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a b s t r a c t

Identifying the classification rules for patients, based on a given dataset, is an important role in medical

tasks. For example, the rules for estimating the likelihood of survival for patients undergoing breast

cancer surgery are critical in treatment planning. Many well-known classification methods (as decision

tree methods and hyper-plane methods) assume that classes can be separated by a linear function.

However, these methods suffer when the boundaries between the classes are non-linear. This study

presents a novel method, called DIAMOND, to induce classification rules from datasets containing

non-linear interactions between the input data and the classes to be predicted. Given a set of objects

with some classes, DIAMOND separates the objects into different cubes, and assigns each cube to a

class. Via the unions of these cubes, DIAMOND uses mixed-integer programs to induce classification

rules with better rates of accuracy, support and compact. This study uses three practical datasets (Iris

flower, HSV patients, and breast cancer patients) to illustrate the advantages of DIAMOND over some

current methods.

& 2011 Published by Elsevier Ltd.
1. Introduction

Classification, the separation of data into distinct classes, is
one of the most common tasks in data mining. Recent studies
demonstrate that classification can be applied to analyze the
effects of clinical, environmental, and demographic factors on
diseases. Classification can also be utilized to response to treat-
ment, and the risk of side effects [1].

Classifying objects and recognizing patterns in biological
datasets, such as identifying species or predicting the survival
for a cancer patient, are generally difficult tasks. Most supervised
learning and classification methods are inductive, i.e., they extract
general patterns from data. There are two restrictions for some of
well-known classification methods (such as decision tree meth-
ods and hyper-plane methods):
(i)
 A restriction on the linear relationship between the input data
and the classes to be predicted [2]. Decision tree methods,
hyper-plane methods, and many statistical methods assume
that classes can be separated by a linear function. These
methods will suffer if the boundaries between the classes are
non-linear. This linearity is normally represented by a linear
discriminant function calculated from

P
wixi, where xi are the

attributes and wi are the weights of each attribute. In fact, the
linearity assumption prohibits the practical applications of
these classification methods, since many biological datasets
have complicated non-linear interactions between attributes
and predicted classes.
Elsevier Ltd.
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(ii)
 A restriction on finding only the rules with high accuracy [3].
Many classification methods regard the accuracy of the
induced rules as the single objective to achieve. As a result,
many current methods generate rules which either cover only
a narrow part of the object or require numerous attributes to
explain a classification. In fact, as Einstein stated: ‘‘The best
explanation should be kept as simple as possible, but not
simpler.’’ As Altman and Royston [4] suggested the usefulness
of a rule is determined by how well a model works in practice,
and not by how many as there are in associated p values.
This study proposes another method of inducing classification
rules. The proposed method is applicable to current classification
problems in biology and medicine, which typically have the
following features:
(i)
 Our method can treat the classification problems where the
relationship between the attributes and the class being
predicted can be non-linear. Consider the two attribute
classification problem in Fig. 1. Where� represents an object
of the first class and � represents an object of the second
class. Fig. 1(a) clearly shows that there is a linear boundary
between the objects of these two classes, while
Fig. 1(b) depicts a situation in which there is no clear linear
relationship between the objects of two classes. Decision tree
methods and hyper-plane methods focus on inducing classi-
fication rules for the cases in Fig. 1(a). Our proposed method
can treat the cases in Fig. 1(a) and (b).
(ii)
 Our method can fit the classification problems which are not
only to find the rules with high accuracy, but to induce the
rules which are more general and simpler. A more general
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Fig. 1. Classifying the relationship between the objects of two classes. (a) Linear relationship. (b) Non-linear relationship.
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rule means it can cover more objects. A simpler rule means it
can use less number of required attributes to explain a class.
Given a biological dataset with several objects, where each object
has some attributes and belongs to a specific class, the rules for
classifying these objects are the combinations of attributes that best
describe the features of a specific class. Li and Chen [5] described
three criteria for evaluating the quality of a rule:
(i)
 Accuracy rate: The rule fitting a class should not cover the
objects of other classes.
(ii)
 Support rate: The rule fitting a class should be supported by a
large number of objects of the same class.
(iii)
 Compact rate: The rule should include as small number of
attributes as possible.
Decision tree methods, support vector hyper-plane methods,
and integer programming hyper-plane methods are three well-
known classification methods; reviewed as follows:
(i)
 Decision tree methods: Decision tree methods [6–8] are heur-
istics in nature and are similar to the techniques of statistical
inference approaches. These methods recursively split the
data into hyper-rectangular regions using a single variable.
Backward propagation is preformed to prevent over-fitting of
the datasets. Attributes leading to substantial entropy reduction
are included as condition attributes to partition the data. The
main shortcoming of these methods is a fundamentally greedy
approach, which may only find a feasible solution, instead of
finding an optimal solution with respect to the maximal rates
of accuracy, coverage, and compactness.
(ii)
 Support vector hyper-plane methods: Support vector hyper-
plane methods [9–11] separate different classes by various
hyper-planes, where the optimal separating hyper-plane is
modeled as a convex quadratic programming problem. Since
the number of variables must equal the number of training
data, the training becomes tedious for a large dataset.
(iii)
 Integer program hyper-plane methods: Bertsimas and Shioda [12]
recently used a mixed-integer optimization method [5] to solve
the classical statistical problems of classification and regression.
Their method separates data points into different regions by
using hyper-planes. Each region is assigned a class during the
classification. Solving this mixed-integer program, the rules
with high rate of accuracy can be induced. However, this
approach may generate too many polyhedral regions, which
decrease the rate of compact in the induced rules. Using integer
programming techniques, Li and Chen [5] developed a multiple
criteria method to induce classification rules. Their method
clusters data points into polyhedral regions, and yield highly
accurate. However, since their approach is based on the concept
of the separating hyper-planes, it may also generate many
complicated hyper-planes, and especially for dataset containing
a large number of attributes.
Some hyper-sphere methods [13–16] have been developed for
classifying objects, which use a sphere-structured support vector
machine to partition the sample space. This type of approach
constructs a minimum bounding sphere for each class, and the
smallest sphere encloses the training data as much as possible.
However, these methods need to formulate a classification problem
as a non-convex program which is hard to reach an optimal solution.

This study proposes a novel method called DIAMOND to
improve current classification techniques. For a dataset with
objects of various classes, the DIAMOND method clusters these
objects into some sets of hyper-cubes. Each object is assigned to a
cube by iteratively solving mixed 0–1 programs. This ensures that
the most of objects are assigned to a proper set of cubes, where
the number of total cubes is minimized.

The following list compares the features of the DIAMOND method
with the decision tree methods, hyper-plane methods, and sphere
methods mentioned above.
(i)
 Both hyper-plane methods and decision tree methods need to
assume a linear boundary among various classes of objects. The
DIAMOND method does not need this assumption.
(ii)
 Decision tree methods are heuristic approach which can only
induce feasible rules. The DIAMOND method is an optimization
approach which can find the optimal rules with high rates of
accuracy, support and compact. In addition, decision tree meth-
ods split the data into hyper-rectangular regions using a single
variable, which may generate large number of branches. The
DIAMOND method clusters data into cubes based on multiple
variables, where the number of cubes can be pre-specified. Thus,
the rules induced by the DIAMOND method are more precise
than the rules generated by decision tree methods.
(iii)
 Hyper-plane methods used numerous hyper-planes to sepa-
rate objects of different classes, and divide the objects in a
dataset into indistinct groups. Which may generate a large
number of hyper-planes and associated rules with low rates
of coverage. The DIAMOND method classifies objects into
cubes, then to unify the related cubes as a class. Which is
better able to induce rules with high rates of coverage.
(iv)
 Sphere methods can induce classification rules with better
accuracy level than hyper-plane methods. However, these
sphere methods need a non-convex form to express a sphere.
This prevents the application in classifying large size data.
The DIAMOND method is converted into a linear mixed-integer
model, which is more convenient to find an optimal solution.
To examine the efficiency of DIAMOND method, this study
tests three practical datasets: one of Iris flowers, another of HSV
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patients and a third of breast cancer patients. The results clearly
illustrate the advantages of the DIAMOND method over current
decision tree methods and separating hyper-plane methods.

This study is organized as follows. Section 2 uses an example
to illustrate the basic idea of the DIAMOND method. Section 3 is
the formulation of optimization program for the proposed model.
Section 4 reports numerical experiments.
Fig. 2. Plot of objects.

Fig. 3. Classify by separating hyper-planes.
2. Basic concepts of the DIAMOND method

This section uses an example to express the basic concepts of
the DIAMOND method.

Example 1. Considers the dataset T in Table 1 containing 15
objects ðx1, . . . ,x15Þ, two attributes ða1,a2Þ, and an index of classes
(c). The dataset T is expressed as T ¼ fxiðai,1,ai,2; ciÞji¼ 1, . . . ,15g.
The domain values of c are f1,2,3g. Since there are only two
attributes, these 15 objects can be plotted on a plane (see Fig. 2).
A hyper-plane method requires 14 hyper-planes to discriminate
the objects in Table 1 shown in Fig. 3. This makes it more
complicated to combine these 14 hyper-planes to form the
regions for the objects of each class.

Alternatively, a sphere method can use ‘‘5 spheres’’ to classify
these objects as Fig. 4(a) shows. Consider A1 in Fig. 4(a) for
instance, sphere A1 contains three objects x1, x2, and x3. Denote
the centroid of A1 as ðb0

1,b0
2Þ and radius of A1 as r0

1 as
Fig. 4(b) shows. The situation in which an object xiðai,1,ai,2; ciÞ is
covered by A1 is expressed as

ðai,1�b0
1Þ

2
þðai,2�b0

2Þ
2rr0

1 8i¼ 1,2, . . . ,5: ð1Þ

The situation that an object xi is ‘‘not’’ covered by A1 is expressed as

ðai,1�b0
1Þ

2
þðai,2�b0

2Þ
24r0

1 8i¼ 1,2, . . . ,5: ð2Þ

Sphere methods can classify objects with better accuracy than hyper-
plane methods. However, inequality (2) is non-convex, and is
difficult to be linearized during the optimization process. Therefore,
this study proposes another method, so called the DIAMOND
method, to classify these objects.

Instead of using ‘‘hyper-planes’’, DIAMOND uses ‘‘cubes’’
(shaped like diamonds) to classify these objects, where a rule is
expressed by the union of cubes which belong to the same class.
The DIAMOND method attempts to use the minimal number of
cubes to classify these objects, subjected to the constraints that a
cube must cover as many objects of a target class as possible.
Fig. 2 shows that a good way to classify these 15 objects is to
cluster them using five cubes (see Fig. 5(a)), where Cube S1,1

contains ðx1,x2,x3,x4Þ; Cube S1,2 contains ðx4,x5,x6Þ; Cube S2,1

contains ðx7,x8,x9Þ; Cube S3,1 contains ðx12,x13,x14Þ; and Cube S2,2

contains ðx10,x11Þ. Note that x15 is not covered by any cube, and is
regarded as a noisy data. The terms Sk,l, pk,l, and rk,l, respectively,
denote the cube, centroid, and radius of the l0th cube for class k.
Table 1
Dataset of Example 1.

Object a1 a2 c Symbol Object a1 a2 c Symbol

x1 6 8 1 3 x9 22 15 2 n

x2 12 20 1 3 x10 30 11 2 n

x3 13 8 1 3 x11 33.5 7.5 2 n

x4 18 12.5 1 3 x12 24.5 3.5 3 �

x5 21 19 1 3 x13 26.5 8 3 �

x6 23.5 14.5 1 3 x14 23.5 7.5 3 �

x7 17.5 17.5 2 n x15 6 30 3 �

x8 22 17 2 n
The radius of a cube is the distance between its centroid point
and one of its corner points (Fig. 5(b)). The attribute values of pk,l

are denoted as ðbk,l,1,bk,l,2Þ. The situation that an object
xiðai,1,ai,2; ciÞ is covered by a cube Sk,l is expressed as

jai,1�bk,l,1jþjai,2�bk,l,2jrrk,l 8i¼ 1,2, . . . ,5: ð3Þ

The situation that an object xi is not covered by a cube Sk,l is
expressed as

jai,1�bk,l,1jþjai,2�bk,l,2j4rk,l 8i¼ 1,2, . . . ,5: ð4Þ

Comparing (4) with (2), (4) is much easier to linearize by
adding two binary variables, as described in Appendix A.

In this study, each cube should cover at least two objects. Since
object x15 is not covered by any cubes, it is regarded as an outlier.

A rule for class 1 can then be expressed as follows:
‘‘If an object xi is covered by a Cube S1,1 or S1,2 then xi belongs

to class 1’’. This can be rewritten as
R1:
 if xi is covered by S1,1 [ S1,2 then ci ¼ 1.
Mathematically, R1 can be expressed as
R1:
 if jai,1�b1,1,1jþjai,2�b1,1,2jrr1,1 or
jai,1�b1,2,1jþjai,2�b1,2,2jrr1,2 then xi is covered by
S1,1 [ S1,2.
Fig. 4 shows that the objects x1, . . . ,x6 are covered by R1.
Similarly, rule 2 (for classifying class 2) and rule 3 (for classifying
class 3) can be expressed as below.



Fig. 4. Classify by the spheres. (a) Classify by the sphere method. (b) The radius of sphere Sk,l .

Fig. 5. Classify by proposed method. (a) Classify by cubes. (b) The radius of cube Sk,l .
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R2:

R3:
if xi is covered by S2,1 [ S2,2, then ci ¼ 2.

if xi is covered by S3,1, then ci ¼ 3.
Fig. 6. Cubes and union of cubes.
Note that cubes S1,1 and S1,2.
According to Li and Chen [1], the rates of accuracy, support,

and compactness in R1, R2 and R3 can be specified below. These
values are used to measures the quality of a rule.

The accuracy rate of a rule Rk is specified as

ARðRkÞ ¼
number of objects covered correctly by Rk

number of objects covered by Rk
: ð5Þ

For instance, ARðR1Þ ¼
6
6¼ 1.

An object xi is called covered correctly by Rk, if ci ¼ k.
The support rate of a rule Rk is specified as

SRðRkÞ ¼
number of objects covered correctly by Rk

number of objects of the class k
: ð6Þ

For instance, SRðR1Þ ¼
6
6¼ 1, SRðR2Þ ¼

5
5¼ 1, but SRðR3Þ ¼

3
4¼ 0:75.

The compact rate for a set of rules is specified as

CR¼
number of classes

total number of cubes and unions of cubes
, ð7Þ

where a union of cubes means the object is covered by different
cubes as shown in Fig. 6.

Take Fig. 6 for instance, where there are three classes, three
cubes (i.e., S2,1, S2,2, S3,1Þ and one union of cubes (i.e., S1,1 [ S1,2)
generated by rules R1, R2 and R3. Therefore, CRðR1,R2,R3Þ ¼

3
4.
3. Proposed DIAMOND method and algorithm

3.1. DIAMOND method

Consider a dataset T with n objects. Each object has m

attributes fa1, . . . ,amg and belongs to a class, expressed as
T ¼ fxiðai,1, . . . ,ai,m; ciÞji¼ 1, . . . ,ng where ciAf1, . . . ,gg. Denote the
number of objects at the k0th class as numðkÞ, 1rkrg.
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Notation 1. An object xi in T is specified as xi ¼ ðai,1,ai,2, . . . ,ai,m; ciÞ,
where ai,j is the value of the j0th attribute for the i0th object, and ci is

the class to which the i0th object belongs to ciAf1, . . . ,gg.

Notation 2. A rule Rk is used to classify the objects of the k0th class

which is specified by the union of a set of qk cubes, expressed as

Rk ¼ Sk,1 [ Sk,2 [ � � � [ Sk,qk
.

Notation 3. A l0th cube in the k0th class, denoted as Sk,l, is specified by

its centroid and radius, expressed as Sk,l ¼ ðbk,l,1, . . . ,bk,l,m; rk,lÞ, where

bk,l,j is the centroid’s value at the j0th dimension, and rk,l is its radius.

Remark 1. The total number of cubes is
Pg

k ¼ 1 qk.

Referring to (3), this yields the following definitions.

Definition 1. An object xi ¼ ðai,1, . . . ,ai,m; ciÞ is covered by a cube
Sk,l ¼ ðbk,l,1, . . . ,bk,l,m; rk,lÞ ifXm

j ¼ 1

jai,j�bk,l,jjrrk,l: ð8Þ

Remark 2. An object xi is not covered by a cube
Sk,l ¼ ðbk,l,1, . . . ,bk,l,m; rk,lÞ if and only ifXm

j ¼ 1

jai,j�bk,l,jj4rk,l: ð9Þ

Notation 4. Consider a cube Sk,l and two objects xiðai,1, . . . ,ai,m; ciÞ

and xi0 ðai0 ,1, . . . ,ai0 ,m; ci0 Þ, where ci ¼ k and ci0ak. Denote uk,l,i and

vk,l,i0 as the two binary variables specified below:
(i)
 uk,l,i ¼ 1 if object xi is covered by Sk,l, and uk,l,i ¼ 0 otherwise.

(ii)
 vk,l,i0 ¼ 1 if object xi0 is covered by Sk,l, and vk,l,i0 ¼ 0 otherwise.
That means if an object xi is covered correctly by a cube Sk,l of
the same class, then uk,l,i ¼ 1. However, if the object xi0 is covered
by a cube Sk,l, which is not the same class (i.e., ci0akÞ, then
vk,l,i0 ¼ 1.

Definition 2. The accuracy rate of a rule Rk denoted as ARðRkÞ is
specified by referring to (5):

ARðRkÞ ¼
JRkJ�

Pnumðk0 Þ
i0 ¼ 1

Pqk

l ¼ 1 vk,l,i0

JRkJ
, ð10Þ

where JRkJ indicates the number of total objects covered by Rk.

Definition 3. The support rate of a rule Rk, denoted as SRðRkÞ, is
specified by referring to (6):

SRðRkÞ ¼

PnumðkÞ
i ¼ 1

Pqk

l ¼ 1 uk,l,i

numðkÞ
: ð11Þ

Definition 4. The compact rate of a set of rules R1, . . . ,Rg , denoted
as CRðR1, . . . ,RgÞ, is expressed by referring to (7):

CRðR1, . . . ,RgÞ ¼ g
Xg

k ¼ 1

Uk

,
, ð12Þ

where Uk represents the number of cubes and the unions of cubes
for class k.

The DIAMOND model generates a set of diamonds (cubes) to
induce a rule that maximizes the support rate subject to the
constraint that the accuracy rate must exceed a threshold value.
This study also design an iterative algorithm to keep the rate of
compact as high as possible. The proposed model of classification
is formulated below:

Model 1 (Non-linear DIAMOND model)

Maximize
Xqk

l ¼ 1

XnðkÞ
i ¼ 1

uk,l,i: ð13Þ
For a cube Sk,l, the following constraints must be satisfied:

Xm
j ¼ 1

jai,j�bk,l,jjrrk,lþMð1�uk,l,iÞ, 8xi, where ci ¼ k, ð14Þ

Xm
j ¼ 1

jai0 ,j�bk,l,jj4rk,l�Mvk,l,i0 8xi0 , where ci0ak, ð15Þ

ARðRkÞ ¼
JRkJ�

Pnumðk0Þ
i0 ¼ 1

Pqk

l ¼ 1 vk,l,i0

JRkJ
ZThreshold value, ð16Þ

where M¼maxfai,j 8i¼ 1, . . . ,n and j¼ 1, . . . ,mg; bk,l,jZ0,rk,lZ0,
uk,l,i,vk,l,i0Af0,1g; and ai,j and ai0 ,j are constants.

The objective function (13) is to maximize the support rate.
Constraints (14) and (15) come from (8) and (9). Constraint (16)
ensures that the accuracy rate should exceed a threshold value.
Constraint (14) implies that if a cube Sk,l covers an object xi of the
same class, then uk,l,i ¼ 1, and uk,l,i ¼ 0 otherwise. Constraint (15)
implies that if a cube Sk,l does not cover an object xi0 of another
class, then vk,l,i0 ¼ 0, and vk,l,i0 ¼ 1 otherwise.

Inequalities (14) and (15) are non-linear, which need to be
linearized. The related techniques in linearizing Model 1 are
expressed by three propositions listed in Appendix A.

Model 1 can then be reformulated as the following linear
mixed-binary program:

Model 2 (Linearized DIAMOND model)

Maximize ð13Þ

subject to ð16Þ,

Xm
j ¼ 1

ai,j�bk,l,jþ2ek,l,i,jrrk,lþMð1�uk,l,iÞ

ai,j�bk,l,jþei,k,l,jZ0Xm
j ¼ 1

ðai0 ,j�bk,l,j�2ai0 ,jlk,l,i0 ,jþ2zk,l,i0 ,jÞ4rk,l�Mvk,l,i0

ai0 ,j�bk,l,j�2ai0 ,jlk,l,i0 ,jþ2zk,l,i0 ,jZ0

bjðlk,l,i0 ,j�1Þþbk,l,jrzk,l,i0 ,jrbk,l,jþbjð1�lk,l,i0 ,jÞ

0rzk,l,i0 ,jrbjlk,l,i0 ,j

lk,l,i,jrlk,l,i0 ,j 8i and i0, where ai,j4ai0 ,j:

3.2. A solution algorithm

The solution algorithm is listed below. This algorithm attempts
to find the rules where the compact rate is as high as possible.
Step 1.
 Initialization: k¼1 and l¼1 specify the threshold value
in (16).
Step 2.
 Solve Model 2 to obtain the l0th cube of class k. Remove
the objects covered by Sk,l from the dataset.
Step 3.
 Let l¼ lþ1, and resolve Model 2 until all objects in class
k are assigned to the cubes of same class.
Step 4.
 Let k¼ kþ1, and reiterate Step 2 until all classes are
assigned.
Step 5.
 Check the unions of cubes Sk,l; k¼1 and l¼1.

Step 6.
 Find the overlapped cubes Sk,l (i.e., l¼ lþ1) which cover

the same objects for all l in class k.

Step 7.
 Let k¼ kþ1 and l¼1, and reiterate Step 6 until all cubes

containing same objects are merged into one.
According to the above algorithm, we can induce all rules for
classifying objects in a dataset. Fig. 7 presents a flowchart of the
algorithm.



Table 2
Centroid points for the Iris dataset by the DIAMOND method.

Rule # Union of cubes Sk,l bk,l,1 bk,l,2 bk,l,3 bk,l,4 rk,l

R1 S1,1 S1,1 5.1 3.2 1.85 0.5 2.45

R2 S2,1 [ S2,2 S2,1 6.7 2.6 3.5 1.2 2.5

S2,2 5.9 3.15 4 1.3 1.55

R3 S3,1 [ S3,2 S3,1 6.2 2.9 6.6 2.4 2.7

S3,2 5.3 2.45 4.9 1.6 1.05

= =

= +

= =

= +

= + =

Fig. 7. Flowchart of the proposed algorithm.

Fig. 8. Classifying using the decision tree method. (a) Decision tree f
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4. Numerical examples

This section tests three datasets to assess the performance of
the proposed method. One is the Iris flower dataset introduced by
Sir Ronald Aylmer Fisher (1936) [17], another is the HSV (highly
selective vagotomy) patients dataset of F. Raszeja Memorial
Hospital in Poland [18,19], and the third is the breast cancer
patients dataset of the University of Chicago’s Billings Hospital
(1976) [20]. The following subsections compare the proposed
model with related methods using IBM ILOG CPLEX (2009) [21].
All tests were run on a PC, equipped with an Intel Pentium
(D) 2.8 GHz CPU and 2 GB RAM.
4.1. Iris flower dataset

The Iris flower dataset [17] contains 150 objects. Each object
described by four attributes (1: sepal length; 2: sepal width;
3: petal length; 4: petal width) and classified by three classes
(1: Setosa; 2: Versicolor; 3: Virginica). By utilizing DIAMOND
method, the induced classification rules are reported in Table 2.
Table 2 contains three rules R1, R2, and R3.

Rule R1 is expressed by a cube S1,1, which means that
�
 if jsepal length�5:1jþjsepal width�3:2jþjpetal length�1:85jþ
jpetal width�0:5jr2:45 then the Iris belongs to Setosa.

Rule R2 is the union of two cubes S2,1 and S2,2, which implies that
�
 if jsepal length�6:7jþjsepal width�2:6jþ jpetal length�3:5jþ
jpetal width�1:2jr2:5 or jsepal length�5:9jþ jsepal width�
3:15jþjpetal length�4jþ jpetal width�1:3jr1:55 then the Iris
belongs to Versicolor.

Rule R3 is also the union of two cubes S3,1 and S3,2, which shows
that
�

or the
if jsepal length�6:2jþjsepal width�2:9jþj petal length�6:6jþ

jpetal width�2:4jr2:7orjsepal length�5:3jþjsepal width�2:45jþ
jpetal length�4:9jþ jpetal width�1:6jr 1:05 then the Iris belongs
to Virginica.

Decision tree method [7] (see Fig. 8(a)) and polynomial hyper-
plane support vector method [22] were also used to induce
classification rules for the same data. Fig. 8(a) is the partial Iris
classification tree, which only lists the best path for each class. For
example, from the following branches know that
�
 if (petal length o3Þ then the Iris belongs to Setosa;

�
 if (petal length Z3Þ and (petal width Z1:8Þ then the Iris

belongs to Virginica.
Iris dataset [17]. (b) Decision tree for the HSV dataset [5].
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Table 3 lists these results, which demonstrates that
(i)
Table
Centr

Rul

R1

R2

R3

R4

Table
Comp

Item

ARð

SRð

CR
The accuracy rates for R1, R2, and R3 are expressed as
ARðR1,R2,R3Þ ¼ ð1,1,1Þ. The accuracy rate of R1 is 1, which means
none of the objects in class 2 or class 3 are covered by S1,1. The
support rates for R1, R2, and R3 are SRðR1,R2,R3Þ ¼ ð1,0:98,0:98Þ.
The compact rate of these three rules is CR¼1.
(ii)
 For the rule of class 1 (i.e., R1), all three methods perform
very well in the rates of accuracy and support. However, for
the rules of classes 2 and 3 (i.e., R2 and R3), the DIAMOND
method has the best performance.
(iii)
 The DIAMOND method achieves the highest rate of compact.
Which means that the DIAMOND method can induce rules
more compact than other.
The details of the rules found by these three methods are listed
in Tables 8–10 of Appendix B.

4.2. HSV dataset

The HSV dataset contains 122 patients [5,17–19]. The patients are
classified into four classes (1: excellent; 2: very good; 3: satisfactory;
4: unsatisfactory), and each patient has 11 pre-operating attributes
(1: gender; 2: age; 3: duration of disease; 4: complication of ulcer;
5: HCL concentration; 6: volume of gastric juice per 1 h; 7: volume of
residual gastric juice; 8: basic acid output (BAO); 9: HCL concentra-
tion; 10: volume of gastric juice per 1 h; 11: maximal acid output).
4
oid points for HSV data by the DIAMOND method.

e # Union of cubes Sk,l bk,l,1 bk,l,2 bk,l,3 bk,l,4 bk,l,5

S1,1 [ � � � [ S1,11 S1,1 0 63 14 2 14.7

S1,2 1 35.2 11 1 11.7

S1,3 1 38.1 8 3 4.1

S1,4 1 33 0 2 8.1

S1,5 0 59 16.05 2 2.5

S1,6 1 38 30 3 20.9

S1,7 1 40 5 2 8.6

S1,8 0 50 12 0 15.7

S1,9 1 35.1 4 3 4

S1,10 1 42 14 2.1 12.6

S1,11 1 60 10 3 4.2

S2,1 [ � � � [ S2,6 S2,1 0 27 16.45 4 11.7

S2,2 1 32 5 2 15.9

S2,3 1 50 32 3.9 10

S2,4 1 56 9 4 10.3

S2,5 1 32 4 1 8.3

S2,6 1 27 2 4 20.9

S3,1 [ � � � [ S3,5 S3,1 1 56 6 0 4

S3,2 1 27 20 3 6.8

S3,3 0 54 7 2 7.1

S3,4 1 56 4 2 14.1

S3,5 1 33 3 4 6.8

S4,1 S4,1 1 27 8 3 26.1

S4,2 S4,2 1 51 11 4 21

S4,3 S4,3 1 60 8 4 6

S4,4 S4,4 1 28 11 1 7.5

S4,5 S4,5 1 46 12 2 7.4

3
arison results for the Iris dataset ðR1 ,R2 ,R3Þ.

s DIAMOND Decision tree Hyper-plane support vector

R1 ,R2 ,R3Þ (1,1,1) (1,0.98,0.98) (1,0.98,0.96)

R1 ,R2 ,R3Þ (1,0.98,0.98) (1,0.98,0.98) (1,0.96,0.98)

1 0.5 0.1875
The details are expressed by [23]. To maximize the support rate with
respect to the constraint that ARZ0:9 and to minimize the number
of cubes, the DIAMOND method generates eight unions of cubes
iteratively. Table 4 shows the centroids and radiuses of these cubes.

The decision tree method was also applied to induce rules for
the same dataset, creating 24 branches shown in Fig. 8(b).
Fig. 8(b) is the partial HSV classification tree. For example, from
the branches below know that
�
 if (maximal acid output o12:2Þ and (duration of disease
o0:83Þ then the patient belongs to satisfactory;

�
 if (maximal acid output o12:2Þ and (duration of disease

Z0:83Þ and (volume of gastric juice per 1 h Z133Þ and (HCL
concentration o5Þ then the patient belongs to excellent.

The polynomial hyper-plane method [22] was also applied to find
rules for HSV dataset, which has 45 hyper-planes. Table 5 also
shows that the DIAMOND method can find rules with higher (or
equal) rates of AR, SR and CR than the other two methods. These
details are reported in Tables 11–13 of Appendix B.

The experiments demonstrated that for all classes, the
DIAMOND method generated rules with highest rates of accuracy,
support, and compactness.

4.3. Breast cancer dataset

The breast cancer dataset used in this study contains 294 patients
[20]. Surviving patients are classified into two classes (1: the patient
survived 5 years or longer; 2: the patient died within 5 year), and
each patient has three attributes (1: age of patient at time of
operation; 2: patient’s year of operation; 3: number of positive
auxillary nodes detected). For this dataset, the DIAMOND method
generates four unions of cubes for classifying 294 patients. The
centroids and radiuses of these cubes are listed in Tables 6 and 7
compare the results. Table 7 further indicates that the DIAMOND
method achieves better performance is better than the other
bk,l,6 bk,l,7 bk,l,8 bk,l,9 bk,l,10 bk,l,11 rk,l

86.5 180 13.8 23.3 627 61.8 565.5

29 66.75 10.3 20.8 139.1 53.8 180.15

159 118.45 21.6 5.3 115 49.8 205.85

82 29.15 1.7 14.7 232 78.2 146.65

34 32 12.8 16.7 81.5 16.95 142.5

389.7 120 39.1 14.7 174.25 78.2 419.45

122 5 8.7 34.5 336 8.4 221.2

140 14.05 11.8 12.3 199 93.1 147.35

149.35 38 15.7 12.5 128 8.45 100.4

83.5 170.25 24.7 14.8 818.7 70.25 739.3

97 112.75 26.8 13.9 163 104.2 241.75

198 88 11.4 34.5 172 10.9 152.35

185 56.95 13.2 11 223 13.8 113.55

191 6 1.1 12.3 199 13.7 146.1

76 6 8.5 9.8 165.7 93.1 153.2

118 60 9.2 27.5 163 13 99.3

213 26 14.6 6.5 266 85.1 167.6

170.3 120 6.1 21 232 13.8 156.9

91.25 67.15 5.2 19 87.2 12 103.8

194.4 131.05 9.2 19 391.1 15.2 240.85

212 78 14.6 16.7 41 6.3 201.5

224.88 132 3.9 11 175.2 19.8 166

69 13 2.6 11.8 58.15 10.3 82.75

474.2 50 3.6 38.7 387 151.4 527.3

225 43.75 7.9 5.6 183 56.6 150.75

143 32 36.1 16.7 202.85 17.2 95.85

35.7 21.1 4.4 17.8 165 12.2 88.3



Table 5
Comparison of results for the HSV dataset ðR1 ,R2 ,R3 ,R4Þ.

Items DIAMOND Decision tree Hyper-plane support vector

ARðR1 ,R2 ,R3 ,R4Þ (1,1,1,1) (0.93,0.81,0.7,0.71) (0.9,1,1,0.9)

SRðR1 ,R2 ,R3 ,R4Þ (0.98,0.89,0.89,0.79) (0.93,0.72,0.78,0.71) (0.9,0.72,0.67,0.69)

CR 0.5 0.17 0.09

Table 6
Centroid points for breast cancer data by the DIAMOND method.

Rule # Union of cubes Sk,l bk,l,1 bk,l,2 bk,l,3 rk,l Sk,l bk,l,1 bk,l,2 bk,l,3 rk,l

R1 S1,1 [ � � � [ S1,32 S1,1 54.503 60.998 0 6.495 S1,2 37.5 61.498 4.003 9.995

S1,3 65.5 67 0 6.495 S1,4 50.003 67.995 0.003 5.995

S1,5 48.5 60.003 1.503 4.995 S1,6 58.498 60.498 0 5.995

S1,7 57.498 69 1.998 5.495 S1,8 32 68.998 2.498 11.495

S1,9 40.003 66.003 15 10.995 S1,10 41.998 65.498 2 4.495

S1,11 73.003 69 0.498 7.495 S1,12 44.5 61 1 4.495

S1,13 64 58 6.503 8.498 S1,14 49.503 61 6 5.498

S1,15 63 63.503 3 5.498 S1,16 60 69 28.498 14.498

S1,17 38 58 1.5 6.495 S1,18 76 59.003 2 7.998

S1,19 48.998 64 4.498 5.495 S1,20 60 64 12.498 6.498

S1,21 69 61.5 0 4.495 S1,22 38.998 61.998 12 11.995

S1,23 33 69 44.5 28.495 S1,24 45.5 64 2 4.495

S1,25 55 60 19 7.995 S1,26 48 58 5.998 4.998

S1,27 46.998 67.503 1 3.5 S1,28 59.5 64 3.998 4.498

S1,29 59 61 10 6.995 S1,30 34 58 19.498 12.498

S1,31 49.498 69 17.998 9.495 S1,32 51 67.998 19.498 8.495

R2 S2,1 [ � � � [ S1,24 S2,1 53 64.5 13 8.495 S2,2 48.503 58 24.498 14.995

S2,3 61 62 16.003 9.998 S2,4 54.5 65 5.003 5.498

S2,5 44 64.5 9 7.495 S2,6 44 63 38.5 21.495

S2,7 52 58 3 2.995 S2,8 41.003 68.998 3 5

S2,9 67 64 7 7.995 S2,10 61.503 60 3.997 4.494

S2,11 52.503 66.003 3.5 4 S2,12 71.003 62.003 5.003 6.997

S2,13 83 62.003 2.497 9.494 S2,14 55.503 61.494 8.003 4.994

S2,15 44 58 1.003 2.997 S2,16 45.997 65.003 2.5 4.494

S2,17 45.003 68.503 7 5.494 S2,18 66 65.997 10.003 7.994

S2,19 56 62 5 5.994 S2,20 46.003 65.494 3.003 4.494

S2,21 72.003 63.003 6.503 7.497 S2,22 83 58 3.503 13.497

S2,23 43.503 59 5.5 4.997 S2,24 55.503 58.503 4.5 4.494

S2,25 S2,25 43 64 0 0.994

S2,26 S2,26 60.5 65.5 1 2.994

Table 7
Comparison of results for the breast cancer dataset ðR1 ,R2Þ.

Items DIAMOND Decision tree Hyper-plane

support vector

ARðR1 ,R2Þ (1,1) (0.92,0.77) (0.8,0.6)

SR ðR1 ,R2Þ (0.98,0.81) (0.92,0.77) (0.92,0.7)

CR 0.5 0.03 0.01
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two methods. Detailed results for all three methods are reported in
Tables 14–16 of Appendix B.

5. Implications and limitations of the DIAMOND method

The implications and limitations of using DIAMOND method to
classify biological datasets are discussed as follows:
(i)
 The DIAMOND model in this paper is implemented by CPLEX
(2009) [21], one of the most powerful mixed-integer program-
ming packages. The program size for a linearized DIAMOND
model (i.e., Model 2) is listed below:

�
 number of binary variables: nq,

�
 number of continuous variables: mnq,

�
 number of linear constraints: 5mnq,
where n is the number of objects, m is the number of attributes,
and q is the number of classes. A PC version CPLEX can typically
solve a program containing around 1000 binary variables, 10,000
continuous variables and 100,000 linear constraints. Thus, using a
PC version CPLEX, the DIAMOND method is capable of solving
classification programs including 250 objects (n¼250), eight
attributes (m¼8) and four classes (q¼4), or solving the programs
with n¼450, m¼10 and q¼10.
(ii)
 The computing time for solving a mixed-integer program grows
rapidly as the number of binary variables increases. Therefore,
the computing time of the DIAMOND method is slower than
decision tree methods, especially for large size datasets. For
instance, for running the breast cancer dataset [20] (294 patients,
three attributes and two classes) by the DIAMOND method on a
PC version CPLEX takes about 10 min. While a decision tree
method takes only 5 min for solving the same problem. Recently,
Li and Lu [24] developed a logarithmic method to accelerate the
solution speed of solving an integer program, which may be
helpful in enhancing the DIAMOND method.
(iii)
 Existing genomic fingerprinting techniques, such as single
nucleotide polymorphisms (SNPs) and gene expression micro-
arrays, often yield records with thousands of entries that are
usually interpreted as binary. Therefore we need to use a
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mainframe version CPLEX to solve a large size classification
problem. Some current bioinformatics or biological problems are
formulated as a mixed-integer linear programs (MILP) and
solved by CPLEX software carrying out on mainframe versions.
Klau et al. [25] formed a linear program for solving minimal set
of probe selection on a microarray for each biological sample; Li
and Fu [26] and Deng et al. [27] proposed a MILP for solving DNA
microarray. Their methods were to minimize the number of
non-unique probes and can identify the algorithm complexity
(i.e., O(n)) and error tolerance, and some of the experiments
were carried out on Sun Fire 280 R with Solaris 8. Than et al. [28]
and Rockville [29] used MILP to solve genome-scale multi-locus
datasets and large scale biological datasets on mainframe
computers (such as Linux). By referring to their reports on
computation, we can estimate the problem size solvable by a
DIAMOND model on mainframe system as
�
 number of binary variables: nq620,000,

�
 number of continuous variables: mnq6100,000,

�
 number of linear constraints: 5mnq6500,000,
which implies the DIAMOND method, operated under a main-
frame system, can solve classification problems over 2000 object,
10 attributes and 10 classes.
(iv)
 The DIAMOND method uses mixed-integer techniques to find
separated cubes of various classes, which is an optimization
process of achieving an optimal solution. However, in con-
necting the cubes of the same class, the DIAMOND method
uses a heuristic process which may only reach a feasible
solution. How to use an optimal process to connect the
cubes of the same class is an interesting issue for further
study.
Table 8
Classification results for the Iris dataset by the DIAMOND method.

Rule Unions of

cubes

Covered objects (#) AR SR
6. Conclusion

This study presents a method, called DIAMOND, to classify objects
with various classes. In solving a mixed 0–1 linear program, DIA-
MOND generates a set of cubes to cluster objects of the same class.
This approach achieves an accuracy rate (AR) higher than a threshold
value, and maximizes the associated support rate (SR). The DIAMOND
method also keeps the compact rate (CR) for all rules as high as
possible via an iterative solution algorithm. Three commonly used
datasets (Iris, HSV, and the breast cancer) were tested to illustrate
that, comparing with a decision tree method and a hyper-plane
support vector method, the DIAMOND method can induce rules with
higher AR, SR, and CR values. Owing to the capacity restriction of
current mixed-integer programs, the DIAMOND method cannot solve
a classification problem containing thousands of objects in reasonable
time. More efforts are needed to accelerate the computation speed of
the DIAMOND method.
Correctly Incorrectly

R1 S1,1 1–50 None 1 1

R2 S2,1 [ S2,1 51, 52, 53, 54, 55, 56, 57, 58, 59, None 1 0.98

60, 61, 62, 63, 64, 65, 66, 67, 68, 69,

70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
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Appendix A

108, 109, 110, 111, 112, 113, 114,

115, 116, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128,

129, 130, 131, 133, 134, 135, 136,

137, 138, 139, 140, 141, 142, 143,

144, 145, 146, 147, 148, 149, 150

CRðR1 ,R2 ,R3Þ ¼
3
3¼ 1.
Proposition 1. Inequality (14) is linearized as follows referring to

Li [30]:

Xm

j ¼ 1

ðai,j�bk,l,jþ2ek,l,i,jÞrrk,lþMð1�uk,l,iÞ, ð17Þ
ai,j�bk,l,jþek,l,i,jZ0, ð18Þ

where ek,l,i,jZ0.

Proof.
(i)
 If ai,j�bk,l,jZ0 then ek,l,i,j ¼ 0. Which results in
ai,j�bk,l,jþ2ek,l,i,j ¼ ai,j�bk,l,j ¼ jai,j�bk,l,jj.
(ii)
 If bk,l,j�ai,jZ0 then ek,l,i,jZbk,l,j�ai,jZ0. Which results in
ai,j�bk,l,jþ2ek,l,i,jZbk,l,j�ai,j ¼ jai,j�bk,l,jj. &
Proposition 2. Inequality (15) can be linearized as follows:

Xm
j ¼ 1

jai0 ,j�bk,l,jj ð19Þ

¼
Xm
j ¼ 1

ð1�2lk,l,i0 ,jÞðai0 ,j�bk,l,jÞ ð20Þ

¼
Xm
j ¼ 1

ðai0 ,j�bk,l,j�2ai0 ,jlk,l,i0 ,jþ2zk,l,i0 ,jÞ4rk,l�Mvk,l,i0 , ð21Þ

where

ai0 ,j�bk,l,j�2ai0 ,jlk,l,i0 ,jþ2zk,l,i0 ,jZ0, ð22Þ

bjðlk,l,i0 ,j�1Þþbk,l,jrzk,l,i0 ,jrbk,l,jþbjð1�lk,l,i0 ,jÞ, ð23Þ

0rzk,l,i0 ,jrbjlk,l,i0 ,j, ð24Þ

bj is constant,bj ¼maxfai0 ,j; 8i
0=2ig and lk,l,i0 ,jAf0,1g: ð25Þ

Proof.
(i)
 If lk,l,i0 ,j ¼ 0 then zk,l,i0 ,j ¼ 0 from (23), which results in
jai0 ,j�bk,l,jj ¼ ai0 ,j�bk,l,j.
(ii)
 If lk,l,i0 ,j ¼ 1 then zk,l,i0 ,j ¼ bk,l,j from (22), which results in
jai0 ,j�bk,l,jj ¼ ai0 ,j�bk,l,j�2ai0 ,jþ2bk,l,j ¼ bk,l,j�ai0 ,j. &
Appendix B

Tables 8–16.



Table 11
Classification results for the HSV data by the DIAMOND method.

Rule Unions of cubes Covered objects (#) AR SR

Correctly Incorrect (miss)

R1 S1,1 [ S1,2 [ � � � S1,11 1, 2, 3, 4, 6, 7, 8, 9, 11, 14, 15, 16, 17, 19, 21, 22, 23, (30,33) 1 0.96

25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 46,

47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 60, 61, 66, 67,

68, 69, 70, 71, 72, 74, 76, 77, 78, 83, 84, 85, 88, 89,

91, 93, 94, 97, 98, 99, 100, 102, 104, 106, 108, 111,

112, 113, 114, 115, 116, 117, 119, 122

R2 S2,1 [ S2,2 [ � � � S2,6 10, 12, 20, 44, 45, 51, 54, 62, 73, 80, 86, 87, 90, 96, (44,73,96) 1 0.83

103, 110, 120, 121

R3 S3,1 [ S3,3 43, 79, 109, 118 �24 1 0.89

S3,2 [ S3,4 5, 13, 65, 82

R4 S4,1 18, 64 118 (95,105,107) 0.91 0.79

S4,2 39, 63, 75

S4,3 42, 59

S4,4 81, 92

S4,5 41, 101

CRðR1 ,R2 ,R3 ,,R4Þ ¼
4

14¼ 0:29.

Table 9
Decision tree method for the Iris dataset.

Rule Decision branch AR SR

R1 If ða3o3Þ then objects belong to class 1 1 1

R2 If ða3Z3Þ \ ða4o1:8Þ \ ða3o5Þ \ ða4o1:7Þ or if ða3Z3Þ \ ða4o1:8Þ \ ða3Z5Þ \ ða4Z1:6Þ then objects belong to class 2 0.98 0.98

R3 If ða3Z3Þ \ ða4o1:8Þ \ ða3o5Þ \ ða4Z1:7Þ or if ða3Z3Þ \ ða4o1:8Þ \ ða3Z5Þ \ ða4o1:6Þ or if ða3Z3Þ \ ða4Z1:8Þ then objects belong to class 3 0.98 0.98

CRðR1 ,R2 ,R3Þ ¼
3
6¼ 0:5.

Table 10
Hyper-plane method for the Iris dataset.

Rule Support vectors (polynomial function) AR SR

# ðyi ,yjÞ ða1 ,a2 ,a3 ,a4Þ

R1 1 (0.008,0.0004) (5.1,3.3,1.7,0.5) 1 1

2 (0,0.0006) (4.8,3.4,1.9,0.2)

3 (0.0005,0) (4.5,2.3,1.3,0.3)

4 (0,0.0006) (5.1,3.8,1.9,0.4)

R2 5 (�0,1) (5.9,3.2,4.8,1.8) 0.98 0.96

6 (�0,0.535) (6.3,2.5,4.9,1.5)

7 (�0,0.598) (6.7,3,5,1.7)

8 (�0,1) (6,2.7,5.1,1.6)

9 (�0.009,0) (5.1,2.5,3,1.1)

R3 10 (�0.0018,�0.0302) (4.9,2.5,4.5,1.7) 0.96 0.98

11 (�0,�0.1541) (6,2.2,5,1.5)

12 (�0,�0.2262) (6.2,2.8,4.8,1.8)

13 (�0,�0.6437) (6.1,3,4.9,1.8)

14 (�0,�0.0793) (7.2,3,5.8,1.6)

15 (�0,�1) (6.3,2.8,5.1,1.5)

16 (�0,�1) (6,3,4.8,1.8)

CRðR1 ,R2 ,R3Þ ¼
3

16¼ 0:1875.

Table 12
Decision tree method for the HSV dataset.

Rules Decision branch AR SR

R1 If (a11 o 12.2) \(a3 Z 0.83) \(a6 o 133) \(a9 o 5.7) \(a7 Z 88) or 0.93 0.93

If (a11 o 12.2) \(a3 Z 0.83) \(a6 o 133) \(a9 Z 5.7) \(a8 o 2.6) or

If (a11 o 12.2) \(a3 Z 0.83) \(a6 o 133) \(a9 Z 5.7) \(a8 Z 2.6) \(a6 Z 60) \(a2 Z 28) or

If (a11 o 12.2) \(a3 Z 0.83) \(a6 Z 133) \(a9 o 5) or
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Table 12 (continued )

Rules Decision branch AR SR

If (a11 Z 12.2) \(a6 o 166) \ (a9 o 14.2) \(a2 o 37) \(a9 o 11.7) \(a3 o 11) or

If (a11 Z 12.2) \(a6 o 166) \(a9 o 14.2) \(a2 o 37) \(a9 Z 11.7) \(a7 o 27) or

If (a11 Z 12.2) \(a6 o 166) \(a9 o 14.2) \(a2 o 37) \(a9 Z 11.7) \(a7 Z 27) \(a6 o 57) or

If (a11 Z 12.2) \(a6 o 166) \(a9 o 14.2) \(a2 Z 37) \(a2 Z 46) or

If (a11 Z 12.2) \(a6 o 166) \(a9 Z 14.2) or

If (a11 Z 12.2) \(a6 Z 166) \(a11 o 39.1) \(a6 o 249) \(a9 o 8.7) \(a2 o 26) or

If (a11 Z 12.2) \(a6 Z 166) \(a11 o 39.1) \(a6 Z 249) or

If(a11 Z 12.2) \(a6 Z 166) \(a11 Z 39.1) \(a3 o 0.83) then objects belong to class 1

R2 If (a11 o 12.2) \(a3 Z 0.83) \(a6 Z 133) \(a9 Z 5) or 0.81 0.72

If (a11 Z 12.2) \(a6 o 166) \ (a9 o 14.2) \(a2 o 37) \(a9 o 11.7) \(a3 Z 11) or

If (a11 Z 12.2) \(a6 o 166) \(a9 o 14.2) \(a2 o 37) \ (a9 Z 11.7) \(a7 Z 27) \(a6 Z 57) or

If (a11 Z 12.2) \(a6 Z 166) \(a11 o 39.1) \(a6 o 249) \(a9 Z 8.7) \(a6 o 214) then objects belong to class 2

R3 If (a11 o 12.2) \(a3 o 0.83) or 0.7 0.78

If (a11 Z 12.2) \(a6 o 166) \(a9 o 14.2) \(a2 Z 37) or \(a2 o 46) or

If (a11 Z 12.2) \(a6 Z 166) \(a11 o 39.1) \(a6 o 249) \(a9 o 8.7) \(a2 Z 26) then objects belong to class 3

R4 If (a11 Z 12.2) \(a6 Z 166) \(a11 o 39.1) \(a6 o 249) \(a9 Z 8.7) \(a6 Z 214) or 0.71 0.71

If (a11 o 12.2) \(a3 Z 0.83) \(a6 o 133) \(a9 o 5.7) \(a7 o 88) or

If (a11 o 12.2) \(a3 Z 0.83) \(a6 o 133) \(a9 Z 5.7) \(a8 Z 2.6) \(a6 o 60) or

If (a11 o 12.2) \(a3 Z 0.83) \(a6 o 133) \(a9 Z 5.7) \(a8 Z 2.6) \(a6 Z 60) \(a2 o 28) or

If (a11 Z 12.2) \(a6 Z 166) \(a11 Z 39.1) \(a3 Z 0.83) then objects belong to class 4

CRðR1 ,R2 ,R3 ,,R4Þ ¼
6

24¼ 0:17.

Table 13
Hyper-plane method for the HSV dataset.

Rule # Support vectors (polynomial function) AR SR

(yi) ða1 ,a2 , . . . ,a11Þ

R1 1 (0.229,0.114,0.164) (0,22,2,0,8.3,111,28,9.2,20.8,192,39.8) 0.9 0.9

^
19 (0.2290.1140.164) (0,35,4,0,3.8,57,116,2.2,10.4,191,19.8)

R2 20 (�1,0.5,0.713) (0,33,2,2,8.7,135,54,11.8,29,186,53.8) 1 0.72

^
33 (�1,0.5,0.713) (0,28,4,0,8.9,88,28,7.8,12.3,163,20)

R3 34 (�1,�1,1) (0,54,2,3,5.3,166,124,8.7,6.8,236,16) 1 0.67

^
40 (�1,�1,1) (0,45,3,0,5.2,67,128,3.5,11.8,230,27.1)

R4 41 (�1,�1,�0.7) (1,40,4,0,8.1,62,17,5,5.6,41,2.3) 0.9 0.69

^
45 (�1,�1,�0.7) (0,50,8,4,10.6,185,21,19.6,25.3,224,56.6)

CRðR1 ,R2 ,R3 ,,R4Þ ¼
4

45¼ 0:09.

Table 14
Classification results for the breast cancer dataset by the DIAMOND method.

Rule Cube # Covered objects (#) AR SR

Correctly Incorrectly (miss)

R1 S1,1 [ S1,2[ 1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, (10, 43, 50, 70, 80, 84, 85, 89, 106, 113, 134, 175, 177, 245, 263,

271, 288, 291, 298)

1 0.92

S1,3 [ S1,4[ 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36,

S1,5 [ S1,6[ 37, 38, 39, 40, 41, 42, 47, 48, 49, 51, 52, 53, 56, 57,

S1,8 [ S1,9[ 58, 59, 60, 61, 62, 67, 68, 69, 71, 72, 73, 77, 78, 79,

S1,10 [ S1,11[ 86, 87, 88, 94, 95, 96, 100, 101, 102, 103, 104, 105,

S1,13 [ S1,14[ 107, 111, 112, 114, 117, 118, 119, 120, 121, 122, 123,

S1,16 [ S1,17[ 124, 127, 128, 129, 130, 131, 132, 133, 135, 136, 139,

S1,18 [ S1,19[ 140, 141, 142, 147, 148, 149, 150, 151, 152, 153, 154,

S1,20 [ S1,21[ 155, 156, 163, 164, 165, 166, 167, 172, 173, 174, 176,

S1,22 [ S1,24[ 179, 180, 183, 184, 185, 187, 193, 197, 203, 204, 205,

S1,26 [ S1,28[ 206, 207, 209, 210, 211, 213, 214, 215, 217, 218, 219,

S1,29 221, 226, 235, 237, 243, 244, 247, 248, 249, 250, 251,

256, 257, 258, 264, 265, 267, 268, 273, 276, 277, 279,

280, 281, 284, 285, 289, 290, 292, 293, 295, 296, 297,

299, 301, 302, 303, 304

S1,7 188, 190, 194, 195, 196, 202, 208, 212, 223, 227

S1,12 [ S1,15 [ S1,30 201, 220, 222, 236, 242, 252, 254, 266
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Table 16
Hyper-plane method for the breast cancer dataset.

Rule # Support vectors (linear function) AR SR

(yi) ða1 ,a2 ,a3Þ

R1 1 �1 (31,65,4) 0.8 0.92

^ ^ ^
81 �1 (76,67,0)

R2 1 (�1) (38,69,21) 0.6 0.7

^ ^ ^
80 (�1) (67,64,8)

CRðR1 ,R2Þ ¼
2

161¼ 0:01.

Table 14 (continued )

Rule Cube # Covered objects (#) AR SR

Correctly Incorrectly (miss)

S1,23 189, 228, 253, 255

S1,25 272, 278, 283

S1,27 178, 186

R2 S2,1 [ S2,9 44, 63, 76, 93, 97, 108, 109, 137, 161, 169, 216 (8, 9, 25, 35, 45, 55, 83, 90, 98, 115, 126, 143, 145,

232, 240, 259, 269, 294)

1 0.78

S2,2 [ S2,3 [ S2,4 116, 125, 146, 162, 168, 170, 171, 181, 182, 191, 192, 199, 224,

239, 241, 261, 262, 270

S2,5 138, 144, 157

S2,6 74, 81, 110

S2,7 260, 274, 275

S2,8 46, 54, 91

S2,10 160, 198

S2,11 282, 300

S2,12 286, 287

S2,13 65, 66

S2,14 64, 75

S2,15 158, 200

S2,16 82, 99

S2,17 305, 306

S2,18 230, 246

S2,19 225, 231

S2,20 92

CRðR1 ,R2Þ ¼
2

23¼ 0:09.

Table 15
Decision tree method for the breast cancer dataset.

Rules Decision branch AR SR

R1 If ða3 o9Þ \ ða1 o78Þ \ ða3 o3Þ \ ða1 o48Þ \ ða2 o64Þ \ ða1 o43Þ or 0.92 0.77

If ða3 o9Þ \ ða1 o78Þ \ ða3 o3Þ \ ða1 o48Þ \ ða2 o64Þ \ ða1 Z43Þ \ ða2 Z60Þ or

^ or

If ða2 Z61Þ \ ða3 Z25Þ then objects belong to class 1

R2 If ða3 o9Þ \ ða1 o78Þ \ ða3 o3Þ \ ða1 o48Þ \ða2 o64Þ \ ða1 Z43Þ \ ða2 o60Þ or 0.92 0.77

^ or

If ða3 Z9Þ \ ða2 Z61Þ \ ða3 o25Þ \ ða1 Z65Þ then objects belong to class 2

CRðR1 ,R2Þ ¼
2

60¼ 0:03.
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