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Abstract We propose a low-complexity algorithm for ste-
reoscopic video applications that generates a high-quality
3D image depth map from a single 2D image. Based on their
characteristics, 2D images are classified into one of three
categories before being processed by the proposed low-
complexity algorithm to generate corresponding depth
maps. We also extend the 3D depth algorithm to construct
a parallel 3D video system. A thread-level superscalar-
pipelining approach is developed to parallelize the 3D video
system. Experimental results for HD1080 resolution images
demonstrate that the algorithm can generate high-quality
depth maps with an average reduction in the computational
complexity of 98.2 % compared with a conventional algo-
rithm. The parallel 3D video system can achieve a process-
ing speed of 63.66 fps for HD720 resolution video.

Keywords 3D image/video . Depth map . Stereo . Parallel
computing

1 Introduction

3D images/videos are becoming increasingly popular be-
cause people desire more realistic visual effects than those
currently provided by 2D image/videos. The major dif-
ference between 2D and 3D content is depth map in-
formation, which represents the relative distances of
individual objects in 2D content with respect to the
viewer. Consequently, depth map information is impor-
tant for 3D display technology.

Several methods have been proposed for generating
depth maps. Cheng et al. [1] used two or more images from
different views to generate a depth map; this technique
requires using a stereo camera to simultaneously obtain
images from different views. Most commercial cameras
are only capable of obtaining images from a single view,
but it is considerably more difficult to obtain an accurate
depth map from a single 2D image than from multiple 2D
images. Thus, considerable researches have been done to
generate depth maps from single 2D images and several
methods have been proposed to achieve this, including
image classification [2, 3], vanishing point (VP) detection
[2, 4], mean shift segmentation [5], and a post-processing
method using a joint bilateral filter (JBF) [6]. However, all
these methods suffer from high computational complexity,
which makes them difficult to apply in real-time applica-
tions. Thus, there is a strong demand to develop a low-
complexity algorithm for generating depth maps from single
images.

In this study, we investigate the characteristics of 2D
images and propose a low-complexity algorithm for gener-
ating depth maps. Experimental results for HD1080 images
demonstrate that the proposed algorithm can generate high-
quality depth maps with an average reduction in the
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computational complexity of 98.2 % compared with a con-
ventional algorithm. In addition, the proposed algorithm is
highly feasible for both hardware and software implemen-
tation, which makes it suitable for a variety of stereo
applications.

We construct a parallel 3D video system based on the
proposed 3D depth algorithm. This system can accept var-
ious video formats (after decoding by a video decoder), and
it can generate the corresponding depth information. Al-
though the 3D depth algorithm has low complexity, the
whole system still requires a large amount of computation
to achieve real-time processing. In the past few years,
single-core processors have been gradually replaced by
multicore processors that employ parallelization technology
[7, 8], which give significantly improved performance. Ac-
cordingly, we adopt a thread-level superscalar-pipeline par-
allelization approach to implement the proposed algorithm
on multicore processors. Experimental results demonstrate
that the 3D video system can achieve a processing speed of
63.66 fps for HD720 resolution.

1.1 Contributions

This paper makes the following contributions:

& Algorithm. We proposed a low-complexity depth map
generation algorithm for real-time 3D applications. The
proposed algorithm is described in detailed. The com-
putational complexity of the proposed algorithm is ap-
propriately represented in a target-independent way, so
that it could be a good reference for the evaluation of the
proposed algorithm being considered to be realized in
different platforms.

& Implementation. The algorithm was implemented by a
thread-level superscalar-pipelining approach for real-time
processing. Besides the parallel programming model, two
synchronization approaches were developed to appropri-
ately handle synchronization issues. These approaches are
beneficial to program developers to reduce the synchroni-
zation problems when developing multi-thread parallel
programs for video processing applications.

General image (with VP)  Scenery image

(with sky/mountains)

 Close-up image

a b c
Figure 1 Sample images of the
three image categories defined
in the proposed algorithm.
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Figure 2 Proposed original depth map generation algorithm.
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& Experimental results. The parallel depth map gener-
ator was integrated with a 3D video system for the
evaluation. Experimental results for HD1080 resolu-
tion images demonstrate that the algorithm can gen-
erate high-quality depth maps with an average
reduction in the computational complexity of
98.2 % compared with a conventional algorithm.
The parallel 3D video system can achieve a pro-
cessing speed of 63.66 fps for HD720 resolution
video.

The remainder of this paper is organized as follows.
Section 2 describes the proposed low-complexity depth-

map-generation algorithm, and Section 3 describes the
thread-level superscalar-pipeline parallelization approach
adopted in this study. Section 4 reports the results of simu-
lations and measurements of the quality of the algorithm, as
well as a performance evaluation of the thread-level
superscalar-pipeline approach. Finally, conclusions are pre-
sented in Section 5.
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Figure 3 Proposed low complexity depth-map generation algorithm.

Figure 4 Example of a 5×5 Hough transform in the proposed
algorithm.
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Figure 5 Proposed image classification approach.
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2 Depth Map Generation Algorithm

We observed that the characteristics of a single 2D
image dramatically affect the computational complexity
when generating a depth map from it. The processes
employed in the generation algorithm can be adjusted
based on the characteristics of an image to simulta-
neously realize a low computational complexity and
generate a high-quality depth map. This concept repre-
sents the design philosophy of the proposed algorithm. The
algorithm can operate on three types of input images: images
of general scenes with a vanishing point (VP), images
of scenery containing sky and mountains, and close-up
images. Figure 1 shows a sample image for each cate-
gory. Images are classified based on several image char-
acteristics. Images containing few vanishing lines are
identified as close-up images. Images containing a suf-
ficient number of vanishing lines are classified as gen-
eral images. Finally, images containing a sufficient
number of vanishing lines and sky and mountains are
classified as scenery images. Figure 2 depicts the orig-
inal proposed algorithm for generating depth maps from
single 2D images. The algorithm classifies input images
according to the three categories and generates depth
maps based on the following techniques: edge detection
using Sobel filtering, line detection using Hough trans-
form, vanishing region detection, mean shift segmenta-
tion, depth map merging, depth map post-processing by
joint bilateral filtering (JBF), and block-based contrast
filtering for identifying foreground objects in close-up
images.

To make the algorithm suitable for real-time appli-
cations, we optimized these processing steps to reduce
the computational complexity while preserving high
image quality. Figure 3 shows the proposed low com-
plexity depth map generation as compared to the orig-
inal one (shown in Fig. 2). In the proposed algorithm,
we simplify the complexity of Sobel edge detection,
Hough transform, mean shift segmentation, and JBF to
make it suitable for embedded applications. When re-
ducing the algorithm complexity, we need to face the
design trade-off in balancing the depth map quality and
complexity. In fact, it is hard to measure the quality of
depth map during the process of developing the pro-
posed depth generation algorithm because stereo effect
for 3D content is a perceptual feeling. Therefore, we
try to balance between the complexity and the quality
in a heuristic way. Each time when we decide to
simplify some operation, we perform subjective quality
measurement that adopts DSCQS (Double Stimulus
Continuous Quality Scale) established by ITU-R and
widely used in image and video research area. With an
acceptable subjective quality as compared to the exist-
ing designs like [9, 10], we repeat the complexity
reduction until all of the main computational intensive
components are optimized. Below, we describe each
processing step in detail.

2.1 3×3 Sobel Filter

A Sobel filter is used to obtain edge information from
the input image, which is used to detect vanishing
lines in the next step. The algorithm employs a 3×3
Sobel filter. The input pixels for the Sobel filter can be
the average value of pixels in RGB format or the Y
pixels in YUV format. In Sobel filtering, we apply
horizontal and vertical filters to respectively obtain
the values of Gx and Gy, as expressed by (1). We next
compute the final value of G from Gx and Gy by using
(2). To construct an edge information map, we set the
current pixel to 1 if the value G exceeds a certain
threshold and to 0 otherwise. After Sobel filtering,
the algorithm obtains edge map information (see

GDM of Figure 1(a). GDM of Figure 1(b).

a b

Figure 6 GDMs of the images in Fig. 1(a) and (b).

Original image Mean shift segmentation 4-bit segmentation

a b cFigure 7 Visual comparison
between the mean shift
segmentation and the proposed
4-bit segmentation.
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Fig. 3), which it uses to detect vanishing lines in the
next step.

ð1Þ

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGx2 þ Gy2Þ

p
ð2Þ

To reduce the computational complexity of Sobel filter-
ing in (2), we replace the square and square root operations
by the sum of the absolute value operation, as shown in (3),
since we found that the results generated by (3) are
similar to those generated by (2). This reduces the
computational complexity of Sobel filtering by about
65 %.

G ¼ Gxj j þ Gyj j ð3Þ

2.2 5×5 Simplified Hough Transform

The Hough transform is used to detect lines in the
images. The input data for the Hough transform is the
edge map from the output of the Sobel filtering. The
original Hough transform algorithm [11] detects lines by
searching all pixels between 0° and 180°. The coordi-
nates of each pixel are transformed from Cartesian
coordinates (x, y) to polar coordinates (ρ, θ) by using
the following expression:

x cos θþ y sin θ ¼ ρ: ð4Þ
The appearance at each set of (ρ, θ) values is then

recorded. To reduce the complexity of the Hough transform,
we used a 5×5 block as the basic processing unit and
detected only the pixels with non-zero values in the edge
map. Figure 4 shows an example in which pixel S is the
current pixel with a non-zero value. We first search all the
white pixels to check whether any of them has a value of 1.
If pixel A has a value of 1, we will further search the gray
pixels X and Y. If pixel X or Y has a value of 1, we perform
the Hough transform to obtain the coordinates (ρ, θ) for
between 147° and 168° in 1° intervals. Using the 5×5
Hough transform reduces the complexity by about 56 %
because it is not necessary to search all the pixels between
0° and 180°. After processing all the pixels in the edge map,
the algorithm sorts these (ρ, θ) data and selects the line with

the most pixels as the vanishing line. On average, the
algorithm records about 24 lines as vanishing lines in an
image, which are sufficient to determine the vanishing
region.

2.3 Vanishing Region Detection with Classification

To reduce the complexity of detecting the VP, we pro-
pose the concept of vanishing region detection (VRD)
for detecting the vanishing region in the image based on
the vanishing line information obtained from the Hough
transform. The reason for detecting the vanishing region
instead of the VP is that the vanishing region is usually
close to its associated VP and the vanishing region can
be located from fewer vanishing lines. The algorithm
first determines the image classification based on the
vanishing line information and it then detects the
vanishing region in terms of the image classification.
Figure 5 shows the proposed image classification ap-
proach. First, the algorithm determines the number of
points and lines obtained by applying Sobel filtering
and the Hough transform. If this number is less than a
predefined threshold, the image is classified as a close-
up image. The algorithm then analyzes the image to
detect whether it contains sky and mountain. If it does,
it is classified as a scenery image. Otherwise, the image
is classified as a general image.

In VRD, the procedure used to detect the vanishing
region depends on the classification of the image. For
general images, all intersection points of vanishing lines are
calculated and then an 8×8 region is used to group the nearest

a b

Figure 8 Final depth maps for images in Fig. 1(a) and (b).

Figure 9 Depth map for image shown in Fig. 1(c).
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points in the image; this region is defined as a vanishing
region. A vanishing region may be located inside or outside
the image. If the vanishing region is outside the image, it is
replaced by a new one located on the closest image margin.
For general images, the algorithm generates a gradient depth
map (GDM) based on the distance between each pixel and the
vanishing region. Figure 6(a) shows the GDM for the image in
Fig. 1(a). Since the sky and mountains in scenery images are
usually at the top of the images, we set the top of these images
as the vanishing region to compute the GDM. Figure 6(b)
shows the GDM of the image in Fig. 1(b).

2.4 4-Bit Segmentation

Segmentation is used to identify objects inside images.
Mean shift segmentation is the most commonly used
segmentation algorithm in 3D image processing [5].
Mean shift segmentation improves the quality of the
depth map, but it increases the computational complex-
ity, making it difficult to apply in real-time applications.
For this reason, we employ color-based grouping that
involves extracting 4-bit color from each pixel and
grouping pixels with similar colors into the same object.
This 4-bit segmentation reduces the computational com-
plexity by about 99.8 % relative to that using mean
shift segmentation. Figure 7 shows the images processed
with these two algorithms. In the proposed depth gen-
eration algorithm, segmentation is responsible for pro-
viding region information. Although the proposed 4-bit
segmentation only produces rough segmentation, it has
provided enough region information for following pro-
cessing and significantly improves the feasibility of real-
time segmentation.

2.5 Merging Depth Map

Segmentation and edge detection are used to obtain
several intermediate depth maps. Below, we integrate
them into a merged depth map, as shown in Fig. 3.
We use the GDM as the fundamental depth map. How-
ever, since it is a preliminary depth map, it cannot
represent the shapes of the objects in the original image.
To identify the objects in the original image, we adjust
the depth values in the same color-group region by

referencing the results of color-based grouping from
the phase of 4-bit removing segmentation. The depth
values of pixels in the same color-group region are
assigned to the deepest value among the depth values
in the region in the GDM.

2.6 Simplified Joint Bilateral Filtering

Simplified JBF (SJBF) is used to refine the merged depth
map by increasing the edge information of objects in the
original image. In the original JBF algorithm [12], the target
image is produced through fine-tuning the source image by a
reference image. The proposed algorithm employs a slightly
modified formula, as shown in (5), from the one used in the
original JBF algorithm. In (5),D,D’, and I indicate the source,
target, and reference images, respectively; p represents the
position of the current pixel and q represents any position in
the region S, a predefined region around pixel p. For example,
Iq represents the pixel data at position q in the reference image
I. In addition, Wp,q is a weighting function that includes a
spatial distance function gd for computing the distance be-
tween p and q and an intensity range function gr for computing
the difference between Dp and Iq.

The intensity range function gr functions as an edge-
stopping function in the original JBF algorithm; howev-
er, it is not necessary to detect edges in the SJBF
algorithm because the edge information is included in
the merged depth map. Therefore, we can reduce the

Figure 10 Proposed parallel
3D video system.

Figure 11 Proposed synchronized FIFO.
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computational complexity by about 26 % by removing
edge-stopping operations from the intensity range func-
tion gr. Figure 8(a) and (b) shows the depth maps
produced by SJBF for the images in Fig. 1(a) and (b),
respectively.

D
0
p ¼

P
q2s

Wp;q � Dq
P
q2s

Wp;q

,
;where

Wp;q ¼ gdðp; qÞ � grðDp; IqÞ
ð5Þ

2.7 Block-Based Contrast Filtering

Block-based contrast filtering is used to differentiate be-
tween foreground and background objects in close-up
images. We choose a 3×3 block as the basic processing unit
for detection. Contract filtering is specified in (6), where
Imax and Imin are respectively the largest and smallest values
in the 3×3 block. This algorithm uses this contrast value to

determine whether the 3×3 block belongs to a foreground or
background object.

contrast ¼ Imax � Imin

Imax þ Imin

ð6Þ

After detection, it assigns the depth value 0 to background
pixels, which indicates that they are at the furthest location in
the image, and assigns the depth value 1 to foreground pixels.
For close-up images, the depth map contains only two layers,
namely foreground and background. Figure 9 shows the final
depth map obtained using 3×3 contrast filtering for the close-
up image shown in Fig. 1(c).

3 Proposed Parallelization Methodology

This section presents a parallel 3D video system based on the
proposed 3D depth map generation algorithm. For generality,
this system is designed to perform real-time processing on a

// DATA represents the data will be pushed into the FIFO.
Producer (DATA)
{

// check whether FIFO is full.
if (fifo.check_full() == TRUE) {

fifo.wait_until_not_full(); // wait if FIFO is full.
}

// get the address of the front end of the FIFO.
data_buffer = fifo.get_front_end();

// write data into data_buffer.
fifo.write(data_buffer, DATA);

// increase front_ptr, FIFO length, and
// issue a signal to consumer end.
fifo.produce_update();

}

Figure 12 Pseudo code for
synchronization at the producer
end of the synchronized FIFO.

// DATA represents the data will be popped off the FIFO.
DATA Consumer()
{

// check whether FIFO is empty.
if (fifo.check_empty() == TRUE) {

fifo.wait_until_not_empty(); // wait if FIFO is empty.
}

// get the address of the rear end of the FIFO.
data_buffer = fifo.get_rear_end();

// read data into data_buffer.
DATA = fifo.read(data_buffer);

// increase rear_ptr, decrease FIFO length, and
// issue a signal to producer end.
fifo.consume_update();
return DATA;

}

Figure 13 Pseudo code for
synchronization at the
consumer end of the
synchronized FIFO.
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multicore platform by employing thread-level parallelization
techniques, and the target multicore platform does not rely on
any hardware-specific accelerations. This strategy makes the
proposed system can be smoothly migrated to a multicore
platform which supports thread-like APIs. Figure 10 shows
the proposed parallel 3D video system. The system consists of
a video dispatcher, a pseudo display, and several pipelined 3D
depth map generators. At the front end of the proposed sys-
tem, a video dispatcher receives videos decoded by a video
decoder. It splits an input video into several individual frames
and dispatches each frame to a pipelined 3D depth map
generator. The pseudo display then collects all the depth maps
in order. The following subsections describe thread-level
superscalar-pipeline parallelization in detail.

3.1 Thread Synchronization

To ensure that the proposed parallel 3D video system operates
correctly, it is necessary to establish appropriate synchroniza-
tion mechanisms between the threads. Two synchronization
approaches are developed and adopted in the system. One is a
synchronized first-in, first-out (FIFO) buffer. We use the
synchronized FIFO to connect any two threads once if
one of them has to deliver data to the other. As shown
in Fig. 11, the proposed synchronized FIFO is essential-
ly a circular FIFO carried out based on a producer–
consumer mechanism. The front and rear ends of the
synchronized FIFO are connected to threads that func-
tion as the producer and the consumer, respectively. The
producer can write data to the FIFO except when the
FIFO is full. Similarly, the consumer can read data from
the FIFO except when the FIFO is empty. Using this
synchronization mechanism, synchronization can be eas-
ily realized in the proposed parallel 3D video system.

Below, we describe how the proposed synchronized FIFO
handles synchronization between two threads. Figure 12 is the
pseudo code for synchronization at the producer end of the
synchronized FIFO. The thread at the producer end checks
whether the FIFO is full; if it is, the thread waits until the FIFO
is not full. After obtaining access permission, the thread starts
to write its data to the FIFO. The thread then calls a confir-
mation function that updates the information recorded in the
FIFO and sends a notification signal to the thread at the
consumer end of the FIFO. We consider synchronization at
the consumer end. Figure 13 shows the pseudo code for
synchronization at the consumer end of the synchronized
FIFO. The thread at the consumer end of the synchronized
FIFO checks whether FIFO is empty; if it is, the thread waits
until the FIFO is not empty. After obtaining access permis-
sion, the thread can start to read data from the FIFO. The
thread also updates the information of the FIFO by calling a
confirmation function and it sends a notification signal to the
thread at the producer end of the FIFO.

An alternative synchronization approach is a synchronized
mailbox, which is used to synchronize threads. Figure 14
depicts the proposed synchronized mailbox. The pipeline
workers execute the designated tasks and the pipeline
taskmaster monitors the processing status of all the pipe-
line workers. Each pipeline worker puts a message in the
mailbox and sends a notification signal to the taskmaster.
The taskmaster then accesses the message in the mailbox.
Only one taskmaster or worker can access the mailbox at a
time.

3.2 Task Partition

This section describes the concept of thread-level pipe-
line parallelization. We assume that the entire process
consists of a sequence of similar computations and that
each computation can be divided into several small
tasks. In a similar manner as the pipeline mechanism,
the tasks of different computations can be processed
simultaneously. The working performance of a pipeline
depends on the processing speed of the longest pipeline

Pipeline
taskmaster

Pipeline
worker

Pipeline
worker

Pipeline
worker

Pipeline
worker

Figure 14 Proposed synchronized mailbox.

Figure 15 Workload distribution for the proposed 3D depth
algorithm.
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stage. Therefore, the workload for each task has to be
balanced to maximize the performance of the whole
pipeline.

For such a purpose, we analyzed the workload distribu-
tion for the proposed 3D depth map algorithm (see Fig. 15).
Using this data, we can appropriately partition the process-
ing flow of the proposed 3D depth algorithm to balance the
load. The working flow of the proposed 3D depth generator
is partitioned into five stages, S1–S5, as shown in Fig. 16.
Although the workload has been distributed as evenly as
possible, the workloads in some stages still differ con-
siderably from those in other stages. As depicted in
Fig. 16, the workload of stage S5 is much lower than
those in the four other stages. Stage S5 cannot be
merged with stage S4 because stage S4 has one of the
largest workloads.

3.3 Data Packetization

To realize thread-level pipeline parallelization, we use
the synchronized FIFOs mentioned in Section 3.1 to
connect the stages to construct a pipeline. As shown
in Fig. 17, each FIFO between two stages functions like

a conveyor. At each pipeline stage, extra buffers are
required to temporarily reference data for subsequent
stages. In addition, all related buffers are bundled into
a packet, which is transferred between stages. By this
technique, the pipeline worker at each stage can easily
access relevant data from the current packet and per-
form the designated task on it.

3.4 Pipeline Control

Pipeline control plays an important role in thread-level
pipeline parallelization. Figure 18 depicts the pipeline con-
trol system used in the proposed pipelined 3D depth map
generator. Each pipeline worker is responsible for executing
a designated task. The pipeline taskmaster monitors the
processing status of all the pipeline workers. The control
system includes two kinds of control signals. The first
control signal is an inter-stage control signal. Each pipeline
worker is connected with its neighbors through the synchro-
nized FIFOs. Each pipeline worker can deliver the data
and control signal from its preceding neighbor or to its
following neighbor. The second control signal is the
over-stage control signal. It is used between the pipeline
taskmaster and all the pipeline workers. This control
signal is transferred through the synchronized mailbox
described in Section 3.1.

Figure 19 shows the work flow of the pipeline taskmas-
ter. The pipeline taskmaster initializes the synchronized
FIFOs and creates threads, which are designated as pipeline
workers. All the pipeline workers then operate while the
pipeline taskmaster enters waiting status. When a pipeline
worker completes its task, it sends a notification signal to
the pipeline taskmaster. When the pipeline taskmaster
receives this signal, it checks whether Nfinished < Ntotal,
where Nfinished is the number of pipeline workers that have
finished their tasks and Ntotal is the total number of pipeline
workers. The pipeline taskmaster waits until all the pipeline
workers have finished. Finally, it destroys the synchronized
FIFOs and terminates.

Figure 20 shows the working flow of the pipeline work-
ers. The pipeline workers can be classified into three types
based on which pipeline stage they are located at: the head,
the tail, and the body stages. Each pipeline worker checks its
input FIFO. It then checks the termination flag delivered by
the preceding pipeline worker. If the termination flag is not
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Figure 17 Concept of data
packetization in the proposed
3D depth map generator.
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set, the pipeline worker will read data from its input FIFO
and execute the designated task with the data. Finally, it
checks its output FIFO and writes the processed data to it.
Some additional steps have to be included in the work flow
since each image packet is created by the head-stage pipe-
line worker and destroyed by the tail-stage pipeline worker.
These steps are repeated until the termination flag is set. As
soon as the termination flag is set, the pipeline worker exits
the loop and writes the termination flag to its output FIFO to
inform the next pipeline worker to terminate. This step is
skipped by the tail-stage pipeline worker. Before terminat-
ing, each pipeline worker notifies the pipeline taskmaster of
its termination.

3.5 Superscalar-Pipeline Parallelization

Although the performance of the algorithm was im-
proved by employing thread-level pipeline paralleliza-
tion, the throughput of the pipelined 3D depth map
generator is much too low for real-time processing. To
increase the throughput, we employed the design con-
cept of superscalar processors [13]. Superscalar process-
ors can improve the instruction-level parallelism because
they use multiple pipelines. Consequently, we propose a
thread-level superscalar-pipeline parallelization that is an
extension of the pipeline-based parallelization described
in the previous section. Figure 21 compares the execu-
tion behaviors of sequential, pipelined, and superscalar-
pipeline computations. This figure assumes that the
pipelined computation employs a five-stage (S1–S5)

pipeline and the superscalar-pipeline computation uses
three five-stage pipelines. T1, T2, and T3 respectively
represent the completion timestamps of processing three
frames for sequential, pipelined, superscalar-pipeline com-
putations. The superscalar-pipeline computation clearly
employs higher parallelism and takes less time to achieve
the same throughput as the sequential and pipelined
computations.

3.6 Hardware-specific Acceleration

The proposed parallelization methodology is designed to
exploit the multi-level parallelisms according to the features
of the proposed 3D depth generation algorithm. In the
coarse-grained view, the thread-pipelining technique expo-
ses task-level parallelism, and the superscalar technique
exploits data-level parallelism. In the fine-grained view,
hardware/software approaches can be appropriately intro-
duced to enhance the performance of the phases in the
proposed 3D depth generation algorithm. If the performance
of the phases is improved, developers are suggested to re-
partition the processing flow into pipeline stages to obtain
best performance benefits.

Several platforms provide hardware-specific mechanisms
(e.g., DSP, GPU, and SIMD instruction) to speed up
multimedia-related computations. These mechanisms can
be used to enhance the performance of phases in the pro-
posed algorithm, and then are seamlessly cooperated with

Pipeline
taskmaster

Pipeline
worker

Pipeline
worker

Pipeline
worker

Pipeline
worker

control path

data path

Figure 18 Pipeline control
system in the proposed 3D
depth map generator.

Figure 19 Work flow of the pipeline taskmaster.
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Figure 20 Work flow of the pipeline worker.
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the proposed methodology. We describe these issues as
follows:

& DSP and GPU: For a heterogeneous multicore system
with DSPs or GPUs, the proposed methodology can be
realized by multiple CPU cores, and DSPs or GPUs could
be used to improve the performance of the phases in the
proposed algorithm. Developers need to use vendor-
provided low-level APIs to control DSPs or GPUs, and
to appropriately handle I/O operations among CPU cores
and DSPs or GPUs to obtain performance benefits.

& SIMD instruction: Some processors support SIMD
instructions to exploit fine-grained data-level parallel-
ism. These SIMD instructions are suitable for speeding
up the phases in the proposed algorithm. In order to
leverage SIMD instructions, developers need to pack
and unpack data to maximize computation throughput.
However, the overheads from these data arrangements
usually nullify performance benefits from SIMD com-
putations. The situation might be worse due to poor data
locality after data arrangements. The complex data de-
pendence relationships and conditional branches also
decrease the opportunities of applying SIMD instruc-
tions. Table 1 shows applicable opportunities of SIMD
instructions for the phases of the proposed 3D depth
generation algorithm.

3.7 Performance Modeling

Consider the parallel 3D video system constructed by
the thread-level superscalar-pipeline approach. The crit-
ical stage is defined as the stage that has the longest
execution time of all the stages in the pipeline. Theo-
retically, the critical stage dominates the performance of
a pipeline. Tpipelined represents the total execution time
of a single pipeline. Tpipelined can be modeled by (7),
where Nstage is the number of stages used in the pipe-
line, Nprocessed is the total number of frames to be
processed, Tlatency is the time from when the pipeline
is empty to when it is full, and Tcritical is the execution
time of the critical stage.

Tpipelined ¼ Tlatency þ ðNprocessed � 1Þ � Tcritical
¼ Nstage � Tcritical þ ðNprocessed � 1Þ � Tcritical
¼ ðNstage þ Nprocessed � 1Þ � Tcritical

ð7Þ

Equation (8) is used to compute Tcritical, where TSi is the
execution time of stage Si, Tsequential is the execution time in
sequential mode, and RSi is the ratio between the exe-
cution time of stage Si and the total execution time in
sequential mode. For the case shown in Fig. 16, the

Frame 1

Frame 2

Frame 3

superscalar-
pipeline

computation

pipelined
computation

sequential
computation

S1

Time

S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

T1 T2 T3

Figure 21 Comparison of the
execution characteristics of
sequential, pipelined, and
superscalar-pipeline
computations.

Table 1 Analysis of applicable
opportunity for the proposed
algorithm.

Phase Feature Applicability

Sobel filter Large similar MAC operations Applicable

5×5 block Hough transform Large similar MAC operations but followed
by some counting operations

Partially applicable

VRD Too many branch operations inside loops Hardly applicable

4-bit removing segmentation Too few operations Hardly applicable

Merging depth map Too many branch operations inside loops Hardly applicable

SJBF Large similar MAC operations Applicable

Write yuv RGB to YUV Applicable

Read yuv YUV to RGB Applicable
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critical stage in the proposed five-stage pipeline is S4
and RS400.2958.

Tcritical ¼ maxfTsig ¼ max
Rsi �Tsequential
Nprocessed

n o
where i 2 f1; 2; . . . ;Nstageg

ð8Þ

Equation (9) is used to compute the execution time Tsu-
perscalar for the application of thread-level superscalar-
pipeline parallelization. If Npipeline represents the number
of used pipelines, Tsuperscalar can be determined from Tpipe-
lined/Npipeline. From (7) and (9), we obtain a formula for
predicting the performance of the whole system, Psuperscalar,
as given in (10).

Tsuperscalar ¼ Tpipelined
Npipeline

¼ Nstage þ Nprocessed � 1
� � � Tcritical

Npipeline
ð9Þ

Psuperscalar ¼ Nprocessed

Tsuperscalar
¼ Npreocessed �Npipeline

Tpipelined

¼ Nprocessed �Npipeline

ðNstageþNprocessed�1Þ�Tcritical
ð10Þ

In practice, the overheads from resource management and
synchronization will affect the performance of a parallel

application. To accurately predict the performance, we in-
troduce Toverhead that represents the overheads. Toverhead can
be approximately obtained from the difference of the exe-
cution times of sequential and sequentially pipelined com-
putations, as shown in (11). A sequentially pipelined
computation performs computations using the thread-level
pipeline approach, but only one frame is input at a time. In
other words, the next frame will not be input until the
current frame exits the pipeline. In such a case, each frame
is processed sequentially except for migration from one
stage to another stage. Tsequentially_pipelined is the execution
time for sequentially pipelined computation, and Psequential

and Psequentially_pipelined are the performances in sequential
and sequentially pipelined computations, respectively.

Toverhead ¼ Tsequentially pipelined�Tsequential
Nprocessed

¼ 1
Psequentially pipelined

� 1
Psequential

¼ Psequential�Psequentially pipelined

PsequentialPsequentially pipelined

ð11Þ

Equation (12) gives an expression for T’critical, which is
the execution time at the critical stage after considering
the effect of the overheads. By combining (10) and (12),
we finally obtain the estimation model defined in (13),

Table 2 Average execution times (seconds) for the proposed algorithm.

Original algorithm Proposed algorithm

Resolution QVGA XGA HD1080 Resolution QVGA XGA HD1080

Sobel filter 0.024 0.223 0.627 3×3 Sobel filter 0.005 0.049 0.132

Hough transform 0.09 0.277 0.422 5×5 block Hough transform 0.025 0.073 0.107

VRD 0.001 0.001 0.001 VRD 0.001 0.001 0.001

Mean shift segmentation 0.84 9.39 24.6 4-bit removing segmentation 0.001 0.01 0.027

Merging depth map 0.002 0.026 0.065 Merging depth map 0.002 0.024 0.064

JBF 0.007 0.056 0.158 SJBF 0.005 0.048 0.134

Total 0.964 9.973 25.873 Total 0.039 0.205 0.465

Table 3 Speedup of the proposed algorithm relative to the original
algorithm.

Proposed algorithm

Resolution QVGA XGA HD1080

3×3 Sobel filter 4.8 4.6 4.8

5×5 block Hough transform 3.6 3.8 3.9

VRD 1.0 1.0 1.0

4-bit removing segmentation 840.0 939.0 911.1

Merging depth map 1.0 1.1 1.0

SJBF 1.4 1.2 1.2

Total 24.7 48.6 55.6

Table 4 Complexity reduction of the proposed algorithm as compared
to the original one.

Proposed algorithm

Resolution QVGA XGA HD1080

3×3 Sobel filter 79.2 % 78.0 % 78.9 %

5×5 block Hough transform 72.2 % 73.6 % 74.6 %

VRD 0.0 % 0.0 % 0.0 %

4-bit removing segmentation 99.9 % 99.9 % 99.9 %

Merging depth map 0.0 % 7.7 % 1.5 %

SJBF 28.6 % 14.3 % 15.2 %

Total 95.6 % 97.9 % 98.2 %
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where P’
superscalar is the actual performance of the whole

system parallelized by the thread-level superscalar-
pipeline approach. Using the performance model, users
can predict the performance at an early stage of system

Table 5 Elementary operations required for the proposed depth generation algorithm.

Original algorithm Proposed algorithm

Phase NMUL NADS NSQRT NEXP NBRANCH Phase NMUL NADS NSQRT NEXP NBRANCH

Sobel filter 22P 60P 1P 0 0 3×3 Sobel filter 20P 60P 0 0 2P

Hough transform 356P 534P 0 0 0 5×5 block Hough transform 6P 11P 0 0 40P

Mean shift segmentation 864P 432P 0 432P 9P 4-bit removing segmentation 0 11P 0 0 0

JBF 51P 238P 0 0 34P SJBF 34P 170P 0 0 0

P 0 number of total pixels inside each frame 0 frame_width×frame_height

Figure 22 Examples of depth maps and corresponding stereoscopic images.
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development and then tune the design parameters to satisfy
the requirements.

T
0
crirical ¼ maxfTsig þ Toverhead

¼ max
Rsi �Tsequential
Nprocessed

n o
þ Psequential�Psequentially pipelined

PsequentialPsequentially pipelined

n o
¼ max Rsif g

Psequential
þ Psequential�Psequentially pipelined

PsequentialPsequentially pipelined

n o
ð12Þ

P
0
superscalar ¼ Nprocessed �Npipeline

NstageþNprocessed�1ð Þ�T 0
critical

where T
0
critical ¼

max Rsif g
Psequential

þ Psequential�Psequentially pipelined

PsequentialPsequentially pipelined

n o ð13Þ

4 Performance Evaluation

This section evaluates the complexity reduction and quality
measurement of the proposed 3D depth map generation
algorithm. It also assesses the improved performance of
the proposed parallel 3D video system.

4.1 Complexity Reduction and Quality Measurement

The proposed 3D depth map generation algorithm is imple-
mented as a sequential program for the evaluation. Experi-
ments were conducted on a computer with an Intel Core 2
Quad processor with 3 GB of memory. Fifty four images
from Refs. 12 and 13, which had three different resolutions
(1920×1080 (HD1080), 1024×768 (XGA), and 320×240
(QVGA)), were used to evaluate the performance. Table 2
shows the average execution times for images at each reso-
lution. Table 3 lists the speedups relative to the original

algorithm. Using the proposed algorithm, the phase of 4-
bit removing segmentation yields speedups of 840 for
QVGA, 939 for XGA, and 911.1 for HD1080. The phases
of VRD and merging depth map give almost no improve-
ment in performance, while the phase of SJBF results in
slight improvement. Overall, the algorithm yields speedups
of 24.7 for QVGA, 48.6 for XGA, and 55.6 for HD1080,
respectively. Table 4 compares the complexity reduction of
the algorithms, which were evaluated from the ratio of the
reduced execution time relative to the original execution
time. The experimental results show that the proposed algo-
rithm achieves reductions of 95.6 %, 97.9 %, and 98.2 % in
the computational complexity for QVGA, XGA, and
HD1080, respectively.

In order to make the measurement method more useful
for all platforms, we provide a complexity model defined in
(14). Equation (14) calculates complexity based on elemen-
tary operations required to carry out the algorithm like
multiplication, addition, and so on. Here NOP means the
number of operation OP while COP means the cost when
executing one operation OP. All COP are evaluated based on
the same evaluation unit. Operation OP includes multipli-
cation, addition, shift, square root, and branch. We also use
operation “ADS” standing for ADD and SHIFT operations
because the costs to execute these two operations are almost
the same. Table 5 shows elementary operations required for
the original depth generation algorithm and the optimized
one. The symbol “P” represents the number of total pixels
inside each frame. For each elementary operation OP on a
target platform, COP can be easily obtained by profiling. By
feeding the COP and the corresponding operation frequency
(shown in Table 5) into Eq. (14), developers can get correct
complexity information on this target platform.

Complexity ¼ P ðNOP � COPÞ
¼ NMUL � CMUL þ NADS � CADS þ NSQRT � CSQRT þ NEXP

�CEXP þ NBRANCH � CBRANCH

ð14Þ
where OP 2 {MUL, ADS, SQRT, EXP, BRANCH}

Next, we consider quality measurement. We apply a
similar subjective quality evaluation approach as that used
in Refs. [1] and [14] to the proposed 3D depth map gener-
ation algorithm. We use a depth-image-based rendering

Table 6 Average quality scores of the proposed algorithm.

3D visual perception Visual picture quality

[9] [10] Proposed [9] [10] Proposed

General 8.2 8.4 8.45 8.4 8.55 8.5

Scenery 7.9 8.1 8.1 6.5 7.0 6.95

Close-up 7.5 7.7 7.6 7.9 8.2 8.25

Table 7 Technology summary of current depth generation researches.

[1] [2] [3] [14] [9] [10] Proposed

Technology Motion-based Edge-based Object-based Motion-based Learning-based Edge-based Object-based

Complexity Medium High Medium High High High Low

Applicability Video Image Image Video Image Image / Video Image / Video

Input requirement Video sequence Single image Single image Video sequence Single image Single image Single image

Depth quality Good Fair Fair Fair Fair Good Good
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algorithm [15] to produce 54 stereoscopic images based on
depth maps. In the algorithm, each depth map and its orig-
inal image are used to synthesize corresponding left- and
right-view images. Figure 22 shows samples of depth maps
and their corresponding stereoscopic images. To generate a
stereo effect in vision, these stereoscopic images are dis-
played on a 42-inch 3D display connected to the PC. We
asked 30 people to wear red/cyan glasses and to rank these
stereo images on a scale of 1 to 10 in terms of 3D
visual perception and visual picture quality, where 10
represents the strongest stereoscopic sense. Table 6
shows the average quality scores for the algorithms of
Saxena et al. [9], Cheng et al. [10], and the present
study. The proposed 3D depth map generation algorithm
can obtain almost the same stereoscopic quality as the
algorithms of Saxena et al. and Cheng et al. and most
of the tested images processed by the algorithm obtain
high scores. These results demonstrate that the depth

information generated by the algorithm still has a good
quality in vision even though we have simplified a lot
of the computation in the proposed algorithm relative to
that in the original algorithm. Table 7 shows the tech-
nology summary among the proposed 3D depth genera-
tion algorithm and the existing designs.

4.2 Performance on Thread-Level Superscalar-Pipeline
Parallelization

We constructed a parallel 3D video system based on the
proposed thread-level superscalar-pipeline approach. The
implementation uses the POSIX thread library to manage
multiple threads for portability. Table 8 lists the configura-
tion of the experimental environment. The system was eval-
uated using a multicore platform that consists of eight AMD
Opteron quad-core processors running at 2.3 GHz. Figure 23
compares the performances for different numbers of pipe-
lines. The gray line represents the execution performance at
runtime and the back line represents the execution perfor-
mance predicted by the proposed performance model. The
label “sequential execution” on the x-axis represents the
performance of the sequential execution, while the other
labels represent the number of pipelines. The tested video
has HD720 resolution and contains 300 frames. The exper-
imental results reveal that the system gives good scalability
and performance. For the configuration with six pipelines,
the proposed parallel 3D video system can achieve 63.66
fps. We also evaluated the accuracy of the performance
model described in Section 3.7. The errors between the
runtime performance and predicted performance are

Figure 23 Performance
evaluation of the proposed
parallel 3D video system.

Table 8 Configuration of experimental environment.

Item Value

Hardware CPU AMD Opteron quad-core processor
running at 2.3 GHz×8
(32 physical cores)

Cache L1: 64 KB, L2: 512 KB, L3: 2048 KB

Memory 64 GB

Software Operating system Linux (kernel version: 2.6.9)

Native C compiler GCC 3.4.6 with –O2 option

Thread library POSIX thread library

J Sign Process Syst (2013) 72:17–33 31



ranged from 5.9 % to 10.8 % for configurations with 1–
5 pipelines. For the configuration with six pipelines, the
runtime performance is slightly improved relative to the
configurations with 1–5 pipelines and the error in the
predicted performance increases to 21.4 %. The reason
is because when more than five pipelines are created,
the overheads of thread management become complicat-
ed and cannot be accurately predicted using the pro-
posed performance model. In addition, the memory
bandwidth at target platform limits the system perfor-
mance when the memory requirement of the system
cannot be satisfied.

5 Conclusion

We proposed a low-complexity 3D depth-map-generation
algorithm for stereoscopic video applications. This algo-
rithm is expected to generate high-quality depth maps based
on 2D images. The processing steps in the algorithm have
been optimized to reduce its computational complexity
without sacrificing quality. We applied the proposed
algorithm to construct a parallel 3D video system that
was realized on a multicore computer based on a
thread-level superscalar-pipeline approach. The experi-
mental results demonstrate that for the tested images
with HD1080 resolution, the proposed 3D depth map
generation algorithm reduces the computational com-
plexity by 98.2 % relative to the original algorithm
while preserving good quality. Thus, the proposed par-
allel 3D video system can perform real-time processing
of videos with HD720 resolution.
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