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ABSTRACT

Vector Quantization has been applied to low-bit-rate speech and image compression. One of
the most serious problems for vector quantization is the high computational complexity of
searching for the closest codeword in the codebook design and encoding processes. To overcome
this problem, a fast algorithm, under the assumption that the distortion is measured by the
squared Euclidean distance, will be proposed to search for the closest codeword to an input
vector. Using the means and variances of codewords, the algorithm can reject many codewords
that are impossible to be candidates for the closest codeword to the input vector and hence save a
great deal of computation time. Experimental results confirm the effectiveness of the proposed
method.

1. INTRODUCTION

Vector quantization (VQ) is a very efficient approach to low-bit-rate image compression12. In
VQ, the images to be encoded are first decomposed into vectors (i.e., blocks) and then
sequentially encoded vector by vector. Each vector is compared with the codewords in the
codebook to find the best matching codeword. The key aspect of VQ is to design a good
codebook, Y={y1 i=l , 2, . . . , N}, which contains the most representative codewords and will be
used by the encoder and the decoder. In the encoding process, the encoder designs a mapping Q
and assigns an index I to each k-dimensional input vector x=(xj, x2, . . ., xk), with Q(x)=y=(y1j,
Yi2' .. . Yk). In this paper, we will only consider the mapping Q, which is designed to map x to y
with y satisfying the following condition:

d2 (x, y)= mm d2 (x, Yj) for j = I , 2, .. ., N, (1)

where d2 (x, Yj) is the distortion of representing the input vector x by the codeword Yj and is
measured by the squared Euclidean distance, i.e.,

k
d2 (x, Yj)

= (x -
y1)2 (2)

The decoder has the same codebook as the encoder. In the decoding process, for each index i, the
decoder merely performs a simple table look-up operation to obtain y and then uses y to
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reconstruct the input vector x. Compression is achieved by transmitting or storing the index of a
codeword rather than the codeword itself.

From the above description, we see that the compression ratio of VQ is determined by the
codebook size and the dimension of the input vectors, and the distortion is dependent on the
codebook size and the selection ofcodewords. Hence, a good codebook design is the main task of
VQ. Many algorithms for optimal codebook design have been proposed37. Among these, the
most popular was developed by Linde, Buzo and Gray3 and is referred to as the LBG algorithm.
This algorithm is basically an iterative process to minimize the overall distortion of representing
the training vectors by their corresponding codewords. Since a full codebook search is needed to
find the closest codeword for each training vector, the algorithm is time consuming. To reduce
the computation time needed for such an exhaustive search through the codebook, many fast
algorithms have been proposed822. Some of them achieve the goal of decreasing the search time
at the expense of the coding quality. Some can reduce the search time without producing any
extra error, but are still not fast enough. In the following section, we will introduce such an
algorithm.

2. PREVIOUS WORKS

Guan et 21 proposed an equal-average nearest neighbor search (ENNS) algorithm which
uses hyperplanes orthogonal to the central line 1 to partition the search space. Each coordinate
value of any point p=(pj, P2 .. ., Pk) on 1 has the same value, i.e., p1 =Pj 4 1 = 1 , 2, . . ., k. Each
point on a fixed hyperplane H, which is orthogonal to the central line 1 and intersects 1 at point

LH=(rnH, mH, . . . , mH), will have the same mean value mH, such a hyperplane is called an equal-
average hyperplane. For an input vector x=(xj, x2, .. ., xk), the algorithm first calculates its mean
value m with

m=— xj.I' j=1
It then finds the codeword Yp which has the minimum mean difference from x and calculates the

distance r between x and yr,. It is obvious that any other codeword which is closer to x than Yp
has to be located inside the hypersphere centered at x with radius r. By projecting the
hypersphere on 1, two boundary projection points, Lmax=(mmax, mmax, .. ., mmax) and

Lmin(mmin, ..., mmjn) on 1 can be found, where

mmax =m+ (3)

and

mmjn=mx-. (4)

The hypersphere is bounded by two equal-average hyperplanes with mean values mmax and mmjn.
Hence, the algorithm only searches those codewords with mean values ranging from mmjn to
mmax. Fig. 1 shows the geometric interpretation of the method for a 2-dimensional case, the
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search area is bounded by two lines l and 12, which are perpendicular to the central line 1 at Lmax
and Lmjn, respectively.

central line 1

C) input vector x

, codewords

Fig. 1 An example of the ENNS algorithm fora 2-dimensional case.

As described above, the ENNS algorithm uses mean value as a feature to reject unlikely
codewords and thus saves much of computation time. However, two vectors with similar mean
values may have a large distance. For example, one vector represents an almost homogeneous
block, i.e., entities in the vector are almost the same; the other represents an edge block, i.e., some
entities will be larger than others. The distance between these two types of vectors will be large.
To treat this phenomenon, we have proposed a new search method22, called the mean-or-variance
(MOV) method, to reduce the search area of the ENNS algorithm. Since the variance of a vector
is a simple measure to detect whether a vector is homogeneous, this method uses both the mean
value and the variance of a vector as two significant features to reject many unlikely codewords.
Define the mean value and variance of a k-dimensional vector x as

and

1m =
k

xj,
j=l

2 k
vx= (xj-m)2.

j=1

We have proved22 that for a codeword y, the distortion between x and y, d2 (x,y), will satisfy

and
d2 (x, y) � k(m -

d2 (x, y) � (V - V1)2.

(5)

(6)
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Therefore, if is a known current minimum distortion of x represented by a certain codeword.

For any codeword y, if k(m - m)2 � dmin or (V -V)2 dmin , then y will not be the closest

codeword to x and it is unnecessary to calculate d2 (x, y). The MOV method was developed
according to the above idea. Fig. 2 depicts the geometric interpretation of the MOV method for a
2-dimensional case. Comparing Fig. 1 and Fig. 2, we can see that the search area, which is
originally an area bounded by two lines l and 12 perpendicular to the central line 1, has been
reduced to be the two shaded squares. In the next section, we will describe the proposed
algorithm, which is faster than the MOV method.

\-—---- central line 1

C input vector x

, codewords

Fig. 2 An example to illustratethe mean-or-variancemethod for a 2-dimensional case.

3. THE MEAN-AND-VARIANCE METHOD

In this section, we will propose another inequality, which can reject more codewords than the
MOV method, to speed up the closest codeword search process. This method, called the mean-
and-variance (MAV) method, also uses the mean value and variance of a vector as two significant

features. In the MOV method, if dmin is a known current minimum distortion of x represented by

a certain codeword. For any codeword y, if k(m - m)2 � dmin or (V - V)2 dmin , then y
will not be the closest codeword to x and it is unnecessary to calculate d2 (x, ye). However, we
have proved that the following inequality is true:

d2 (x, y) � (V - V)2 + k(m - m)2. (7)

(The proof of Inequality (7) is given in Appendix A.) Therefore, those codewords with (V -

V)2 + k(m -
m1)2 larger than the known current minimum distortion dmin will be rejected.

Comparing Inequalities (5), (6) and (7), we can see that the new proposedmethod can reject more
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codewords and thus without evaluating d2 (x, ye), this makes the algorithm to be more efficient.
Fig. 3 depicts the geometric interpretation of the MAV method for a 2-dimensional case.
Comparing Fig. 2 and Fig. 3, we can see that the search area, which is originally the two shaded
squares, has been reduced to be the two shaded circles.

- -- central line 1N

0 input vector x

S codewords

11

Fig. 3 An example to illustrate the mean-and-variancemethod for a 2-dimensional case.

A detailed description of how to apply the proposed algorithm to design a codebook is given
below.

Step 0 Initialization: Given N = codebook size, n = the number of training vectors, k = the vector

dimension, Y0 initial codebook, c = distortion threshold. Set iteration counter c 0,
initial total distortion D1 = x.

Step 1 Compute the mean value of each codeword in the codebook Y, and sort Y according to
increasing order of the codeword means, i.e., the sorted codebook Y is

m,1 � m(+l), 1 � i � N-i },
where m1 is the mean value of the codeword y.

Step 2 Compute the squared root of the variance, of each codeword y.
Step 3 For each training vector Xt, find the closest codeword Yi(t) in the codebook Y. and assign

x to class i(t). The procedure includes the following sub-steps:
Step 3.1 Input a training vector Xt=(Xtj, Xt2, ..., Xtk), compute its mean value and its

square root of variance
Step 3.2 Find the codeword y, which has the minimum mean difference from x (using

binary search), i.e.,
-mI � m, - for all i p.

+ •r+_ i2. — j21L)eL lL) — (4mm —
Cl Xt,

Step 3.3 Find the closest codeword Yi(i) in Y and assign x to class 1(t). The search
procedure is as follows:
Set d = 1;
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while((p+d � N and k(mt - m(+d))2 < diin )
or•(p-d � 1 and k(mt - mY(Pd))

< dmin )) begin

if(p+d � N and k(mt -m(+d))2 < ) begin

if(k(mt - mY(P+d))2
+ (Vt -

Vy(p+d))2
< ) begin

if( d2 (Xt, Yp+d)
< ) begin

,2 2amin d (xt,yp+d);
1(t) = p+d;

end;
end;

end;

if(p-d � 1 and k(mt - m(d))2 < ) begin

if(k(rnt - mY(Pd))2 + (V -
Vy(pd))2 < ) begin

if( d2 (Xt, Yp-d)
< ) begin

dmjn = d (Xt, Yp-d)
1(t) = p-d;

end;
end;

end;
end; {ofwhile}

Step 4 Compute the overall distortion for the c-th iteration, D. Here D is defined to be

D = d2 (Xt, Yi(t))•

Step 5 If (D - D)/D � C , halt with final codebook being Y. Otherwise, go to Step 6.
Step 6 Compute the centroid of each class. The centroids are regarded as the codewords of

a new codebook. Set c = c + 1 and go to Step 1 for next iteration.

The encoder has to find the closest codeword in a predesigned codebook for each input vector
and then uses the codeword as the reproduction one of the corresponding input vector. Therefore,
it can use the MAV to find the closest codeword to each input vector. The details of this
procedure are similar to those in Step 3 of the codebook design algorithm described above.

4. EXPERIMENTAL RESULTS

To examine the efficiency of the proposed algorithm, we performed some experiments on a
Sun SPARC-station-IPC using several 512x512 monochrome images with 256 gray levels. Each
image is divided into 4x4 blocks, so that the training sequence contains 16384 16-dimensional
vectors. The proposed algorithm was compared with the LBG algorithm and the MOV
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algorithm22 in terms of the execution time required in codebook design and image encoding.
Table 1 shows the execution time required to design a codebook using the well-known image
Lena. Table 2 shows the time needed to encode an image given the previously designed
codebook. The codebook was used to encode the four images (Lena, Peppers, Jet, and Baboon).
From these two tables, we see the effectiveness of the proposed algorithm in both codebook
design and image encoding.

Table 1
Comparison of execution time (in seconds) for codebook design. Values in parentheses denote

the ratio of execution time of the current algorithm to that of the LBG algorithm.

Codebook size LBG MOV MAV

128 2815 266(0.094) 236(0.084)
256 5608 383(0.068) 337(0.060)
512 11263 576(0.051) 506(0.045)
1024 22732 925(0.041) 820(0.036)

Table 2
Comparison of execution time (in seconds) forimage encoding.

Codebook
size

Method Encoded image
Lena Peppers Jet Baboon

128

Fullsearch 140.9 140.1 125.1 137.5

MOV 11.5(0.082) 11.9(0.085) 11.4(0.091) 32.2(0.233)
MAV 10.9(0.077) 11.0(0.079) 10.5(0.084) 24.8(0.180)

256

Full search 278.6 279.5 249.7 275.0

MOV 1 7.2(0.062) 1 8.8(0.067) 1 7.4(0.070) 54.1(0.197)
MAV 1 5.6(0.056) 1 6.4(0.059) 1 5.0(0.060) 43.0(0.156)

512

Fullsearch 557.6 558.1 499.3 547.8

MOV 26.7(0.048) 30.2(0.054) 26.7(0.053) 96.2(0.176)
MAV 23 .6(0.042) 26.2(0.047) 23 .2(0.046) 76.3(0.139)

1 024

Fullsearch 1108.5 1108.5 992.7 1087.9

MOV 40.7(0.03 7) 5 1 . 1(0.046) 43 .6(0.044) 174.6(0.160)
MAV 37.3(0.034) 44.6(0.040) 38.5(0.039) 139.3(0.128)

5. CONCLUSIONS

In this paper. we have proposed a fast closest codeword search algorithm, called the MAV
algorithm, for vector quantization. This algorithm uses two significant features of a vector, mean
value and variance, to reject a lot of codewords which are definitely not candidates for the closest
codeword to the input vector. It can speed up the search process in conventional VQ codebook
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design and encoding. The performance of the proposed algorithm has been evaluated in both
codebook design and image encoding. The results obtained show that the proposed algorithm
outperforms the ENNS and the MOV algorithms and reduces a great deal of computation time
required by the LBG algorithm. Furthermore, it is worth mentioning that the proposed algorithm
does not introduce any extra error than the LBG algorithm.
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APPENDIX A

Proof of Inequality (7): To prove Inequality (7), we have to prove the following inequality first:

kV � (x - -
m1). (A. 1)

j=1

From the well-known Cauchy-Schwarz Inequality, we can easily get

k k k
(V V1)2 = (xj

- rn)2 x -
m1)2 � [ (xj

-
mx)(yy

-
m1)]2.

j=1 j=1 j=1
From the above inequality, we can derive Inequality (A. 1).

k k
Since (xj

- =
(xj

- m + m -
m1 + -

j=1 j=1

k k k
=

(x1
- m,32 + (m -m)2 + (m,j

-y)2+
j=1 j=1 j=1

k k
2 > (x1

- m)(m - m) + 2 (m - m)(m1 -y)+
j=1 j=1

SPIE Vol. 2501 1627

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/28/2014 Terms of Use: http://spiedl.org/terms



k2 (m -y)(x1
- m)

j=1

k
= (V)2 + k(rn - m)2+ (V)2 + 2(m - m) (x - m) +

j=1

k k
2(m - m) (m -yj) - 2 (x3 - m)(y - m)

j=1 j=1

k
= (V)2 + (V)2 + k(m -m)2 -2 (x1

- m)(y - (A.2)
j=1

And since (V - V1)2 + k(m -m)2= (V)2 + (V)2 + k(m -m)2 - 2V (A.3)

Comparing Eqs. (A.2) and (A.3) and from Inequality (A.l),we can prove Inequality (7).
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