
Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(10):761-768 761

An accelerated K-means clustering algorithm using

selection and erasure rules*

Suiang-Shyan LEE, Ja-Chen LIN
(Department of Computer Science, National Chiao Tung University, Taiwan 30050, Hsinchu)

E-mail: ignoreswing.cs98g@g2.nctu.edu.tw; jclin@cs.nctu.edu.tw

Received Mar. 22, 2012; Revision accepted July 23, 2012; Crosschecked Sept. 11, 2012

Abstract: The K-means method is a well-known clustering algorithm with an extensive range of applications, such as biological
classification, disease analysis, data mining, and image compression. However, the plain K-means method is not fast when the
number of clusters or the number of data points becomes large. A modified K-means algorithm was presented by Fahim et al. (2006).
The modified algorithm produced clusters whose mean square error was very similar to that of the plain K-means, but the execution
time was shorter. In this study, we try to further increase its speed. There are two rules in our method: a selection rule, used to
acquire a good candidate as the initial center to be checked, and an erasure rule, used to delete one or many unqualified centers each
time a specified condition is satisfied. Our clustering results are identical to those of Fahim et al. (2006). However, our method
further cuts computation time when the number of clusters increases. The mathematical reasoning used in our design is included.

Key words: K-means clustering, Acceleration, Vector quantization, Selection, Erasure
doi:10.1631/jzus.C1200078 Document code: A CLC number: TP301.6

1 Introduction

Clustering (Lin et al., 2005; Yue et al., 2005;
Fahim et al., 2006) is a useful technique. It has been
used to solve problems in many fields, such as bio-
logical classification (Wittkop et al., 2010), disease
analysis (Seligson et al., 2005), data mining (Crespo
and Weber, 2005), image compression (Lee et al.,
2007), and other fields (Kong and Zhu, 2007; Wang
and Tsai, 2007). One of the prominent clustering
methods is the K-means algorithm (Fahim et al., 2006;
Lu et al., 2008). The K-means algorithm partitions a
given set X={x1, x2, …, xn}, where each point is
m-dimensional, into a set of K clusters {S1, S2, …, SK}
as follows:

Initialization: Choose K initial (random) points
as cluster centers C={c1, c2, ..., cK}.

Iteration: Each iteration has stages A and B. Stop
the algorithm when all K cluster centers no longer

change in two consecutive iterations.
Stage A: For each data point xiX, assign xi to

the cluster whose center is the closest to xi.
Stage B: For k=1, 2, …, K, update the cluster

center as ck=(∑xSk
x)/|Sk|. Here, |Sk| denotes the num-

ber of elements in cluster Sk.
The K-means algorithm is simple and easy to

implement. As mentioned by Mahajan et al. (2009), it
can reduce the mean square error (MSE) which is
defined as

2

1

1
MSE (,), cluster ,

n

i j i j
i

d S
n 

  x c x (1)

in which cj is the centroid of cluster j, and d is the
Euclidean distance. However, to determine the closest
cluster in Stage A, the plain K-means algorithm will
calculate nK sets of squared Euclidean distances in
the m-dimensional space, namely,

22 2

1

(,) () ,
m

i k il kl i k
l

d x c


   x c x c (2)

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

* Project (No. 100-2221-E-009-141-MY3) supported by the National
Science Council
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(10):761-768 762

where k=1, 2, …, K and i=1, 2, ..., n. When the
number of clusters (K) or the number of points (n) is
large, the algorithm is not fast. A modified K-means
algorithm was presented by Fahim et al. (2006) to
increase the speed. Here, we will accelerate it further.
Our clustering results are identical to those of Fahim
et al. (2006), but our method can further reduce the
computation time.

2 Review of the efficient enhanced K-means
clustering algorithm

An enhanced K-means algorithm was presented
by Fahim et al. (2006) to reduce the computation time
when the number of clusters (K) is large. The en-
hancement was based on making use of results from
the previous iteration. For this purpose, in each itera-
tion of K-means, immediately after obtaining the
nearest centers of the data points, Fahim et al. (2006)
recorded two values for each data point. The first was
an integer id{1, 2, …, K} which can be considered
as a pointer, used to identify which of the K clusters is
the nearest cluster. The second was the (squared)
Euclidean distance between the data point and the
center of this nearest cluster. For n data points, these
n+n=2n values were stored and updated using two
arrays (Clusterid and Pointdis) each of size n×1. Then,
in the next iteration of K-means, to determine the
nearest center of a data point xi, the ‘updated’ center
of the cluster whose id was recorded at Clusterid[i],
i.e., at the ith entry of Clusterid, would be checked
first. If the new distance between the recorded cluster
centroid and data point xi is shorter than or equivalent
to the previous distance (i.e., shorter than Pointdis[i]),
then Clusterid[i] is not modified. In this situation,
only one cluster center is checked, and the remaining
K–1 cluster centers are ignored immediately. Thus,
computation time is saved by neglecting the remain-
ing K–1 candidates. This might make the clustering
result different from that of the plain K-means method.
Nevertheless, this is acceptable if at the end of the
algorithm, the final result gives cluster centers whose
mean square error is similar (or even superior) to the
mean square error of the plain K-means.

The method of Fahim et al. (2006) produced
clusters whose mean square error was very similar to
that of the plain K-means, but the execution time was
shorter.

3 The proposed method

In this section, we propose a faster algorithm.
Our obtained clusters are identical to those obtained
by Fahim et al. (2006), but the execution time is re-
duced further.

3.1 Overview

In general, the most time-consuming part of the
K-means method is Stage A (reassigning data points
to clusters). For a data set {x1, x2, …, xn}, the time
complexity of an iteration is O(nK) if the plain
K-means method with full search is used. To many
researchers it is of interest to design a more efficient
way to locate the nearest cluster center of each data
point, so that each data point can be quickly reas-
signed to a cluster.

To find the nearest cluster center of a data point
xi, we need to determine quickly the potential quali-
fication of a to-be-checked candidate cluster center.
Thus, we derive a selection rule to judge roughly the
to-be-checked center. The to-be-checked center is
selected according to an organized (non-random) rule
in our algorithm. An erasure rule is also used. When-
ever the condition of the erasure rule is satisfied, one
or more centers are erased simultaneously. Hence, the
erasure rule can quickly find some more qualified
clusters in a few tries. Since there are two rules in our
method, namely selection and erasure, we call our
method the selection-and-erasure (S&E) K-means
method.

3.2 Faster assignment of data to clusters

3.2.1 Pre-processing

For each iteration, a norm-sorting pre-processing
is executed before activating the algorithm. For all
cluster centers ckC, compute the Euclidean

norm 2

1
.

m

kllk c


 c Sort the norm values of

{||ck||}k=1,2,…,K to obtain an ascending-order sequence
R={cj}j=1,2,...,K, where ||c1||||c2||…||cK||. This creates a
new index sequence j=1, 2, …, K which has monotonic
norm-order implied implicitly. Record the mapping
from set C to sequence R, i.e., from k to j.

3.2.2 The function Select_and_Erase()

For each data point xi, to find its nearest cluster,
we run the pseudo-code listed in Algorithm 1. Thus,

Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(10):761-768 763

Algorithm 1 is Stage A (assigning data to the nearest
cluster) of our algorithm. Note that in line 11, we need
to check whether the condition

 2
min(|| || || ||)j i d c x (3)

is satisfied. Therefore, we recommend that the com-
puted norm values {||xi||}i=1,2,…,n should be preserved,
for these values are used repeatedly in our method.

Algorithm 1 Function Select_and_Erase()
1 for i=1 to n

2 Compute squared Euclidean distance d2(xi, Clusterid[i]);

3 if (d2(xi, Clusterid[i])Pointdis[i])
4 then the point xi stays in its original cluster (i.e.,

no reassignment of xi);
5 else

6 Use binary search to locate a cluster center whose
||cj|| is the closest to ||xi||;

7 dmin=d2(xi, cj); cmin=cj;

8 Delete this center cj from R;

9 while (R is not empty)

10 Choose from R a to-be-checked center cj whose
||cj|| is the closest to ||xi||;

11 if (||cj||||xi||)
2dmin

12 if ||cj||||xi||
13 Delete all of the centers whose indices in R

are larger than j;
14 if ||cj||||xi||
15 Delete all of the centers whose indices in R

are less than j;
16 else

17 Compute squared Euclidean distance d2(xi, cj);

18 if d2(xi, cj)<dmin

19 dmin=d2(xi, cj) and cmin=cj;

20 else

21 dmin=dmin and cmin=cmin;

22 end while

23 Clusterid[i]=Cluster id of cmin;

24 Pointdis[i]=dmin;

25 end for

3.2.3 Overlapped K-means with S&E and enhanced
K-means with S&E

Fahim et al. (2006) designed two accelerated
versions of K-means, namely overlapped K-means and
enhanced K-means. Therefore, our new method was
implemented in two versions: (1) overlapped K-means
with S&E; (2) enhanced K-means with S&E. Fahim et
al. (2006) found that enhanced K-means was faster

than overlapped K-means. The reason was that the
overlapped K-means inspected all possible clusters in
odd cycles, but the enhanced version did not have
such an adjustment. They concluded that the en-
hanced K-means algorithm was the one they recom-
mended among the three algorithms they tested (i.e.,
the plain, the overlapped, and the enhanced K-means).
The clustering quality of the enhanced K-means was
similar to that of the others but the execution time of
enhanced K-means was the shortest.

In each iteration, when we assign n data points to
the K temporary clusters, our overlapped K-means
with S&E will run Select_and_Erase() in each even-
iteration, and run Select_and_Erase() without lines
2–5 in each odd-iteration. As for the enhanced
K-means with S&E, this version will run Select_
and_Erase() without lines 2–5 in the first two itera-
tions, and then execute Select_and_Erase() for the
remaining iterations.

3.3 Mathematical reasoning

3.3.1 Erasure rule

The condition used in the erasure rule is
(||cj||||xi||)

2dmin. This inequality can erase the center
cj because

2 2

2 2

2 2

2

(,) || ||

|| || || || 2

|| || || || 2 || || || ||

(|| || || ||) .

i j i j

i j i j

i j i j

j i

d  

   

  

 

x c x c

x c x c

x c x c

c x

 (4)

Thus, we can conclude that if (||cj||||xi||)

2dmin, then
d2(xi, cj) must be greater than or equal to dmin. In ad-
dition, because the centers’ norm value has been
sorted already, we find that d2(xi, cj+σ)(||cj+σ||||xi||)

2
(||cj||||xi||)

2dmin when ||cj+σ||||cj||||xi||. The case of
||cj||||xi|| can be analyzed in an analogous manner.

3.3.2 Selection rule

The selection rule always picks the center cj
whose ||cj|| is the closest to ||xi|| as the one we try first.
The reason is very simple. In any version of K-means,
the objective of reassigning a data point xi to a cluster
is to minimize the distance from xi to that center. We
use the erasure rule (||cj||||xi||)

2dmin in the proposed
algorithm. Hence, if we can obtain a very small dmin in

Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(10):761-768 764

the very beginning of the while loop, then
(||cj||||xi||)

2dmin is easy to satisfy for the remaining
runs of the while loop. Hence, lines 11–15 of Algo-
rithm 1 can eliminate many candidate centers imme-
diately. Therefore, it is important to make dmin very
small when we pick from the set R the first center to
be checked. To make dmin very small, since dmin=
d2(xi, cj) when the first cj is picked, we want xi to be
very close to cj. Therefore, their norms ||cj|| and ||xi||
cannot be too far away from each other. So, ||cj|| and
||xi|| should be very close.

4 Experiments and comparisons

4.1 Experiments

4.1.1 Data sets

Four experiments were conducted to evaluate
our method. The input of Experiment 1 was the letter
recognition data set from the UCI Machine Learning
Repository (Frank and Asuncion, 2010). It consists of
20 000 samples. Each sample point has 16 integer
attributes ranging from 0 to 15. There are 26 classes
and each class is one of the capital letters in the Eng-
lish alphabet. Each class has several commercial fonts.
The original purpose of this data set was to identify
the alphabetical letters. From the viewpoint of letter
recognition, this data set is too hard for algorithms of
the K-means type (unless post-processing such as
split and merge is used (Lin, 1996)). However, we can
still evaluate the acceleration gained by our method.

Experiment 2 was related to codebook genera-
tion in vector quantization (VQ) of images (Chen et al.,
2009). A total of 98 304 blocks were partitioned into
K clusters. The input 98 304 blocks were generated as
follows: six 512×512 images {Lena, Peppers, Baboon,
Jet, Boat, Tank} were divided into 4×4 blocks. We
thus had 6×(512×512)/(4×4)=98 304 blocks. First, we
used K-means to train the (512×512)/(4×4) blocks of
Lena to create a codebook of K vectors (each vector
was a 4×4 block). The K vectors were then used as the
K initial blocks of the K-means to partition the 98 304
blocks into K clusters. In terminology of VQ, Ex-
periment 2 created a global codebook (for six images)
by using Lena’s local codebook as the initial try.
Notably, when we used K-means to train the
(512×512)/(4×4) blocks of Lena, the initials of the
K-means method were selected by running the CURE

algorithm described below. When we ran the CURE
algorithm 30 times, we obtained an initial set each time
for K-means and thereby created a local codebook of
Lena, which in turn created a global codebook of the
six images. Therefore, there were 30 global code-
books of the six images. The MSE and execution
times shown are both the averages of the 30 tests.

The number of clusters was always a whole
power of 2 for the data in Experiment 2 because it is
used for communication purposes. In other words,
after running K-means, each image block is com-
pressed as a VQ index containing log2K bits. For ex-
ample, if each image block is compressed as a 5-bit
VQ-index, then there should be 25=32 VQ codewords,
and each codeword is the representative block (the
center) of a cluster containing multiple image blocks
similar to this representative block. Therefore, 25=32
VQ codewords imply 32 clusters. An analogous ar-
gument shows that a 6-bit VQ-index implies 26=64
clusters; a 7-bit VQ-index implies 27=128 clusters; etc.

Experiment 3 used the Statlog (Landsat satellite)
data set (Frank and Asuncion, 2010). The data were
purchased from NASA by the Australian Centre for
Remote Sensing. The Statlog data set consists of 6435
data points, and each data point has 36 attributes. The
data have seven classes (red soil, cotton crop, grey
soil, damp grey soil, etc.), and the data have been
cited more than one hundred times by researchers,
e.g., Leng and Hong (2010).

Experiment 4 used an artificial Gaussian data set
in the 3D space. We created 12 800 data points using
the following rules: (1) Locate eight positions (±7, ±7,
±7) in the 3D space; (2) For each 3D position (u, v, w),
create eight Gaussian centers (u±2, v±1, w±0.5). (3)
For each of the 88=64 Gaussian centers, generate
200 points around the center using a Gaussian dis-
tribution whose standard deviation is 0.25. Notably,
when this data set was designed, there were eight
major groups which were far away from each other.
Each group contained two subgroups which were
close to each other. Then each subgroup had two
branches which were considerably closer to each other,
and each branch had two Gaussian clusters that almost
touched each other. Therefore, the data set can be
regarded as 8, 16, 32, or 64 classes.

4.1.2 Initial points

The configuration of initial centers has an impact
on determining the results of the K-means algorithm.

Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(10):761-768 765

To obtain reasonable and overall consideration, we
obtain K initial points by running an algorithm called
the clustering using representatives (CURE) algorithm
in pattern recognition textbook (Theodoridis and
Koutroumbas, 2009). The following are the steps for
obtaining a K-point representative set RC from a given
set C:

Step 1: Select a vector x1C, with the maximum
distance from the mean of C. Let RC={x1}.

Step 2: For i=2 to K, pick an xiCRC that
maximizes the closest-distance to points of RC. Then,
RC=RC{xi}.

Step 3: Shrink all points xRC toward the mean
MC of C by a factor a. That is, x=(1a)x+aMC.

The initial centers in our experiments were ob-
tained using the CURE algorithm with a from 0.05 to
0.7. In other words, we ran CURE several times using
distinct values of a. So, we obtained multiple sets of
initials and each initial set had K points. Then, for
each of the five clustering methods being compared,
we ran the method using each set of initials and took
the average time and the average MSE. This should
have reduced the influence of the initials because it
was a multi-run test and each test used the represen-
tatives which roughly represented the data set.

4.2 Comparisons

We compared the results of the five algorithms:

the plain K-means algorithm, the overlapped and
enhanced algorithms of Fahim et al. (2006), our
overlapped algorithm with S&E, and our enhanced
algorithm with S&E. All five algorithms used the
same initial centers in the test.

To determine the quality of the K centers found
by each algorithm, when an algorithm stopped, we
measured the MSE value defined in Eq. (1). We also
compared the CPU time used by each algorithm.
Because the number of executed iterations might
differ among these algorithms, we compared not only
the average execution time per iteration, but also the
total execution time. Comparisons of MSE values
(Tables 1 and 2: results from Experiments 3 and 4 not
shown) showed that: (1) In Experiments 1–4, the MSE
values were always very similar among the different
methods. (2) The MSE of the overlapped algorithm
was always equal to that of our overlapped algorithm
with S&E. Likewise, the enhanced algorithm and our
enhanced algorithm with S&E always had the same
MSE value. (3) In Experiments 1–4, the benefit of our
total execution time over those of the other methods
became obvious when the number of clusters became
larger. This statement is true for both the total execu-
tion time and the average time per iteration.

The details of the comparisons are as the
following.

Table 1 Mean square errors (MSE) for the five algorithms in Experiment 1

MSE
Number of
clusters, K Plain

K-means
Overlapped
algorithm

Overlapped
with S&E

Enhanced
algorithm

Enhanced
with S&E

26 30.9341 30.9000 30.9000 30.9792 30.9792
52 23.8053 23.7465 23.7465 23.8402 23.8402
78 20.1564 20.1778 20.1778 20.2296 20.2296

104 17.9715 17.9679 17.9679 18.0867 18.0867
130 16.3066 16.3408 16.3408 16.4666 16.4666

Underlined numbers show that the plain K-means algorithm does not always have the best MSE value

Table 2 Mean square errors (MSE) for the five algorithms in Experiment 2

MSE
Number of
clusters, K Plain

K-means
Overlapped
algorithm

Overlapped
with S&E

Enhanced
algorithm

Enhanced
with S&E

64 2347.89 2346.95 2346.95 2349.75 2349.75
128 1959.51 1963.45 1963.45 1970.75 1970.75
256 1656.31 1657.05 1657.05 1664.92 1664.92
512 1411.41 1413.37 1413.37 1423.35 1423.35

1024 1220.91 1220.18 1220.18 1242.68 1242.68

Underlined numbers show that the plain K-means algorithm does not always have the best MSE value

Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(10):761-768 766

1. Letter recognition data set
According to Table 1, for a given number (K) of

clusters with the same initial centers, all five algo-
rithms achieved a similar quality of clustering results.
The MSE of the overlapped algorithm was equal to
that of the overlapped algorithm with S&E. Likewise,
the enhanced algorithm and the enhanced algorithm
with S&E had the same MSE value. Note that the plain
K-means did not always have the best MSE value (see
K=26, 52, and 104 in Table 1), since it is well-known
that K-means also cannot ensure a global minimum.
Fig. 1 shows the total execution time for the five al-
gorithms and Fig. 2 shows the average time per it-
eration. Our two algorithms used less time compared
with the corresponding methods. In summary, the
clustering quality was the same as that of Fahim et al.
(2006) but the required execution was improved.

2. Vector quantization of images
Table 2 lists the MSE values for the five algo-

rithms. The plain K-means did not always have the
best MSE value (e.g., K=64 and K=1024). Fig. 3 shows
the total execution time and Fig. 4 shows the average
execution time per iteration. The curves indicate that
the computation time of our algorithm increased
slowly even if the number of clusters grew quickly.

3. Statlog (Landsat Satellite) data set
Fig. 5 displays the curves of total execution time

and Fig. 6 the curves of average execution time per
iteration. Again, our methods improved the processing
efficiency.

4. Artificial Gaussian data set
Figs. 7 and 8 show the execution time for Ex-

periment 4. The actual number of clusters was 64 for
this data set. Again, the benefit of our execution time
over those of the other methods became apparent
when the number of clusters increased.

Fig. 1 Total execution time for Experiment 1

Plain K-means
Overlapped algorithm
Enhanced algorithm
Overlap. alg. with S&E
Enhan. alg. with S&E

350

300

250

200

150

100

50

T
im

e
(s

)

52 104 78 13026

Required number of clusters

0

Fig. 2 Average time per iteration for Experiment 1

52 104 78 13026

T
im

e
(s

)

Plain K-means
Overlapped algorithm
Enhanced algorithm
Overlap. alg. with S&E
Enhan. alg. with S&E

0

1

2

3

4

Required number of clusters

Fig. 3 Total execution time for Experiment 2

0

5

10

15

20

128 512 256 102464

T
im

e
(×

10
3 s

)

Required number of clusters

Plain K-means
Overlapped algorithm
Enhanced algorithm
Overlap. alg. with S&E
Enhan. alg. with S&E

Fig. 4 Average time per iteration for Experiment 2

128 512 256 102464

80

100

120

140

0

20

40

60

160

180

Required number of clusters

T
im

e
(s

)

Plain K-means
Overlapped algorithm
Enhanced algorithm
Overlap. alg. with S&E
Enhan. alg. with S&E

Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(10):761-768 767

5 Conclusions

In this paper, we present a selection-and-erasure
(S&E) K-means algorithm. Our clustering results
were exactly the same as those of the method used by
Fahim et al. (2006). However, we increased the effi-
ciency of the method when the number of clusters
became large. Experimental results showed that our
algorithm works well.

References
Chen, L.S.T., Su, W.K., Lin, J.C., 2009. Secret image sharing

based on vector quantization. Int. J. Circ. Syst. Signal
Process., 3(3):137-144.

Crespo, F., Weber, R., 2005. A methodology for dynamic data
mining based on fuzzy clustering. Fuzzy Sets Syst., 150(2):
267-284. [doi:10.1016/j.fss.2004.03.028]

Fahim, A.M., Salem, A.M., Torkey, F.A., Ramadan, M.A.,
2006. An efficient enhanced k-means clustering algorithm.
J. Zhejiang Univ.-Sci. A, 7(10):1626-1633. [doi:10.1631/
jzus.2006.A1626]

Frank, A., Asuncion, A., 2010. UCI Machine Learning Re-

pository. Schools of Information and Computer Science,
University of California, Irvine, CA. Available from
http://archive.ics.uci.edu/ml [Accessed on July 19, 2012].

Kong, W.Z., Zhu, S.A., 2007. Multi-face detection based on
downsampling and modified subtractive clustering for
color images. J. Zhejiang Univ.-Sci. A, 8(1):72-78. [doi:
10.1631/jzus.2007.A0072]

Lee, W.J., Chung, J.S., Ouyang, C.S., Lee, S.J., 2007. Vector
quantization of images using a fuzzy clustering method.
Cybern. Syst., 39(1):45-60. [doi:10.1080/0196972070171
0139]

Leng, J., Hong, T.P., 2010. Mining outliers in correlated sub-
spaces for high dimensional data sets. Fundam. Inform.,
98(1):71-86. [doi:10.3233/FI-2010-217]

Lin, H.J., Yan, F.W., Kao, Y.T., 2005. An efficient GA-based
clustering technique. Tamkang J. Sci. Eng., 8(2):113-122.

Lin, J.C., 1996. Multi-class clustering by analytical two-class
formulas. Int. J. Pattern Recogn. Artif. Intell., 10(4):307-
323. [doi:10.1142/S0218001496000220]

Lu, J.F., Tang, J.B., Tang, Z.M., Yang, J.Y., 2008. Hierarchi-
cal initialization approach for K-means clustering. Pat-
tern Recogn. Lett., 29(6):787-795. [doi:10.1016/j.patrec.

Fig. 6 Average time per iteration for Experiment 3

0

0.1

0.2

0.3

0.4
Plain K-means
Overlapped algorithm
Enhanced algorithm
Overlap. alg. with S&E
Enhan. alg. with S&E

14 28 21 357

T
im

e
(s

)

Required number of clusters

Fig. 7 Total execution time for Experiment 4

0

5

10

15

20 Plain K-means
Overlapped algorithm
Enhanced algorithm
Overlap. alg. with S&E
Enhan. alg. with S&E

T
im

e
(s

)

Required number of clusters

8 16 32 64

Fig. 8 Average time per iteration for Experiment 4

0

0.2

0.4

0.6

0.8

Plain K-means
Overlapped algorithm
Enhanced algorithm
Overlap. alg. with S&E
Enhan. alg. with S&E

T
im

e
(s

)

Required number of clusters

8 16 32 64

1.0

1.2

1.4

Fig. 5 Total execution time for Experiment 3

0

5

10

15

20 Plain K-means
Overlapped algorithm
Enhanced algorithm
Overlap. alg. with S&E
Enhan. alg. with S&E

14 28 21 357

T
im

e
(s

)

Required number of clusters

Lee et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(10):761-768 768

2007.12.009]
Mahajan, M., Nimbhorkar, P., Varadarajan, K., 2009. The

Planar K-means Problem is NP-Hard. 3rd Int. Workshop
on Algorithms and Computation, p.274-285. [doi:10.
1007/978-3-642-00202-1_24]

Seligson, D.B., Horvath, S., Shi, T., Yu, H., Tze, S., Grunstein,
M., Kurdistani, S.K., 2005. Global histone modification
patterns predict risk of prostate cancer recurrence. Nature,
435(7046):1262-1266. [doi:10.1038/nature03672]

Theodoridis, S., Koutroumbas, K., 2009. Chapter 13—Clus-
tering Algorithms II: Hierarchical Algorithms. In: Pattern
Recognition (4th Ed.). Academic Press, Elsevier, London,
p.653-700. [doi:10.1016/B978-1-59749-272-0.50015-3]

Wang, R.Z., Tsai, Y.D., 2007. An image-hiding method with
high hiding capacity based on best-block matching and
k-means clustering. Pattern Recogn., 40(2):398-409.
[doi:10.1016/j.patcog.2006.07.015]

Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M.,
Morris, J.H., Bocker, S., Stoye, J., Baumbach, J., 2010.
Partitioning biological data with transitivity clustering.
Nat. Methods, 7(6):419-420. [doi:10.1038/nmeth0610-
419]

Yue, S.H., Li, P., Guo, J.D., Zhou, S.G., 2005. A statistical
information-based clustering approach in distance space.
J. Zhejiang Univ.-Sci., 6A(1):71-78. [doi:10.1631/jzus.
2005.A0071]

Recommended paper related to this topic

An efficient enhanced k-means clustering algorithm
Authors: FAHIM A.M., SALEM A.M., TORKEY F.A., RAMADAN M.A.
doi:10.1631/jzus.2006.A1626
Journal of Zhejiang University-SCIENCE A, 2006 Vol.7 No.10 P.1626-1633

Abstract: In k-means clustering, we are given a set of n data points in d-dimensional space úd and an integer k and the problem is to

determine a set of k points in úd, called centers, so as to minimize the mean squared distance from each data point to its nearest

center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced
k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each itera-
tion to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of

the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation.

