-- y j _ 6 ( X l , X 2 , X 3 )  - Y ; - 6  j=7,8,9,10 , (23) 

where x; and x~' are the upper and lower limits on the input variables xj and y} is the 
allowable value of the output yj. Since there are no equality constraints, the partial 
differential term of Hk(X) with respect to xi in equation (21) can be removed. Substitut- 
ing equations (22) and (23) into (21), we obtain 

OA 
Oxi - Xj " Xk + Si " (hi + 2 " rp " d~i) - si+3 " (X i+3+2" rp '6 i+3)  

~ [  OGJ+6] ( 2 4 )  
"~- Sj+ 6 • ( h j +  6 + 2 • rp • 61)/-+6 ) • dx i  J , 

j = l  

where 6i, ~bi+3, and 6i+6 depend on the subscript and they are as follows: 

6j = Max[Gj(X), ~ ]  

(bj= Max[Gj (X ) ,  ~ ]  

d ~ j = M a x [ G j ( X ) , ~ k r p ]  

= Max[(x~'_3 - xj-3), ~ ] -hJ  , 

= Max[(yj_6-Y;-6),  -2~p] 

if j=l ,2,3 

ifj=4,5,6 

, ifj=7,8,9,10. (25) 
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xi 

FIG. 4. Circuit of a constrained nonlinear optimization solver based on the ALM method. 

The parallel structure corresponding to equation (24) is proposed and shown in 
Fig. 4, where the step size I~t is adopted as a constant. The main feature of this 
architecture is that it uses the ALM method, which converges more quickly than other 
penalty methods. This optimization circuit is not like the neural networks described in 
Section 2, but it has many of the features of neural networks. For example, this circuit 
performs massive parallel processing of analog signals and is capable of adapting the 
connection weights to accelerate convergence during the optimization process. 

3.3. Procedure for NNBACO system in end milling 

The proposed NNBACO system is shown in Fig. 5, in which there are two different 
kinds of neural networks employed. Neural network (I) is used to learn the appropriate 
mappings between the input and output variables of the machining process, so we shall 
refer to it as the neural network for modeling. This neural network is a three-layered 
back-propagation network with three input nodes, each representing feedrate per tooth, 
axial depth of cut, and radial depth of cut, and four output nodes, i.e. the forces in 
the X and Y directions, cutting power, and the surface finish of the workpiece. 

Neural network (II), which is described in Section 3.2, is used to determine the 
optimal inputs, so we shall refer to this network as the neural network for optimization. 
Since neural network (I) is used to describe the cutting process, the derivatives in 
equation (24) can be calculated by a forward pass through the back-propagation 
network. The detailed derivation is shown in the Appendix. This can greatly reduce 
computing time in solving the optimization problem. 

The procedure of this NNBACO system can be summarized as follows: 

7 
. ~  Neural network I 

for modeling 

Current ~l state 

. ~  Neural network 11 I 
for optimization .Optimal 

inputs 

Measured outputs 

Ft6. 5. The neural network based ACO (NNBACO) system. 
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STEP 1 Under the initial constraints, neural network (II) determines a set of optimal 
inputs and then sends them into the milling machines and neural network (I). 

STEP 2 The measured outputs of the milling machine, corresponding to the optimal 
input, are used as the desired output to train neural network (I). 

STEP 3 Neural network (II) uses the newly upgraded neural network (I) as the model 
of the end milling process to find the optimal inputs and sends them into the 
milling machine and neural network (I). 

STEP 4 STEP 2 and STEP 3 are repeated until the termination of the cutting process. 

4. SIMULATION 

In the following, the theoretical model of the end milling process is described. A 
simulation employing this theoretical model and the results are presented to confirm 
the feasibility of the NNBACO system. 

4.1. Theoretical  models  o f  end mil l ing 

Since there are four cutting constraints taken into account in this simulation (the 
average cutting force in the X, Y directions, cutting power and surface finish) we use 
four corresponding theoretical models to describe the end milling. These models are 
presented below. 

The theoretical models for the average cutting forces in the X, Y directions presented 
by Lee et al. [17] are expressed as 

Fx = K t ' N t ' f t ' A a ' { K r ' [ s i n ( 2 " f 3 e n )  - 2"[3e,] + [1 -- COS(2"13en)]}/(8"rr) (N) 

Fv = K , . N t . f t . A d ' { K r ' [ 1  - cos(2.13c,)] + [2"13~n -- sin(2.13~,,)]}/(8.'rr) (N), (26) 

where 13¢n is the tooth entry angle, Nf is the tooth number of the end mill, Kt indicates 
the ratio of tangential cutting force to the chip load, and Kr indicates the ratio of 
radial to tangential cutting force. Kt and Kr for the aluminum with hardness 55 HRB 
are 

Kt = 757.7045 • f t  ° ° 5 5 s  (N/mm 2) 

Kr = 0.2627. f-(, 2279 . (27) 

The theoretical model for the cutting power can be expressed as 

P = 1.6 + 4.26- [(N,.  A,~ • Rd • ft) 0"66] " rpm/97422 (kW), (28) 

where rpm is the spindle speed, expressed in revolutions per minute. 
According to [18], the surface finish of the workpiece can be modeled by 

Ra = ~ / ( 8 .  R) (mm) (29) 

in which R a is the average peak to valley height on the workpiece surface and R is 
the radius of the end mill. The deformation of the cutting tool is ignored here. 

4.2. C o m p u t e r  s imulat ion and results 

In order to investigate the stability and adaptation of the NNBACO system, we 
simulated a procedure similar to that described in Section 3.3 and the real end milling 
process was replaced by the theoretical model, i.e. equations (26)-(29). 

Since an untrained neural network has no knowledge about the system, unpredictable 
results may be obtained. Therefore, initial training was applied to neural network (I). 

In initial training, the first step is to generate the I/O samples from the theoretical 
model. Different values spanning the allowable range of each input variable yield a 
total of 420 input combinations. These input variables were used to determine the 
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output quantities, and they composed the set of I/O samples which were used for 
initial training and testing. 

The three-layered back-propagation network with three inputs and four outputs 
described in Section 3.1 was employed for neural network (I). In the initial training, 
we start with three hidden nodes and the number of nodes was increased until a low 
error rate was achieved. The error rate is the ratio of incorrect samples, i.e. samples 
in which the absolute difference between the theoretical output and the output of the 
neural network exceeds 10%, to all 420 samples. The simulation results for the initial 
training, with ten hidden-layer nodes, are shown in Fig. 6; the results indicate that 
after 150 iterations the error rate approached 10%. 

If the number of iterations used in training the neural network is increased, the 
error rate may be reduced slightly. But, from a macroscopic point of view, the error 
rate remains in the vicinity of 10%. Increasing the number of nodes in the hidden 
layer may also decrease the error rate, but it may make it more difficult to realize the 
proposed structure physically and may cause more time to be consumed in calculating 
the optimal inputs. Hence ten hidden-layer nodes were chosen in this stage. 

According to the experiment set-up and workpiece used in our laboratory, the limits 
on the input and output variables that were used in the simulation were as follows: 
The upper limitation on the input variables: 

ft: 0.33 (mm/tooth) 

Ra: 12.5 (mm) 

Ad: 24.5 (mm) . 

The allowable outputs: 

Fx:800(N) 

~ :1600(N)  

e:l.8(kW) 

Ra:0.0015(mm). 

In order to examine the performance of the NNBACO system under specific cutting 
conditions, one of the input variables (radial depth of cut) was specified as varying 
between three specific values, and it changed from one value to another every one 
hundred iterations. Through this simulation, not only the static (constant Ro) but also 
the dynamic (varying Rd) performance of this system were investigated. 

I 0 0  
% 

80 

60 

4O I ~ " i 
i 20 . . . . . . . . . .  i 

i 

0 %  I . 

0 50 100 150 200 250 300 

i t e r a t i o n s  

FIG. 6. Learning error in the initial training. 
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Figure 7(b) shows the three values (2, 6 and 10 mm) for the radial depth of cut, 
and Figs 7(a) and (c) show the corresponding optimal inputs (Aa and ft). Because the 
neural network can not "learn" as fast as the change in the radial depth of cut, there 
were some transient states at the beginning of each state. When the radial depth of 
cut is 2 mm, the inequality constraints of the cutting power are satisfied more easily 
than when the depth is 6 or 10. Hence the product of Jet and Rd, shown in Fig. 7(d), 
has the greates t value when Ra = 2. In these figures, we also find that as the system 
varies, the steady optimal inputs do as well. 

The neural network's outputs corresponding to the optimal inputs are shown in 

.5 
I l l  m 

( ~ ) , 4  

,3 
ft 

.2 

.1 

0 
0 

(mm) 12 

10 

8 

R d 6 

4 

2 

0 
0 

(mm) 25 

20 

15 

10 

; i 

200 400 600 800 1000 
(a) optimal fee&ate per tooth (iterations) 

V 
200 400 600 800 .. 1006 . 

(b) radial depth of cut 0teratlons) 

i 

f 

0 200 400 600 800 1000 
(c) axial depth of cut (iterations) 

8 

ft*Ad 4 

2 

0 
0 200 400 600 800 100 

(iterations) 
(d) cost function--ft*A d 

FIG. 7. Optimal inputs in simulation. 
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Fig. 8. Because the calculation of the optimizer is based on the neural network, all 
the inequality constraints, i.e. equation (23), are satisfied. However, in order to satisfy 
the inequality constraints for the cutting power, all the other outputs of the neural 
networks are far from the upper limits. 

Most of the outputs of the theoretical model, shown in Fig. 9, are below the maximum 
limitations. But some overshoots can be detected in the cutting power during the 
changes between states. We also find that in these figures the maximum MRR is mainly 
limited by the cutting power. 

The learning errors in the simulation are shown in Fig. 10, in which the error is 
defined as follows 

(-#cc- : ;-; -: 
800 , I 

600 

Fx 
400 

200 

0 
0 200 400 600 800 IO’ 40 

(a) NN oulpul: force Fx (ileratlons) 

1000 
09 

800 

600 

FY 
400 

200 

2;o 400 600 800 1000 

(b) NN output: force F,, (ileralions) 

I 
400 600 800 IO00 

(c) NN output: power P (ilcralions) 

_-_- -~ 
200 400 600 800 1000 

(d) NN output: surface finish R (iteralions) 
a 

FIG. 8. Neural network outputs in simulation. 
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FIG. 9. Outputs from the theoretical model in simulation. 

I theoretical  ou tpu t  - neura l  ne twork  ou tpu t  I 
e r ror  = theoret ica l  ou tpu t  (30) 

Because  of  large var ia t ion  of  weights  at the beginning of  s tep change  in Rd, the 
op t imizer  takes  m o r e  i tera t ions  to find a set o f  op t imal  inputs.  As  the neura l  ne twork  
approaches  the s teady  s tate ,  the op t ima l  inputs  can be ob ta ined  in fewer  i terat ions.  
This  means  tha t  the  neura l  ne twork  can descr ibe  the sys tem m o r e  and m o r e  accurate ly  
in the static s tate.  C o m p a r e d  with the  resul ts  of  initial t raining,  the e r ro r  d iminished 
very  quickly. 
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FIG. 10. The learning errors in the simulation. 

After the simulations in this section, we adopted some patterns from the initial 
training set to test the underlying neural network and found that for patterns located 
near the optimal inputs the neural network generated outputs with a very small error. 
But for patterns far from the optimal values, the network generated outputs with a 
large error. This result implies that the neural network has only partial knowledge 
after training. 
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5. EXPERIMENTS 

5.1. Experimental set-up 
We conducted a series of experiments with end milling to confirm the feasibility of 

the proposed NNBACO system. 
The experimental set-up for the NNBACO system is shown in Fig. 11, which also 

defines the positive directions of the three axes. The feedrate command to the servo- 
driver was generated by a hardware interpolator. Each NC servo loop (per axis) 
included a DC servo motor and a P.I.D. Velocity and position feedback were provided 
by tachometer and encoders. 

A vertical knee-type milling machine (3 horse power spindle motor) was used for 
the experiments. The cutting forces were measured by a dynamometer (Kistler 9257B) 
and a charge amplifier (Kistler 5007). The A/D converter used was a 12-bit one; the 
collected data were saved to the memory of a 486 personal computer by DMA (direct 
memory access) transfer. The sampling time in the A/D converter was 1 ms and the 
NNBACO system updated the feedrate parameter in 100 ms. 

The data processing and the control algorithm were implemented using Borland 
C+ + V.3.0 on a 32-bit 486 PC. The other machining conditions and parameters of 
the workpiece are listed below: 
Workpiece: aluminum alloy (T6061). 
Cutting tool: end mill, 

25 mm diameter, 
four teeth, 
160 mm total length. 

Cutting conditions: 
spindle speed: 300 rpm, 
axial depth of cut: 25 mm. 

No coolant. 

5.2. Experiments 
We conducted three main series of experiments, in which two differently shaped 

workpieces were machined. Details of the experimental conditions and the dimensions 
of the workpiece are shown in Figs 12(a) and (b). 

The first experiment is conventional cutting that the feedrate per tooth was set to 
be constant under the constraints on the maximum allowable cutting forces. 

In the second experiment, the proposed NNBACO system was applied in the end 
milling to demonstrate its performance. Because of the limitations of the laboratory 
equipment used, the neural network for modeling was set up with only two outputs, 
Fx and Fy, and the axial depth of cut was kept at 25 mm. There were ten nodes in 
the hidden layer. The radial depth of cut and other cutting conditions were set up as 
described in Figs 12(a) and (b). 

In the last experiment on each workpiece, regardless of the variation in radial depth 

feed direction [ ~  

~ ~ 1  workpiece 
dynamometer I 

~.~ hardware table I l [ 486 pc I I interp°lat°r ~ NC servo X-axis 

T X Charge / 
Y amplifier i 

FIG. 1 1. The experimental set-up. 
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(a) 
Down milling 
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40 --~ 
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Experiment 1 
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Experiment 2 

(NNBACO system is apply) 

Experiment 3 
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-7 2 ram) 

Maximum allowable force 

Case: case a-I 

Cutting condition ft: 0.12 ram/tooth 

Result: Figure 13 

Case: case a-2 

Cutting condition ft: 0.075-0.25 Iron/tooth 

Result: Fisure 14 

Case: case a-3 

Cutting condition ft: 0.075-0.25 iron/tooth 

Result: Figure 15 

Fx: 400 N, Fy: 450 N 

(b) 
Down milling 

Workpiece B: 

90 

-4-25--,.- 1 
~r 

2 i 

T 

(unit: ram) 

Experiment 1 Case: case b-I 

(Constant feedrate) Cutting condition ft: 0.12 nun/tooth 

Result: Figure 16 

Experiment 2 Case: case b-2 

(NNBACO system is apply) Culting condition It: 0.075-0.25 nun/tooth 

Result: Figure 17 

Experiment 3 Case: case b-3 

(Rd to NN is kept constant Cutting condition It: 0.075-0.25 iron/tooth 

= 2 1ran) Result: Figure 18 

Maximum allowable force - -  Fx: 400 N, Fy: 450 N 

Fro. 12. (a) Cutting conditions for workpiece A. (b) Cutting conditions for workpiece B. 

of cut, the input (radial depth of cut) to the neural network was fixed at specific 
"false" values as defined in Figs 12(a) and (b). The difference between the "real" and 
"false" input is like a noise value. Thus, the error tolerance of the NNBACO system 
can be investigated from this experiment. 
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5.3. Results and discussion 

The geometry of the first workpiece, shown in Fig. 12(a), consisted of two steps. 
In order to satisfy the force limitation (the maximum allowable forces in the X, Y 
directions were 400 and 450 N, respectively), the feedrate was kept at 0.12 (mm/tooth) 
in case a-1. The measured force is shown in Fig. 13. 

The NNBACO system was applied in case a-2, in which the feedrate decreased to 
a lower level as the cutting tool stepped up to a higher stair. The results are shown 
in Fig. 14. The error defined is similar to equation (30), but the theoretical outputs 
are replaced by the measured signals. Since the neural network cannot learn very 
accurately when the radial depth of cut changes, there are two peaks in the measured 
force. After a while, however, the measured force in the X direction stabilized around 
the preset value, which means that the optimal cutting conditions are constrained by 
the force in the X direction in this case. Due to the sudden change in the input to the 
neural network, there is a peak in the neural network's output shown in Fig. 14(c). 

Although the radial depth of cut varied from 2 to 3 mm, the input to the neural 
network was kept at 2 mm throughout the tool path in case a-3. The results, as depicted 
in Fig. 15, show that the peak in the neural network's output vanished, because there 
was no change in the input to the network. However, the two peaks are still present 
in the measured force and the error diagram, i.e. Figs 15(b) and (d). 

For the other cases of experiment, there were three steps in the second workpiece, 
and the distance between each step was shorter. This workpiece, as shown in Fig. 12(b), 
includes ascending and descending parts. The maximum allowable forces in the X, Y 
directions were again set as 400 and 450 N, respectively. 

In case b-l, feedrate was kept at 0.12 (mm/tooth). The measured forces are shown 
in Fig. 16. 

The results of case b-2 obtained using the NNBACO system are shown in Fig. 17. 
For the same reasons described in case a-2, there are four peaks in the neural network's 
output. In Fig. 17(c), we see that the optimal cutting conditions are limited sometimes 
by the force in the X direction and sometimes by the force in the Y direction. From 
the Fig. 17(d), we see that the error in the third step is not less than that in the first 
step. It means that the system only possesses knowledge near about optimun region. 
As the state (Rd) returns to the previous state, the system also needs to reoptimize 
the cutting conditions as before. 
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40 

For the results of the last case b-3, Fig. 18, as in the previous case, we see that the 
optimal conditions are always constrained by the maximum allowable force in the X 
direction. When the results of Figs 17(d) and 18(d) are compared,  they seem to be 
different. In the case of Fig. 17(d), as the radial depth of cut changes, the input of 
neural network suddenly changes which causes the weights to update tremendously 
and generates larger force errors. In the case of Fig. 18(d), this situation is avoided 
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FIG. 15. The results of case a-3. 

and smooth  transit ions o f  the errors  occur  as true radial depth  of  cut changes.  Howeve r ,  
for large variat ion o f  depth  of  cut,  the N N B A C O  still need  to give correct  input to 
reduce the convergence  time. 

The results o f  the real-t ime control  exper iments  presented  above show that when  
applied in end milling the N N B A C O  system is stable within the range of  the cutt ing 
condit ions examined.  Since the cost funct ion is M R R  and the radial and axial depth  
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FIG. 16. The results of case b-1. 

of cut are kept at specific values in each case studied, we can use the time needed to 
cut through the workpiece as an index of efficiency. That is, the less time spent, the 
higher MRR is. The time spent in cutting through each workpiece is given in Table 
1. From the table, it is clear that when the NNBACO system is applied MRR is 
increased greatly. 

Although a "false" input was applied in the last experiment on each workpiece, the 
MRR for these experiments is still high. Moreover, in some cases, because of less 
variation in the neural network's input (Ra), these cases perform better than the "true" 
input cases. This shows that the NNBACO system is an architecture with high fault 
tolerance. 

6. CONCLUSIONS 

In this paper, an architecture is presented for on-line determining optimal cutting 
conditions in an end milling process. The proposed NNBACO system, which includes 
two different neural networks, differs from conventional adaptive control with optimiz- 
ation (ACO) systems in that (1) multi-constraints are handled simultaneously without 
increasing the processing time; (2) no specific model exists, but rather a back-propa- 
gation network is employed and (3) a special optimal mechanism is adopted to deter- 
mine optimal cutting conditions. 

Although the two neural networks in the NNBACO system are not realized by chip 
technology, the simulations and experiments presented here show that this architecture 
can effectively describe the behavior of end milling and increase the cutting efficiency. 

Because the neural network (II) performs the optimization in the NNBACO system, 
neural network (I), the modeling network, only possesses knowledge in the vicinity of 
a local optimum. In the simulations and the experiments described here, although 

T A B L E  1.  T I M E  SPENT IN END MILLING WITH RESPECT TO DIFFERENT WORKPIECE SHAPES 

Workpiece A Workpiece B 

Experiment 1 Case case a-1 case b-1 
(Feedrate keeps constant) Time 54.2 s 54.2 s 

Experiment 2 Case case a-2 case b-2 
(Apply NNBACO) Time 40.0 s 34.9 s 

Experiment 3 Case case a-3 case b-3 
(Apply NNBACO but Rd neglected) Time 39.1 s 34.9 s 
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FIG. 17. The results of case b-2, 

there were some errors in the beginning, the N N BA CO  system gradually achieved 
optimal cutting conditions. And since the NNBACO system itself determines the 
knowledge to be acquired, i.e. by the neural network for optimization, it behaves like 
a self-organizing system. 

The N N B A C O  system is applied to end milling in this paper, but it is obvious that 
this system is a general-purpose architecture, i.e. it can be extended to other machines 
to improve cutting efficiency. 
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APPENDIX 

In this Appendix, the method used to calculate the derivatives of equation (24) by a forward pass through 
the network is described. With regard to Fig. 2, we define the following nomenclature: 

net~.k the sum of the ith neuron's inputs in the kth layer, i.e. 

Oi.k 

net/. ,  = ~ [wi . j .k  ' o,,k-I] (A1) 
] 

the ith neuron's output in the kth layer, i.e. 

o,.k = f(neti.k) 

if f( .)  is a sigmoid function then equation (A2) becomes 

(A2) 

1 
f(net,.k) = (A3) 

1 + e--nct~.k 

Yi 

di 
Wid,k 
E 

the output of the ith neuron in the output layer. If the neural network has three layers then 
Yi = 0t.3" 
the desired output of the ith output node. 
the weight between the ith neuron in the kth layer and the jth neuron in the (k -1) th  layer. 
defined as the global error 

E = 0.5 • ~ ( d , -  O,.k)  2 . ( A 4 )  
i 

Since the neural network is used for learning the cutting process, yj is the jth output and x/ is the ith 
input. Then in equation (24) 

Ox~ = Ox~ = Onet~.t = Q,iJ • 

With respect to distinct layers, (A5) is different. The following derivation is divided into "the output 
layer" and "the hidden and input layer" 

for the output layer 

r/.,.. Oy/ = . ( 1 -  y~) 
= Onet~.t YJ (A6) 

for the (n - 1)th layer 

r l4 .n-  I 

for the (n - 

Oyj Oyj 0o~.._ 
0net~.._ t = Oo~.._ ~ " Onet~,#_ i 

Oyj . O n e t / , . .  Oo~,._  i 

Onetj.. Oo/.._) #net/,._1 

2)th layer 

(A7) 

ri.i,n_ 2 = 
Oyj Oy/ Oo~.._ 2 

Onet i .n -2  0 0 i . , - 2  Oneti .n_2 

( ~ [  Oy/ Onet . . . .  i]1.  00 . . . .  2 

L Onet . . . .  i" ~ J J  0net, . ._2 

= (A8) 
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Substituting (A8) into (A5), we can calculate the derivatives of equation (24) by a forward pass through 
the neural network. 


