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Abstract:    The K-means method is a well-known clustering algorithm with an extensive range of applications, such as biological 
classification, disease analysis, data mining, and image compression. However, the plain K-means method is not fast when the 
number of clusters or the number of data points becomes large. A modified K-means algorithm was presented by Fahim et al. (2006). 
The modified algorithm produced clusters whose mean square error was very similar to that of the plain K-means, but the execution 
time was shorter. In this study, we try to further increase its speed. There are two rules in our method: a selection rule, used to 
acquire a good candidate as the initial center to be checked, and an erasure rule, used to delete one or many unqualified centers each 
time a specified condition is satisfied. Our clustering results are identical to those of Fahim et al. (2006). However, our method 
further cuts computation time when the number of clusters increases. The mathematical reasoning used in our design is included. 
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1  Introduction 
 

Clustering (Lin et al., 2005; Yue et al., 2005; 
Fahim et al., 2006) is a useful technique. It has been 
used to solve problems in many fields, such as bio-
logical classification (Wittkop et al., 2010), disease 
analysis (Seligson et al., 2005), data mining (Crespo 
and Weber, 2005), image compression (Lee et al., 
2007), and other fields (Kong and Zhu, 2007; Wang 
and Tsai, 2007). One of the prominent clustering 
methods is the K-means algorithm (Fahim et al., 2006; 
Lu et al., 2008). The K-means algorithm partitions a 
given set X={x1, x2, …, xn}, where each point is 
m-dimensional, into a set of K clusters {S1, S2, …, SK} 
as follows: 

Initialization: Choose K initial (random) points 
as cluster centers C={c1, c2, ..., cK}. 

Iteration: Each iteration has stages A and B. Stop 
the algorithm when all K cluster centers no longer 

change in two consecutive iterations. 
Stage A: For each data point xiX, assign xi to 

the cluster whose center is the closest to xi. 
Stage B: For k=1, 2, …, K, update the cluster 

center as ck=(∑xSk
x)/|Sk|. Here, |Sk| denotes the num-

ber of elements in cluster Sk. 
The K-means algorithm is simple and easy to 

implement. As mentioned by Mahajan et al. (2009), it 
can reduce the mean square error (MSE) which is 
defined as 
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in which cj is the centroid of cluster j, and d is the 
Euclidean distance. However, to determine the closest 
cluster in Stage A, the plain K-means algorithm will 
calculate nK sets of squared Euclidean distances in 
the m-dimensional space, namely, 
 

 
22 2

1

( , ) ( ) ,
m

i k il kl i k
l

d x c


   x c x c  (2) 

Journal of Zhejiang University-SCIENCE C (Computers & Electronics) 

ISSN 1869-1951 (Print); ISSN 1869-196X (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 

* Project (No. 100-2221-E-009-141-MY3) supported by the National 
Science Council 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012 



Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(10):761-768 762 

where k=1, 2, …, K and i=1, 2, ..., n. When the 
number of clusters (K) or the number of points (n) is 
large, the algorithm is not fast. A modified K-means 
algorithm was presented by Fahim et al. (2006) to 
increase the speed. Here, we will accelerate it further. 
Our clustering results are identical to those of Fahim 
et al. (2006), but our method can further reduce the 
computation time. 
 
 

2  Review of the efficient enhanced K-means 
clustering algorithm 
 

An enhanced K-means algorithm was presented 
by Fahim et al. (2006) to reduce the computation time 
when the number of clusters (K) is large. The en-
hancement was based on making use of results from 
the previous iteration. For this purpose, in each itera-
tion of K-means, immediately after obtaining the 
nearest centers of the data points, Fahim et al. (2006) 
recorded two values for each data point. The first was 
an integer id{1, 2, …, K} which can be considered 
as a pointer, used to identify which of the K clusters is 
the nearest cluster. The second was the (squared) 
Euclidean distance between the data point and the 
center of this nearest cluster. For n data points, these 
n+n=2n values were stored and updated using two 
arrays (Clusterid and Pointdis) each of size n×1. Then, 
in the next iteration of K-means, to determine the 
nearest center of a data point xi, the ‘updated’ center 
of the cluster whose id was recorded at Clusterid[i], 
i.e., at the ith entry of Clusterid, would be checked 
first. If the new distance between the recorded cluster 
centroid and data point xi is shorter than or equivalent 
to the previous distance (i.e., shorter than Pointdis[i]), 
then Clusterid[i] is not modified. In this situation, 
only one cluster center is checked, and the remaining 
K–1 cluster centers are ignored immediately. Thus, 
computation time is saved by neglecting the remain-
ing K–1 candidates. This might make the clustering 
result different from that of the plain K-means method. 
Nevertheless, this is acceptable if at the end of the 
algorithm, the final result gives cluster centers whose 
mean square error is similar (or even superior) to the 
mean square error of the plain K-means. 

The method of Fahim et al. (2006) produced 
clusters whose mean square error was very similar to 
that of the plain K-means, but the execution time was 
shorter. 

3  The proposed method 
 

In this section, we propose a faster algorithm. 
Our obtained clusters are identical to those obtained 
by Fahim et al. (2006), but the execution time is re-
duced further. 

3.1  Overview 

In general, the most time-consuming part of the 
K-means method is Stage A (reassigning data points 
to clusters). For a data set {x1, x2, …, xn}, the time 
complexity of an iteration is O(nK) if the plain 
K-means method with full search is used. To many 
researchers it is of interest to design a more efficient 
way to locate the nearest cluster center of each data 
point, so that each data point can be quickly reas-
signed to a cluster. 

To find the nearest cluster center of a data point 
xi, we need to determine quickly the potential quali-
fication of a to-be-checked candidate cluster center. 
Thus, we derive a selection rule to judge roughly the 
to-be-checked center. The to-be-checked center is 
selected according to an organized (non-random) rule 
in our algorithm. An erasure rule is also used. When-
ever the condition of the erasure rule is satisfied, one 
or more centers are erased simultaneously. Hence, the 
erasure rule can quickly find some more qualified 
clusters in a few tries. Since there are two rules in our 
method, namely selection and erasure, we call our 
method the selection-and-erasure (S&E) K-means 
method. 

3.2  Faster assignment of data to clusters 

3.2.1  Pre-processing 

For each iteration, a norm-sorting pre-processing 
is executed before activating the algorithm. For all 
cluster centers ckC, compute the Euclidean  
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{||ck||}k=1,2,…,K to obtain an ascending-order sequence 
R={cj}j=1,2,...,K, where ||c1||||c2||…||cK||. This creates a 
new index sequence j=1, 2, …, K which has monotonic 
norm-order implied implicitly. Record the mapping 
from set C to sequence R, i.e., from k to j. 

3.2.2  The function Select_and_Erase() 

For each data point xi, to find its nearest cluster, 
we run the pseudo-code listed in Algorithm 1. Thus, 
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Algorithm 1 is Stage A (assigning data to the nearest 
cluster) of our algorithm. Note that in line 11, we need 
to check whether the condition 
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is satisfied. Therefore, we recommend that the com-
puted norm values {||xi||}i=1,2,…,n should be preserved, 
for these values are used repeatedly in our method. 
 
Algorithm 1    Function Select_and_Erase() 
1 for i=1 to n 

2 Compute squared Euclidean distance d2(xi, Clusterid[i]);

3 if (d2(xi, Clusterid[i])Pointdis[i]) 
4 then the point xi stays in its original cluster (i.e.,  

no reassignment of xi); 
5 else 

6 Use binary search to locate a cluster center whose  
||cj|| is the closest to ||xi||; 

7 dmin=d2(xi, cj); cmin=cj; 

8 Delete this center cj from R; 

9 while (R is not empty) 

10 Choose from R a to-be-checked center cj whose 
||cj|| is the closest to ||xi||; 

11 if (||cj||||xi||)
2dmin 

12 if ||cj||||xi|| 
13 Delete all of the centers whose indices in R 

are larger than j; 
14 if ||cj||||xi|| 
15 Delete all of the centers whose indices in R 

are less than j; 
16 else 

17 Compute squared Euclidean distance d2(xi, cj);

18 if d2(xi, cj)<dmin 

19 dmin=d2(xi, cj) and cmin=cj; 

20 else 

21 dmin=dmin and cmin=cmin; 

22 end while 

23 Clusterid[i]=Cluster id of cmin; 

24 Pointdis[i]=dmin; 

25 end for 
 

3.2.3  Overlapped K-means with S&E and enhanced 
K-means with S&E 

Fahim et al. (2006) designed two accelerated 
versions of K-means, namely overlapped K-means and 
enhanced K-means. Therefore, our new method was 
implemented in two versions: (1) overlapped K-means 
with S&E; (2) enhanced K-means with S&E. Fahim et 
al. (2006) found that enhanced K-means was faster 

than overlapped K-means. The reason was that the 
overlapped K-means inspected all possible clusters in 
odd cycles, but the enhanced version did not have 
such an adjustment. They concluded that the en-
hanced K-means algorithm was the one they recom-
mended among the three algorithms they tested (i.e., 
the plain, the overlapped, and the enhanced K-means). 
The clustering quality of the enhanced K-means was 
similar to that of the others but the execution time of 
enhanced K-means was the shortest. 

In each iteration, when we assign n data points to 
the K temporary clusters, our overlapped K-means 
with S&E will run Select_and_Erase() in each even- 
iteration, and run Select_and_Erase() without lines 
2–5 in each odd-iteration. As for the enhanced 
K-means with S&E, this version will run Select_ 
and_Erase() without lines 2–5 in the first two itera-
tions, and then execute Select_and_Erase() for the 
remaining iterations. 

3.3  Mathematical reasoning 

3.3.1  Erasure rule 

The condition used in the erasure rule is 
(||cj||||xi||)

2dmin. This inequality can erase the center 
cj because 
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Thus, we can conclude that if (||cj||||xi||)

2dmin, then 
d2(xi, cj) must be greater than or equal to dmin. In ad-
dition, because the centers’ norm value has been 
sorted already, we find that d2(xi, cj+σ)(||cj+σ||||xi||)

2 
(||cj||||xi||)

2dmin when ||cj+σ||||cj||||xi||. The case of 
||cj||||xi|| can be analyzed in an analogous manner. 

3.3.2  Selection rule 

The selection rule always picks the center cj 
whose ||cj|| is the closest to ||xi|| as the one we try first. 
The reason is very simple. In any version of K-means, 
the objective of reassigning a data point xi to a cluster 
is to minimize the distance from xi to that center. We 
use the erasure rule (||cj||||xi||)

2dmin in the proposed 
algorithm. Hence, if we can obtain a very small dmin in 
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the very beginning of the while loop, then 
(||cj||||xi||)

2dmin is easy to satisfy for the remaining 
runs of the while loop. Hence, lines 11–15 of Algo-
rithm 1 can eliminate many candidate centers imme-
diately. Therefore, it is important to make dmin very 
small when we pick from the set R the first center to 
be checked. To make dmin very small, since dmin= 
d2(xi, cj) when the first cj is picked, we want xi to be 
very close to cj. Therefore, their norms ||cj|| and ||xi|| 
cannot be too far away from each other. So, ||cj|| and 
||xi|| should be very close. 

 
 

4  Experiments and comparisons 

4.1  Experiments 

4.1.1  Data sets 

Four experiments were conducted to evaluate 
our method. The input of Experiment 1 was the letter 
recognition data set from the UCI Machine Learning 
Repository (Frank and Asuncion, 2010). It consists of 
20 000 samples. Each sample point has 16 integer 
attributes ranging from 0 to 15. There are 26 classes 
and each class is one of the capital letters in the Eng-
lish alphabet. Each class has several commercial fonts. 
The original purpose of this data set was to identify 
the alphabetical letters. From the viewpoint of letter 
recognition, this data set is too hard for algorithms of 
the K-means type (unless post-processing such as 
split and merge is used (Lin, 1996)). However, we can 
still evaluate the acceleration gained by our method.  

Experiment 2 was related to codebook genera-
tion in vector quantization (VQ) of images (Chen et al., 
2009). A total of 98 304 blocks were partitioned into 
K clusters. The input 98 304 blocks were generated as 
follows: six 512×512 images {Lena, Peppers, Baboon, 
Jet, Boat, Tank} were divided into 4×4 blocks. We 
thus had 6×(512×512)/(4×4)=98 304 blocks. First, we 
used K-means to train the (512×512)/(4×4) blocks of 
Lena to create a codebook of K vectors (each vector 
was a 4×4 block). The K vectors were then used as the 
K initial blocks of the K-means to partition the 98 304 
blocks into K clusters. In terminology of VQ, Ex-
periment 2 created a global codebook (for six images) 
by using Lena’s local codebook as the initial try. 
Notably, when we used K-means to train the 
(512×512)/(4×4) blocks of Lena, the initials of the 
K-means method were selected by running the CURE 

algorithm described below. When we ran the CURE 
algorithm 30 times, we obtained an initial set each time 
for K-means and thereby created a local codebook of 
Lena, which in turn created a global codebook of the 
six images. Therefore, there were 30 global code-
books of the six images. The MSE and execution 
times shown are both the averages of the 30 tests. 

The number of clusters was always a whole 
power of 2 for the data in Experiment 2 because it is 
used for communication purposes. In other words, 
after running K-means, each image block is com-
pressed as a VQ index containing log2K bits. For ex-
ample, if each image block is compressed as a 5-bit 
VQ-index, then there should be 25=32 VQ codewords, 
and each codeword is the representative block (the 
center) of a cluster containing multiple image blocks 
similar to this representative block. Therefore, 25=32 
VQ codewords imply 32 clusters. An analogous ar-
gument shows that a 6-bit VQ-index implies 26=64 
clusters; a 7-bit VQ-index implies 27=128 clusters; etc. 

Experiment 3 used the Statlog (Landsat satellite) 
data set (Frank and Asuncion, 2010). The data were 
purchased from NASA by the Australian Centre for 
Remote Sensing. The Statlog data set consists of 6435 
data points, and each data point has 36 attributes. The 
data have seven classes (red soil, cotton crop, grey 
soil, damp grey soil, etc.), and the data have been 
cited more than one hundred times by researchers, 
e.g., Leng and Hong (2010). 

Experiment 4 used an artificial Gaussian data set 
in the 3D space. We created 12 800 data points using 
the following rules: (1) Locate eight positions (±7, ±7, 
±7) in the 3D space; (2) For each 3D position (u, v, w), 
create eight Gaussian centers (u±2, v±1, w±0.5). (3) 
For each of the 88=64 Gaussian centers, generate 
200 points around the center using a Gaussian dis-
tribution whose standard deviation is 0.25. Notably, 
when this data set was designed, there were eight 
major groups which were far away from each other. 
Each group contained two subgroups which were 
close to each other. Then each subgroup had two 
branches which were considerably closer to each other, 
and each branch had two Gaussian clusters that almost 
touched each other. Therefore, the data set can be 
regarded as 8, 16, 32, or 64 classes. 

4.1.2  Initial points 

The configuration of initial centers has an impact 
on determining the results of the K-means algorithm. 
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To obtain reasonable and overall consideration, we 
obtain K initial points by running an algorithm called 
the clustering using representatives (CURE) algorithm 
in pattern recognition textbook (Theodoridis and 
Koutroumbas, 2009). The following are the steps for 
obtaining a K-point representative set RC from a given 
set C: 

Step 1: Select a vector x1C, with the maximum 
distance from the mean of C. Let RC={x1}. 

Step 2: For i=2 to K, pick an xiCRC that 
maximizes the closest-distance to points of RC. Then, 
RC=RC{xi}. 

Step 3: Shrink all points xRC toward the mean 
MC of C by a factor a. That is, x=(1a)x+aMC. 

The initial centers in our experiments were ob-
tained using the CURE algorithm with a from 0.05 to 
0.7. In other words, we ran CURE several times using 
distinct values of a. So, we obtained multiple sets of 
initials and each initial set had K points. Then, for 
each of the five clustering methods being compared, 
we ran the method using each set of initials and took 
the average time and the average MSE. This should 
have reduced the influence of the initials because it 
was a multi-run test and each test used the represen-
tatives which roughly represented the data set. 

4.2  Comparisons 

We compared the results of the five algorithms:  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the plain K-means algorithm, the overlapped and 
enhanced algorithms of Fahim et al. (2006), our 
overlapped algorithm with S&E, and our enhanced 
algorithm with S&E. All five algorithms used the 
same initial centers in the test. 

To determine the quality of the K centers found 
by each algorithm, when an algorithm stopped, we 
measured the MSE value defined in Eq. (1). We also 
compared the CPU time used by each algorithm. 
Because the number of executed iterations might 
differ among these algorithms, we compared not only 
the average execution time per iteration, but also the 
total execution time. Comparisons of MSE values 
(Tables 1 and 2: results from Experiments 3 and 4 not 
shown) showed that: (1) In Experiments 1–4, the MSE 
values were always very similar among the different 
methods. (2) The MSE of the overlapped algorithm 
was always equal to that of our overlapped algorithm 
with S&E. Likewise, the enhanced algorithm and our 
enhanced algorithm with S&E always had the same 
MSE value. (3) In Experiments 1–4, the benefit of our 
total execution time over those of the other methods 
became obvious when the number of clusters became 
larger. This statement is true for both the total execu-
tion time and the average time per iteration. 

The details of the comparisons are as the  
following. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Mean square errors (MSE) for the five algorithms in Experiment 1 

MSE 
Number of  
clusters, K Plain 

K-means 
Overlapped  
algorithm 

Overlapped  
with S&E 

Enhanced  
algorithm 

Enhanced  
with S&E 

26 30.9341 30.9000 30.9000 30.9792 30.9792 
52 23.8053 23.7465 23.7465 23.8402 23.8402 
78 20.1564 20.1778 20.1778 20.2296 20.2296 

104 17.9715 17.9679 17.9679 18.0867 18.0867 
130 16.3066 16.3408 16.3408 16.4666 16.4666 

Underlined numbers show that the plain K-means algorithm does not always have the best MSE value 

Table 2  Mean square errors (MSE) for the five algorithms in Experiment 2 

MSE 
Number of  
clusters, K Plain 

K-means 
Overlapped  
algorithm 

Overlapped  
with S&E 

Enhanced  
algorithm 

Enhanced  
with S&E 

64 2347.89 2346.95 2346.95 2349.75  2349.75  
128 1959.51  1963.45  1963.45  1970.75  1970.75  
256 1656.31  1657.05  1657.05  1664.92  1664.92  
512 1411.41  1413.37  1413.37  1423.35  1423.35  

1024 1220.91 1220.18 1220.18 1242.68  1242.68  

Underlined numbers show that the plain K-means algorithm does not always have the best MSE value 
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1. Letter recognition data set 
According to Table 1, for a given number (K) of 

clusters with the same initial centers, all five algo-
rithms achieved a similar quality of clustering results. 
The MSE of the overlapped algorithm was equal to 
that of the overlapped algorithm with S&E. Likewise, 
the enhanced algorithm and the enhanced algorithm 
with S&E had the same MSE value. Note that the plain 
K-means did not always have the best MSE value (see 
K=26, 52, and 104 in Table 1), since it is well-known 
that K-means also cannot ensure a global minimum. 
Fig. 1 shows the total execution time for the five al-
gorithms and Fig. 2 shows the average time per it-
eration. Our two algorithms used less time compared 
with the corresponding methods. In summary, the 
clustering quality was the same as that of Fahim et al. 
(2006) but the required execution was improved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Vector quantization of images 
Table 2 lists the MSE values for the five algo-

rithms. The plain K-means did not always have the 
best MSE value (e.g., K=64 and K=1024). Fig. 3 shows 
the total execution time and Fig. 4 shows the average 
execution time per iteration. The curves indicate that 
the computation time of our algorithm increased 
slowly even if the number of clusters grew quickly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Statlog (Landsat Satellite) data set 
Fig. 5 displays the curves of total execution time 

and Fig. 6 the curves of average execution time per 
iteration. Again, our methods improved the processing 
efficiency. 

4. Artificial Gaussian data set 
Figs. 7 and 8 show the execution time for Ex-

periment 4. The actual number of clusters was 64 for 
this data set. Again, the benefit of our execution time 
over those of the other methods became apparent 
when the number of clusters increased. 

Fig. 1  Total execution time for Experiment 1 
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Fig. 2  Average time per iteration for Experiment 1
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Fig. 3  Total execution time for Experiment 2 
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Fig. 4  Average time per iteration for Experiment 2 
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5  Conclusions 
 

In this paper, we present a selection-and-erasure 
(S&E) K-means algorithm. Our clustering results 
were exactly the same as those of the method used by 
Fahim et al. (2006). However, we increased the effi-
ciency of the method when the number of clusters 
became large. Experimental results showed that our 
algorithm works well. 
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Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space úd and an integer k and the problem is to 

determine a set of k points in úd, called centers, so as to minimize the mean squared distance from each data point to its nearest 

center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced 
k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each itera-
tion to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of 

the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation. 


