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a b s t r a c t

This paper presents a single-level nonlinear optimization model to estimate dynamic ori-
gin–destination (OD) demand. The model is a path flow-based optimization model, which
incorporates heterogeneous sources of traffic measurements and does not require explicit
dynamic link-path incidences. The objective is to minimize (i) the deviation between
observed and estimated traffic states and (ii) the deviation between aggregated path flows
and target OD flows, subject to the dynamic user equilibrium (DUE) constraint represented
by a gap-function-based reformulation. A Lagrangian relaxation-based algorithm which
dualizes the difficult DUE constraint to the objective function is proposed to solve the
model. This algorithm integrates a gradient-projection-based path flow adjustment
method within a column generation-based framework. Additionally, a dynamic network
loading (DNL) model, based on Newell’s simplified kinematic wave theory, is employed
in the DUE assignment process to realistically capture congestion phenomena and shock
wave propagation. This research also derives analytical gradient formulas for the changes
in link flow and density due to the unit change of time-dependent path inflow in a general
network under congestion conditions. Numerical experiments conducted on three different
networks illustrate the effectiveness and shed some light on the properties of the proposed
OD demand estimation method.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Time-dependent origin–destination (OD) demand matrices are fundamental inputs for dynamic traffic assignment (DTA)
models to describe network flow evolution as a result of interactions of individual travelers. Moreover, many emerging intel-
ligent traffic management applications call for reliable estimates of dynamic OD demand, in order to generate proactive,
coordinated traffic information provision and flow control strategies based on reliable traffic state estimates. Transportation
authorities and practitioners have long been concerned about the unavailability of high quality time-dependent OD demand
estimates which limits the potential for DTA deployments to analyze and alleviate traffic congestion. In the past decades, a
rich body of literature, to be presented as follows, has been devoted to the methods of estimating static or time-dependent
OD demand tables. However, the development of theoretically sound and practically deployable approaches for time-depen-
dent OD demand estimation, particularly under congested conditions, remains a critical and challenging problem that is
attracting significant attention from transportation researchers.
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1.1. Literature review

To capture congestion effects in traffic networks, many researchers have attempted to integrate equilibrium assignment
into the static OD demand estimation process. Nguyen (1977) and Leblanc and Farhangian (1982) incorporated link count
observations into a variable demand user equilibrium (UE) assignment program as equality side-constraints so that the esti-
mated link flows can reproduce observed link counts. Fisk (1989) combined the maximum entropy model with an UE assign-
ment program to construct a bi-level mathematical programming problem. Yang et al. (1992) and Florian and Chen (1995)
further presented a more flexible bi-level framework to estimate consistent OD demand, where the upper level is a general-
ized least squares (GLS)-based OD estimation model and the lower level is an UE assignment program.

Extending the concepts and solution methodologies of the static OD estimation problem, Cascetta et al. (1993) proposed a
GLS estimator for dynamic OD demand in a general network. A simplified assignment model was used in their study; that is,
path choice fractions are first calculated using a route choice model and then the resulting path flows are propagated to link
flows based on link travel times. Tavana (2001) proposed a bi-level GLS optimization model and an iterative solution frame-
work to estimate dynamic OD demand, while seeking to maintain internal consistency between the upper-level demand
estimation problem and the lower-level DTA problem. Along this line, Zhou et al. (2003) and Zhou and Mahmassani
(2006) extended this bi-level dynamic OD estimation approach to utilize multi-day traffic counts and automated vehicle
identification (AVI) data, respectively. Van der Zijpp (1997) also addressed the dynamic OD demand estimation problem
using data from induction loops and automated vehicle identification (AVI) equipment in the network. Based on a least-
square modeling approach, Bierlaire and Crittin (2004) proposed an algorithm for sparse least squares that is computation-
ally efficient for real-time estimation and prediction of dynamic OD demand tables. Zhou and Mahmassani (2007) developed
a structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day
learning framework.

In light of the above review, a typical bi-level dynamic OD demand estimation model needs to iteratively solve two opti-
mization subproblems, namely upper-level and lower-level problems. The upper-level problem is the constrained ordinary/
generalized least squares (OLS/GLS) problem, with time-dependent OD flows as decision variables. This approach aims to
minimize the following two deviation functions: (i) the deviation between observed and estimated link flows over all time
intervals and (ii) the deviation between the target or historical demand and estimated demand matrices. The lower-level
problem is the UE DTA problem, which determines a time-dependent network flow pattern that satisfies dynamic user equi-
librium (DUE) conditions. However, it has been widely recognized that, under congested conditions, the mapping between
demand inflow from the origin and link measurements is not a linear relationship as observed in the static case.

Yang (1995) provided two heuristic solution approaches for solving the general bi-level OD estimation problem, the iter-
ative estimation-assignment (IEA) algorithms and sensitivity-analysis based algorithms (SAB). Tavana (2001) suggested that
the IEA algorithm still provides solutions to the Cournot–Nash game, rather than the Stackelberg game in a bi-level program,
because the upper-level optimization model in IEA does not consider the dependence of link-flow proportions on the OD
flows. Based on the SAB approach, an alternative nonlinear least squares formulation was proposed by Tavana (2001) to
explicitly consider the changes of link flow proportions due to the adjustments in dynamic OD flows. Additionally, numerical
derivatives of link flow proportions with respect to OD flows are obtained from a mesoscopic DTA simulation program (Jaya-
krishnan et al., 1994; Mahmassani, 2001). On the other hand, a standard SAB algorithm needs to approximate the derivatives
through simulation for each OD pair and each time interval at every iteration, which is computationally intensive, especially
for large-scale networks. Recently, Balakrishna et al. (2008) and Cipriani et al. (2011) introduced gradient approximation
methods within a simultaneous perturbation stochastic approximation (SPSA) framework in order to reduce the number
of simulation runs when calculating numerical derivatives or gradients. Artificial intelligence techniques have recently been
adopted to the context of dynamic OD demand estimation to replace iterative procedures. For instance, Kattan and Abdulhai
(2006) proposed a non-iterative approach to dynamic OD demand estimation based on a machine-learning technique using
advanced parallel evolutionary algorithms. More recently, Huang et al. (2012) developed an approach to estimate travel de-
mand in large-scale microscopic traffic simulation models based on a Guided Genetic Algorithm with a distributed imple-
mentation to improve computational efficiency and reduce memory requirements.

Intending to develop an internally consistent approach for the dynamic OD demand estimation problem, single-level path
flow estimators (PFEs) have been proposed for the static OD estimation problem; e.g., the linear programming PFE by Sherali
and Park (2001) on estimating UE path flows, and the nonlinear programming PFE by Bell et al. (1997) on estimating stochas-
tic UE path flows. Recently, Nie and Zhang (2008) formulated a novel single-level formulation based on variational inequal-
ities (VI), which utilizes the dynamic link-path incidence relationships in a generic projection-based VI solution framework.
Based on a single level reformulation, Lundgren and Peterson (2008) proposed a descent heuristic, which is an adaptation of
the projected gradient method, to the dynamic OD demand estimation problem. The search direction was determined by
approximating the Jacobian matrix representing the derivatives of the link flows with respect to a change in the OD-flows.
By adapting the analytical approach of Ghali and Smith (1995) for evaluating the local link marginal travel times, Qian and
Zhang (2011) further incorporated the travel time gradients into the single-level OD estimation framework proposed by Nie
and Zhang (2008), in order to utilize travel time measurements, while linear mappings between OD flow and link flows are
still assumed in their upper-level OD estimation problem. In addition, Nie et al. (2005), Nie and Zhang (2010), and Shen and
Wynter (2011) integrated the integral term of UE formulation (Beckmann et al., 1956) with the measurement deviations (in
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terms of the GLS objective function) to develop alternative single-level path flow formulations for static OD estimation, and
their models can be viewed as a special case of UE assignment with elastic demand.

To fully capture the nonlinear dependency between dynamic OD demand and heterogeneous traffic measurements, such
as link flow, density and travel time, in a general network, it is necessary to incorporate a reliable dynamic network loading
(DNL) component into the OD demand flow estimation process. The existing DTA methodologies are classified into two ma-
jor groups: analytic approach and simulation-based approach. The former includes three types of formulations that have the
potential for deriving theoretical insights: mathematical programming, optimal control and VI. Earlier studies (e.g., Merchant
and Nemhauser, 1978; Carey, 1987; Friesz et al., 1989) used link/node exit flow constraints to propagate traffic flows and link
performance functions to determine path travel costs. While using well-defined exit constraints and cost functions makes it
theoretically possible to establish the mathematical properties of solutions (e.g., existence and uniqueness), these analytical
models suffer from several limitations in terms of representing the dynamics and complexity of real-world traffic flow sys-
tems. For example, the models are still subject to difficulty in ensuring the first-in–first-out (FIFO) queueing discipline and
capturing spillback queues.

In the pioneering works of capturing shock waves and congestion (i.e., queue formation, spillback and dissipation),
Lighthill and Whitham (1955) and Richards (1956) proposed the kinematic wave (KW) theory, which rigorously describes
traffic flow dynamics by integrating flow conservation constraints and traffic flow models to a set of partial differential equa-
tions (PDE). Because it is difficult to obtain analytical solutions for these PDEs, many researchers have presented various
finite-difference approximations to solve the equations numerically. Based on a triangular flow-density relation, Newell pro-
posed a simplified KW model (Newell, 1993) to better keep track of shock waves and queue propagation using cumulative
flow counts on links. By discretizing a link into a set of homogeneous unit cells, Daganzo (1994, 1995) presented a cell trans-
mission model that adopts a ‘‘supply–demand’’ or ‘‘sending–receiving’’ framework to model flow dynamics between two
successive discretized cells in the link.

1.2. Overview and contribution of proposed method

This paper contributes to the growing body of literature on dynamic OD demand estimation as follows:

� Instead of working on the commonly-used OD flow variables, this study presents a new path flow-based optimization
model for jointly solving the complex OD demand estimation and UE DTA problems. This model simultaneously mini-
mizes (i) the deviation between measured and estimated traffic states and (ii) the deviation between aggregated path
flows and target OD flows, subject to a dynamic user equilibrium (DUE) constraint, which is reformulated using an equiv-
alent gap function. Working in this path-flow dimension, our formulation can directly aggregate estimated path flows to
obtain final OD flow patterns, and obviate explicit dynamic link-path incidences, as opposed to the majority of previous
studies.
� By dualizing the difficult DUE constraint into the objective function, this research proposes an effective Lagrangian relax-

ation-based solution framework. The relaxed problem can be viewed as a simultaneous route and departure time user
equilibrium (SRDUE) problem with elastic demand The final solution is a set of path flows satisfying ‘‘tolled user equilib-
rium’’ (Lawphongpanich and Hearn, 2004), where the deviation with respect to traffic measurements can be viewed as an
additional penalty for over-estimated or under-estimated path flows. By incorporating heterogeneous real-world mea-
surements in the objective function, such as link densities from video surveillance and road side detectors, the proposed
estimation model fully utilizes available information to reflect route choices in a congestion network.
� A DNL model that encapsulates Newell’s simplified KW model in a mesoscopic traffic flow simulation framework is pro-

posed to describe congestion phenomena, such as queues formation, spillback, and dissipation. Explicitly using the cumu-
lative arrival and departure curves, Newell’s traffic flow model provides a rigorous mathematical formulation to
realistically represent traffic dynamics and capture the impact of shock waves on various macroscopic traffic measures.
� Based on the proposed DNL model, this research derives analytical, local gradients of different measurement types, such

as link flow and density, with respect to path inflows. This valuable gradient information not only considers the depen-
dences of link flow/density changes on the OD/path flow, but also allows for computing feasible descent directions in an
efficient gradient-projection-based method embedded in the Lagrangian relaxation-based solution framework.

While the general relaxation scheme and some common features (e.g., path flow variables) are shared by our work and
some previous research (e.g., Nie and Zhang, 2008), our approach differs significantly from the existing methods in the fol-
lowing aspects.

� The proposed dynamic OD demand estimation model is a GLS-based bi-level formulation that adopts a gap function to
measure the deviation from the DUE conditions, while previous research used complementary equations or VIs to
describe optimality or equilibrium conditions of the problem.
� The proposed Lagrangian relaxation-based algorithm dualizes the gap function-based DUE constraint into the objective

function, and solves the single-level relaxation problem by reducing the difference between the upper and the lower
bounds. On the other hand, previous research developed different (e.g., column generation) algorithms to solve the
VI-based single-level model.
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� Based on the proposed DNL model, this research derives analytical, local gradients of different measurement types with
respect to path inflows. These gradients are different from the link and path marginal travel time or cost typically used in
system optimal DTA problems. The proposed algorithm explicitly utilizes the gradient information to compute feasible
descent directions in an efficient gradient-projection-based method embedded in the Lagrangian relaxation-based solu-
tion framework. Although previous research had applied basic projection algorithm (BPA) and extra-gradient method
(EGM) to the dynamic OD demand estimation problem, the issue of gradient derivations has not been explicitly
addressed.

This paper is organized as follows. The single-level time-dependent path flow estimation models and the mesoscopic DNL
model based on Newell’s simplified KW model are delineated in Section 2. Section 3 presents the Lagrangian relaxation-
based solution algorithm. Section 4 describes the derivation of the gradients of typical traffic measurements. Numerical
studies on a simple corridor and a real-world network with time-dependent sensor data are presented in Section 5. Section 6
concludes this study.

2. Single-level time-dependent path flow estimation models

2.1. Notation and problem statement

Notation and variables for the proposed single-level dynamic OD demand estimation framework are listed as follows.
Set:

A: set of links
W: set of OD pairs
P: set of paths
S: set of links with sensors, S # A
Hd: set of discretized departure time intervals
Ho: set of discretized observation time intervals

Index:

t: index of simulation time intervals, t = 0, . . . , T. This paper refers to any particular time interval t as the time t.
s: index of departure time intervals, s 2 Hd

w: index of OD pairs, w 2W
p: index of paths for each OD pair, p 2 P
l: index of links, l 2 A

Input parameters of link attributes

length(l): length of link l
nlanes(l): number of lanes of link l
kjam(l): jam density on link l
nmax(l): number of vehicles that can be stored on link l,nmax(l) = kjam(l) � nlanes(l) � length(l)
vf(l): free-flow speed on link l
wb(l): backward wave speed on link l
FFTT(l): free-flow travel time on link l, FFTT(l) = length(l)/vf(l)
BWTT(l): backward wave travel time on link l, BWTT(l) = length(l)/wb(l)
capout(l, t): maximal outflow capacity of link l at time t
capin(l, t): maximal inflow capacity of link l at time t

Traffic measurements inputs

�qðl; tÞ: observed number of vehicles passing through an upstream detector on link l during observation interval t
�kðl; tÞ: observed density on link l during observation interval t
�dðwÞ: target demand, which is the total traffic demand for OD pair w over a planning horizon

Estimation variables

r(w,s,p): estimated path flow on path p of OD pair w and departure time interval s
c(w,s,p): estimated path travel time on path p of OD pair w and departure time interval s
p (w,s): estimated least path travel time of OD pair w and departure time interval s
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q(l, t): estimated number of vehicles passing through an upstream detector on link l during observation interval t
k(l, t): estimated density on link l during observation interval t
d(w,s): estimated demand of OD pair w and departure time interval s

Given a road network G with a set of nodes and a set of links, the input data to the dynamic OD demand estimation prob-
lem include a set of time-dependent observation data (e.g. flows and densities) on a subset of links with sensors for a set of
discretized observation time intervals, Ho, and target OD demand matrices for a set of departure time intervals, Hd. The prob-
lem aims to find a vector of time-dependent path flows r = {r(w,s,p),"w, s,p} such that the estimated flow pattern can both
match the time-dependent observation data and satisfy the DUE conditions (i.e., for each OD pair w and each departure time
interval s, the travel time of a path with a positive path flow is the same and equal to p(w,s), while the travel time of a path
with zero flows is larger than p (w,s)). Then, the time-dependent OD demand estimates can be obtained by aggregating path
flows for each OD pair and each departure time interval.

2.2. A path flow-based nonlinear program

Given sensor data (i.e. observed link flows and densities) and target (aggregated historical) OD demands, the proposed
single-level time-dependent path flow estimation model is a nonlinear program with the path flows r(w,s,p), "w, s, p
and least path travel times p = {p(w,s),"w,s} as the decision variables. Denote c = {c(w,s,p),"w,s,p}, q = {q(l, t),"l, t} and
k = {k(l, t),"l, t}. The nonlinear program is presented as follows.

P1: Nonlinear program
Min Z ¼ bd

X
w

X
s2Hd

X
p

rðw; s;pÞ � �dðwÞ
" #2

þ
X
l2S

X
t2Ho

bq qðl; tÞ � �qðl; tÞ½ �2 þ bk kðl; tÞ � �kðl; tÞ
� �2

n o
; ð1Þ

Subject to ðc; q; kÞ ¼ DNLFðrÞ; ð2Þ

gðr;pÞ ¼ RwRsRpfrðw; s; pÞ½cðw; s;pÞ � pðw; sÞ�g ¼ 0; ð3Þ

cðw; s; pÞ � pðw; sÞP 0; 8w; s; p; ð4Þ

pðw; sÞP 0; 8p 2 Pðw; sÞg 8wg;8w; s; s ð5Þ

rðw; s;pÞP 0; 8w; s; p: ð6Þ
The objective function, Eq. (1), minimizes the weighted sum of the deviation between estimated time-dependent OD de-
mands (or aggregated path flows) and target demands and the deviation between estimated and observed link flows and
densities, where bd, bq and bk are the weights reflecting different degrees of confidence on target OD demands and observed
link flows and densities, respectively. In a GLS framework, those weights can be viewed as the inverses of the variances of the
distinct sources of measurements. In the objective function, OD demand d(w,s) is substituted by its corresponding aggre-
gated time-dependent path flows, so the OD demand and path flow balance constraints are not included in the model, P1.

Eq. (2) states that estimated path travel times (c), and link flows (q) and densities (k) are obtained by a given DNL function
of path flows, DNLF(r). This research proposes the DNL model based on Newell’s simplified KW model (Newell, 1993). The
details of the DNL model are presented in Sections 2.3 and 2.4 of the current paper.

The gap function-based constraint in Eq. (3) is adopted to satisfy the DUE conditions in the proposed model, whereas
other existing single-level OD demand estimation models incorporated VI (e.g., Nie and Zhang, 2008), or Beckmann’s integral
term (e.g., Shen and Wynter, 2011) to represent the DUE conditions. The non-negative gap function g(r,p) is used to measure
the deviation from the DUE conditions, and it vanishes when the DUE conditions are satisfied (e.g., Lu et al., 2009). Eqs. (4)
and (5) are definitional constraints of the least travel time p(w,s) for each (w,s). Eq. (6) are non-negative constraints for path
flow variables.

2.3. Modeling queue spillback through Newell’s simplified kinematic wave model

The proposed time-dependent path flow estimation models, P1, encapsulats the DNL model based on Newell’s simplified
KW model (Newell, 1993) to describe traffic congestion propagation (e.g., queue build-up, spillback, and dissipation) in a
road traffic network. As shown in Fig. 1, Newell’s model is concerned about three state variables on each link l: (i) cumulative
flow count A(l, t) for vehicles moving into link l through the upstream node, (ii) cumulative flow count V(l, t) for vehicles wait-
ing at the vertical queue of the downstream node of link l at time t, and (iii) cumulative flow count D(l, t) for vehicles moving
out of link l through the downstream node.

Let x be the location along the corridor, and N(x, t) the cumulative flow count at location x and time t of a link. The change
of N(x, t) along a characteristic line (wave) is represented as follows.
dNðx; tÞ ¼ @N
@x

dxþ @N
@t

dt ¼ qdt � kdx: ð7Þ



Fig. 1. Illustration of cumulative arrival and departure curves A(t) and D(t), and the shifted arrival curve V(t) (link index l is removed for simplicity).
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A wave represents the propagation of a change in flow and density along the roadway, and the wave speed is the slope of
the characteristics line w ¼ @q

@k ¼ dx
dt. Along the movement of a wave, we substitute dt ¼ dx

w into Eq. (7), so that we can link the
difference of cumulative flow counts together through
dNðx; tÞ ¼ qdt � kdx ¼ �kþ q
w

� �
dx: ð8Þ
For the triangular shaped flow-density relation with constant forward and backward wave speeds, it is easy to verify that,
when the speed of the forward wave is vf, the general cumulative flow count updating formula, Eq. (7), reduces to
�kþ q

v f
¼ �kþ k ¼ 0. Under congested traffic conditions with a constant backward wave speed wb, we have

�kþ q
wb
¼ �kjam, and this equation can be rewritten as
dN ¼ �kþ q
wb

� �
dx ¼ �kjamðlÞ � lengthðlÞ � nlanesðlÞ: ð9Þ
Eq. (9) is used to describe how a backward wave travels through the link. As shown in Fig. 1, when a queue spills back from
the downstream to the upstream, the arrival and departure cumulative flow counts at two ends of a link (at timestamps t and
time t-BWTT(l)) need to ensure a constant difference of dN = kjam(l) � length(l) � nlanes(l), and the capacity restriction is
propagated throughout the link using a time duration of BWTT(l) = length(l)/wb(l).

The space–time plot in Fig. 2 further demonstrates how Newell’s model uses cumulative counts to model the forward and
backward waves in describing queue phenomenon on two links a and b. Exactly at time t � 1, the tail of the queue at the
downstream link b propagates to its upstream node. That is, if the cumulative outflow count at a lagged time stamp t-
BWTT(b) � 1 on link b equals to the cumulative inflow count at time t � 1, then a queue spillback occurs as a backward wave
is able to propagate through the congested time–space ‘‘mass’’ of the link. Compared to the conventional vertical queue mod-
el, where the inflow rate of a link is not constrained by the available physical length, the inflow rate in Newell’s model is
governed by the discharge flow of a link through the backward wave propagation process. Furthermore the number of vehi-
cles on a lane should not be greater than kjam � length(b). As a result, the proposed model is able to detect and capture queue
spillbacks to upstream link(s).

2.4. Traffic flow dynamics constraints and states updating

The main building block of the DNL model is a set of demand, path and link flow balance constraints. Firstly, the demand
flow balance constraint for each (w,s) pair over its path set is as follows.
X

p2Pðw;sÞ and Uðt;sÞ¼1

rðw; t; pÞ ¼ qðw; sÞ; 8w; s; ð10Þ
where U(t,s) = 1 indicates that time interval t is inside departure time interval s. Then, the DNL needs to load path flow
r(w, t,p) to the first link of path p 2 P(w,s).
Aðp; lðp;1Þ; tÞ ¼ rðw; t;pÞ; 8p 2 Pðw; sÞ;w; t: ð11Þ



Fig. 2. Illustration of forward and backward wave representation in Newell’s simplified KW model.
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where l(p,1) represents the first link of path p, and A(p, l, t) is the cumulative number of vehicles that are assigned to path p
and have arrived at the upstream end of link l in time t. Cumulative arrival counts are moved from the beginning of link l to
its vertical queue for each p, l, and t. That is,
Vðp; l; tÞ ¼ Aðp; l; t � FFTTðlÞÞ; 8p; l; t; ð12Þ
where V(p, l, t) is the cumulative number of vehicles that are assigned to path p and have waited at the vertical queue of link l
at time t.

The cumulative departure flow is less then the cumulative number of vehicles in the vertical queue on a link.
Dðp; l; tÞ 6 Vðp; l; tÞ; 8p; l; t; ð13Þ
where D(p, l, t) is cumulative number of vehicles that are assigned to path p and have departed from link l at time t. The
cumulative departure flow count of link l is transferred to the cumulative arrival count on the next link l + 1 along the path
p,
Aðp; lþ 1; tÞ ¼ Dðp; l; tÞ; 8p; l; t: ð14Þ
The balance constraint at the super sink for each OD pair is
Dðp; L; TÞ ¼ rðw; t;pÞ; 8w;p; t: ð15Þ
where L is the last link of path p and T is the end of the planning horizon. By summing up all cumulative arrival, vertical
queue and departure counts across different paths, we can obtain cumulative link arrival, vertical queue and departure
counts as follows.
Aðl; tÞ ¼
X

p

Aðp; l; tÞ; 8l; t: ð16Þ

Vðl; tÞ ¼
X

p

Vðp; l; tÞ; 8l; t: ð17Þ

Dðl; tÞ ¼
X

p

Dðp; l; tÞ; 8l; t: ð18Þ
In addition to the above set of flow balance constraints, when vehicles are discharged from the queue, Eq. (19) is used to
satisfy the outflow capacity constraints and capture the effect of queue spillback.
Dðl; tÞ � Dðl; t � 1Þ ¼min Vðl; t � 1Þ � Dðl; t � 1Þ; qmaxðl; tÞ; capoutðl; tÞ
� 	

; 8l; t: ð19Þ
where V(l, t � 1) � D(l, t � 1) is the number of vehicles waiting at the vertical queue of link l at time t. To determine the max-
imum outflow capacity capout(l, t) in Eq. (19), we consider a corridor with two consecutive links l and l + 1, where a lane drop
bottleneck at the downstream end of link l + 1 causes congestion and the queue spills back to link l (i.e., link l + 1 is fully
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congested while link l is partially congested). Under congested conditions, capout(l, t) is determined by the bottleneck inflow
rate of link l + 1.
Fig. 3.
capoutðl; tÞ ¼ capinðlþ 1; tÞ: ð20Þ
As shown in Fig. 3, the inflow capacity capin(l + 1, t) is defined in terms of the difference of the cumulative arrival flow
counts between two consecutive time stamps t � 1 and t as follows:
capinðlþ 1; tÞ ¼ Amaxðlþ 1; tÞ � Aðlþ 1; t � 1Þ; ð21Þ
where (according to the backward wave propagation constraint in Eq. (7))
Amaxðlþ 1; tÞ ¼ Dðlþ 1; t � BWTTðlþ 1ÞÞ þ kjamðlþ 1Þ � lengthðlþ 1Þ � nlanesðlþ 1Þ: ð22Þ
Finally, the queue spillback constraint based on Newell’s simplified kinematic wave mode is
Aðl; tÞ 6 Dðl; t � BWTTðlÞÞ þ kjamðlÞ � lengthðlÞ � nlanesðlÞ;8l; t: ð23Þ
Fig. 3 shows that if the cumulative outflow count at a lagged time stamp t � BWTT(l + 1) � 1 on link l + 1 equals to the
cumulative inflow count at time t � 1, then a queue spillback occurs as a backward wave propagates through the congested
link.

The numerical computation scheme of the above DNL model can be implemented as an event-based simulation process
which does not keep track of vehicles’ positions on links at each time stamp. Specifically, if a vehicle j is moved into link l
at its arrival time Arr(j, l), the time entering the vertical queue at the stop bar is tvq = Arr(j, l) + FFTT(l). When the simulation
time clock advances to tvq, if the out-flow link capacity at time tvq is still available for vehicle j to exit from the vertical
queue, then this vehicle moves to the next link of its path and its departure time stamp Dep(j, l) = tvq; otherwise vehicle
j has to wait in the vertical queue for the available outflow capacity. As this proposed model strictly satisfies the first-
in-first-out (FIFO) constraint, if a vehicle j in the beginning of the vertical queue is blocked due to unavailable outflow
capacity, then vehicles behind j in the queue will be also blocked as well. To model complex geometric features, such
as short left-turn bays on a multi-lane facility, one needs to decompose a link into multiple connected cells with each cell
satisfying the FIFO constraint.

To describe traffic flow dynamics with multiple OD pairs and paths at merge and diverge junctions, many existing DNL
models (e.g. ?Jayakrishnan et al., 1994; Daganzo, 1995; Tampère et al., 2011) proposed various modeling approaches to
determine outflow capacities for merging vehicular flows moving out from incoming links to a link, or outflow proportions
for diverging vehicular flow moving out from a link to its outgoing links. In this paper, the available outflow capacity of an
incoming link at a merge is assumed to be proportional to the number of lanes on that link. Similar to a mesoscopic DNL
model (Jayakrishnan et al., 1994), each vehicle carriers its own OD and path information in our proposed model, so the out-
flow proportions from a link are indirectly determined by the path attributes associated with vehicles waiting at that link’s
vertical queue, which is implemented as a FIFO queue that explicitly enables the FIFO constraint to be satisfied.
Illustration of queue spillback and propagation of outgoing flow constraint from the downstream end at time t-BWTT to the upstream end at time t.
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3. Solution algorithm

This section describes the Lagrangian relaxation-based heuristic for solving the single-level time-dependent path flow
estimation model, presented in Section 2. We propose the following heuristic solution method to efficiently obtain good
solutions for problem instances on road networks of practical sizes. The heuristic integrates Lagrangian relaxation and col-
umn generation methods to solve the time-dependent path flow estimation model, P1. The gap function constraint Eq. (3) is
relaxed to the objective function Eq. (1) with a non-negative Lagrange multiplier k. The resulting Lagrangian subproblem is
given as follows:
P2 : Min
r;p

Lðr;p; kÞ ¼ Z þ kfgðr;pÞg ð24Þ
Subject to constraints (2), (4), (5) and (6), where r and p are the vectors of path flows and least path times respectively. For a
given k, the solution to P2 provides a lower bound to P1. The Lagrangian dual problem is given as follows.
P3 : Max
k

Min
r;p

Lðr;p; kÞ ð25Þ
Subject to k P 0.
The heuristic consists of two major algorithmic steps: at each iteration n, (i) given a Lagrange multiplier k(n), find an opti-

mal path assignment r(n) and least path travel times p(n) by solving the Lagrangian subproblem, P2 and (ii) given a vehicle
path assignment r(n) and least path travel times p(n), update the Lagrange multiplier k(n+1) by using the following rule.
kðnþ1Þ ¼ max 0; kðnÞ þ aðnÞ RwRsRprðw; s;pÞ½cðw; s; pÞ � pðw; sÞ�
� 	n o

; ð26Þ
where a(n) is the step size for updating the Lagrange multiplier.
Accordingly, this heuristic has two loops (see Fig. 4). The outer loop is for updating the Lagrange multiplier using the rule

described in Eq. (26). For each outer loop iteration n (i.e., corresponding to a given Lagrange multiplier k(n)), a column gen-
eration-based approach is used to solve the Lagrangian subproblem P2. This approach forms an inner loop for solving a DUE
assignment problem under a restricted feasible solution space. In each inner loop iteration m, a time-dependent shortest
path algorithm (Ziliaskopoulos and Mahmassani, 1993) is adopted to generate time-dependent least time paths and to aug-
ment the restricted path set. In light of the time-dependent shortest path algorithm, the least path travel times p(m) are ob-
tained to satisfy the constraints Eqs. (4) and (5), thus, these definitional constraints of the least travel times can be dropped
Fig. 4. Flowchart of the Lagrangian Relaxation-based heuristic.
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in solving the restricted Lagrangian subproblem. To solve the restricted subproblem, a gradient-projection-based descent
direction method (Lu et al., 2009) is used to update path flows r(m+1), while maintaining the feasibility of non-negativity con-
straints Eq. (6). Specifically,
rðw; s;pÞmþ1 ¼Max 0; rðw; s; pÞm � cðmÞ bdrhdðrÞjr¼rðmÞ þ bqrhqðrÞjr¼rðmÞ þ bkrhkðrÞjr¼rðmÞ þ kðnÞrgðr;pÞjr¼rðmÞ

h in o
ð27Þ
where c(m) is the step size, and the gradients, which consist of the first-order partial derivatives with respect to a path flow
variable r(w,s,p), can be derived as follows.
rhdðrÞ ¼
@
P

s2Hd ;p2Pðrðw;s;pÞÞ � �dðwÞ
n o

@rðw; s;pÞ ¼ 2
X
s2Hd

X
p2P

rðw; s; pÞ � �dðwÞ
 !

ð28Þ

rhqðrÞ ¼
@
P

l2S;t2Hot qðl;tÞðrÞ � �qðl;tÞ
h i

@rðw; s;pÞ ¼ 2
X
t2Ho

X
l2S

½qðl; tÞ � �qðl; tÞ� � @qðl; tÞðrÞ
@rðw; s; pÞ


 �
ð29Þ

rhkðrÞ ¼
@
P

l2S;t2Hot kðl;tÞðrÞ � �kðl;tÞ
� �

@rðw; s;pÞ ¼ 2
X
t2Ho

X
l2S

kðl; tÞ � �kðl; tÞ
� �

� @kðl; tÞðrÞ
@rðw; s;pÞ


 �
ð30Þ

rgðr;pÞ ¼ @gðr;pÞ
@rðw; s;pÞ ¼ cðw; s; pÞ � pðw;sÞ þ rðw; s;pÞ @cðw; s;pÞ

@rðw; s;pÞ ð31Þ
Estimated link flows, densities, and link/path travel times and the corresponding partial derivatives, namely rhq(r),r
hk(r) and @c(w,s,p)/@r(w,s,p) are obtained from the DNL model presented in Section 2.

The steps of this algorithm are presented as follows.

Algorithm 1. Lagrangian relaxation-based heuristic

Step 1: Initialization

Step 1.1: Set outer loop iteration counter n = 0. Input a historical demand table, �dðwÞ; 8w, its corresponding tem-
poral distribution profile, and time-dependent link observations (densities, and flows). Initialize k(n) to a positive
value, such as 1.0.
Step 1.2: Perform DUE traffic assignment with time-dependent OD demand matrix, d(n), based on �dðwÞ; 8w and a
temporal profile, and build a feasible path set bP .
Step 1.3: According to the assignment results (i.e., estimated link densities, flows, and travel times), compute the
upper bound of the optimal solution to the primal problem P1 as follows:

ZUB ¼
X
l2S

X
t2Ho

fbq½qðl; tÞ � �qðl; tÞ�2 þ bk½kðl; tÞ � �kðl; tÞ�2g þ knfgðr;pÞg: ð32Þ
Note that
P

w

P
s2Hd

P
prðw; s; pÞ � �dðwÞ

h i2
¼ 0, as the DUE assignment loads the target demands.

Step 2: [Inner loop] Solve the Lagrangian subproblem, P2, to find the optimal path flows corresponding to k(n).

Step 2.1: Set inner loop iteration counter m = 0. Read estimated link flows, densities, path flows, path travel times
and corresponding gradients rhd(r),rhq(r) and rhk(r) from the last outer iteration n.
Step 2.2: Identify the least time paths and determine p(m).
Step 2.3: Calculate the gradients according to Eqs. (28)–(31).
Step 2.4: Determine the step size c(m) according to the method of successive averages (MSA), c(m) = 1/(m + 1).
Step 2.5: Update path flows r(m+1), according to Eq. (27).
Step 2.6: Load path flow assignment r(m+1) to the DNL model based on Newell’s simplified KW model, to obtain
estimated link densities and flows, and path travel times.
Step 2.7: Convergence checking for solving the Lagrangian subproblem, P2 (i.e., the inner loop). Update the objec-
tive function, L(r(m+1),p(m+1),k(n)). If m < Mmax (maximum number of inner loop iterations) or L(r(m+1),p(m+1),k(n)) is
improved, then m = m + 1, and go to Step 2.2; otherwise, go to Step 2.8.
Step 2.8: Update the tightest lower bound, ZLB, as the following:

ZLB ¼Max ZLB; bd hd rðmÞ
� 


þ bqhq rðmÞ
� 


þ bkhk rðmÞ
� 


þ kðnÞ g rðmÞ;pðmÞ
� 
� �n o

: ð33Þ
Step 3: Update the upper bound.

Step 3.1: Construct a time-dependent OD demand matrix by aggregating the time-dependent path flows
obtained from the solution to the Lagrangian subproblem P2, for each OD pair and each departure time interval.

dðw; sÞ ¼ Rp2P rðw; s; pÞ; 8w; s: ð34Þ
(continued on next page)
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Step 3.2: Perform DUE traffic assignment for the constructed OD demand matrix d = {d(w,s),"w,s}. According to
the assignment results (i.e., estimated link densities, flows, and travel times), obtain the equilibrium path flows
and update the tightest upper bound as:

ZUB ¼Min ZUB;bdhdðrðmÞÞ þ bqhqðrðnÞÞ þ bkhkðrðnÞÞ þ kðnÞ½gðrðnÞ;pðnÞÞ�
n o

: ð35Þ
Step 4: Convergence checking for solving the Lagrangian dual problem (i.e., the outer loop). If n > Nmax (maximum num-
ber of outer loop iterations) or ZUB � ZLB < / (a preset threshold), then stop; otherwise, set n = n + 1.

Step 5: Path generation. Compute least time path for each departure time and OD pair using the time-dependent short-
est path algorithm, developed by Ziliaskopoulos and Mahmassani (1993), and add newly generated paths to the
feasible path set bP .

Step 6: Update Lagrange multiplier k.

Step 6.1: Obtain estimated link flows, path flows, and path travel times from the final iteration of the last inner
loop (i.e., solving P2 in Step 2). Update the gap value, g(r(n), p(n)) defined in Eq. (3), using these estimates.
Step 6.2: Determine the step size, a(n), by MSA, i.e. a(n) = 1/(n + 1).
Step 6.3: Update Lagrange multiplier, k(n+1), according to Eq. (26). Return to Step 2 (the inner loop).
Typically, a Lagrangian solution framework requires obtaining exact solutions to relaxed subproblems. It should be re-
marked that, analyzing existence and uniqueness of solutions to the DUE problem for multiple OD pairs are very challenging,
and the gradient-based algorithm through Eqs. (27)–(31) cannot guarantee that the relaxed (nonlinear) problem P2 is solved
to its optimality. Thus, when no global optimum solution is available for P2, the proposed overall Lagrangian solution algo-
rithm is still a heuristic method in nature.
4. Evaluation of partial derivatives with respect to path flow perturbation

Solving the proposed single-level dynamic OD estimation model requires the evaluation of the partial derivatives with

respect to time-varying path flows, i.e., @qðl;tÞðrÞ
@rðw;s;pÞ

;
@kðl;tÞðrÞ
@rðw;s;pÞ

, and @cðw;s;pÞðrÞ
@rðw;s;pÞ

in Eqs. (29)–(31). These partial derivatives represent the

marginal effects of an additional unit of path inflow on link flow and density and path travel time. This section delineates
the evaluation of these partial derivatives due to path flow perturbation in a congested network, based on cumulative link
inflow and outflow curves. The following notation is used throughout this section.

L: the number of links on the path,
l: link index l = 1, 2, . . . , L,
t0l: the time when an additional unit of perturbation flow arrives at link l,
t00l : the time when an additional unit of perturbation flow departs from link l,
tqs

l : the time when the queue starts to form on link l,
tB

l : the time when the queue vanishes on link l,
tA

l : ¼ tB
l � FFTTðlÞ,

tq�
l : the time when the queue on link l starts to spillback to its upstream link l � 1,

nA: cumulative arrivals at time tA
l ,

n0: cumulative arrivals at time t0l.

4.1. Evaluation of link partial derivatives on a congested link

In this study, the link partial derivatives are referred to as the changes in link flow and density due to an additional unit of
link/path inflow. In their pioneering work, Ghali and Smith (1995) presented an analytical approach to evaluate (local) link
marginal travel time (or delay) on a congested link, based on link cumulative flow curves. An illustration of the approach is
depicted in Fig. 5. In the figure, the two solid lines represent the cumulative arrival and departure curves, while the dashed
line represents the cumulative vertical queue. The (outflow) capacity of the link is c. The key result of their approach is that
the link marginal delay equals the grey area. While link and path marginal delays were investigated in the context of system
optimal DTA (e.g., Ghali and Smith, 1995; Peeta and Mahmassani, 1995; Shen et al., 2007; Qian and Zhang, 2011), to the
authors’ current knowledge, the study on the partial derivatives of link flow and density and path travel time with respect
to path flow was nonexistent.

(For example, the queue starts at tqs
l ¼ 7 : 00 AM, an additional unit of vehicle, n’=1000, enters link l at time t0l ¼ 7 : 10 AM,

leaves the link at time t00l ¼ 7 : 50 AM, the queue dissipates on link l at tB
l ¼ 8 : 30 AM, and tA

l ¼ 8 : 15 AM, assuming FFTT
(l) = 15 min.)

The following propositions can be directly induced from Fig. 5 for deriving the marginal effects on link flow (inflow and
outflow) and density.



Fig. 5. Illustration of link marginal delay on a congested link.
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Proposition 1. Under free-flow conditions, an extra unit of flow arriving at the upstream end of link l at time t0l results in the
following: (i) the link inflow and outflow increase by 1 at times t0l and t00l , respectively, and the flow rates at other time intervals do
not change; (ii) the link density increases by 1 from t0l to t00l ; and (iii) the individual travel times are not changed, and
t00l ¼ t0l þ FFTTðlÞ.

Proposition 2. Under partially congested conditions and constant link (outflow) capacity c, an extra unit of flow arriving at the
upstream end of link l at time t0l results in the following: (i) the link inflow and outflow increase by 1 at times t0l and tB

l , respectively,
and the flow rates at other time intervals do not change; (ii) the link density increases by 1 from t0l to tB

l ; and (iii) the flows arriving
between t0l and tA

l experience the additional delay 1/c, because it takes 1/c to discharge this perturbation flow.
Proposition 3. Under fully congested condition, an extra unit of flow arriving at the upstream end of link l at time t0l would not
change the link inflow, outflow, and capacity. Both link inflow and outflow remain the same at the maximum link flow rate, while
the link density is equal to the jam density. The flows arriving between t0l and tA

l experience the additional delay 1/c, because it takes
1/c to discharge this perturbation flow.

With the proposed DNL model based on Newell’s simplified KW model, we can adapt Eq. (9) to detect if the queue spills
back to the upstream end of link l using the following equation.
Aðl; tÞ < Dðl; t � BWTTðlÞÞ þ kjamðlÞ � lengthðlÞ � nlanesðlÞ: ð36Þ
Specifically, if the above strict inequality holds, then the queue has not propagated back to the upstream end of the link
(or the link is partially congested). Otherwise, the link is fully congested and the queue propagates throughout the link along
the backward wave line, as illustrated in Fig. 5. Note that, under fully congested conditions, the prevailing link density k(l) at
time t might be smaller than kjam(l).

A common pitfall for deriving the partial derivative of link density under congested conditions, is to record the increase in
density by 1 from t0l to t00l (e.g., from 7:10 AM to 7:50 AM with the duration of 40-min in Fig. 5). Proposition 2, induced from
Fig. 5, clarifies that the actual change in link density would last until the queue vanishes at time tB

l , so the change in link
density should cover a duration of 80-min from 7:10 AM to 8:30 AM in our example. Proposition 2 also indicates that the
change in link outflow, due to an extra unit of flow arriving under congested conditions, occurs at the time tB

l (e.g.
8:30 AM), rather than t00l (e.g., 7:50 AM). Note that, by multiplying the (individual) extra delay, 1/c, by the number of vehicles
arriving between t0l and tA

l (i.e., nA � n0), we can obtain that, if t0l is between tqs
l and tA

l , the local link marginal delay is equal to
tB

l � t0l, which is the sum of the traversal time of the perturbation flow, t00l � t0l, and the additional delay imposed by the per-
turbation on others is equal to tB

l � t00l . This evaluation approach for link marginal travel times was also adopted by, Shen et al.
(2007) and Qian and Zhang (2011) in the context of system optimal dynamic traffic assignment.

4.2. Evaluation of the impact of path flow perturbation on two sequential links

In static transportation networks, the path travel time marginal, which is the partial derivative of the total system-wide
travel time, can be obtained as the sum of the link marginals of a path’s constituent links. However, in dynamic and con-
gested transportation networks, this additivity assumption may lead to a severe deficiency in the evaluation of path margin-
als, as indicated by Shen et al. (2007). They showed that it is necessary to explicitly trace the propagation of path flow
perturbation in evaluating path marginal travel times and proposed an evaluation method of path marginals. Thus, this study
evaluates the impact of path flow perturbation (i.e., the partial derivatives) in the individual link-time level by tracing the
changes in link flow and density on a sequence of links (i.e., a path) and over different time intervals, due to the addition
of unit flow to a path. Qian and Zhang (2011) conducted a similar analysis for individual path marginal travel times.

Let’s first consider a freeway or an arterial segment with two sequential links, without merges and diverges, say link l � 1
and link l. Under congested conditions, there are three basic cases of interest, when the additional unit of flow arrives at this
segment.



28 C.-C. Lu et al. / Transportation Research Part C 34 (2013) 16–37
(i) There is a bottleneck on the downstream link l and the queue on link l does not spill back to link l � 1; that is, link l � 1
is in free-flow condition while link l is partially congested.

(ii) There is a bottleneck on the downstream link l and the queue on link l spills back to link l � 1; that is, link l � 1 is par-
tially congested while link l is fully congested.

(iii) There is a bottleneck on each of the two links, and the two bottlenecks are independent, assuming that both links are
sufficiently long so that the queue in the downstream does not spill back to the upstream. This is in fact the case in
which both links l � 1 and l are partially congested.

For cases (i) and (iii), Proposition 2 can be applied to determine the marginal effects of the additional unit of flow on link
flow and density. For case (ii), there are two possible scenarios. As depicted in Fig. 6a, one scenario is that the additional unit
of flow does not encounter the queue on link l � 1, so it can enter link l at time t0l ¼ t00l�1 ¼ t0l�1 þ FFTTðl� 1Þ, when link l is
partially congested, i.e.,t0l < tq�

l or t0l > tB
l�1. The other scenario, as depicted in Fig. 6b, is that the perturbation flow encounters

the queue on link l � 1, i.e. tqs
l�1 < ðt

0
l�1 þ FFTTðl� 1ÞÞ < tB

l�1, so it cannot enter link l until time t0l ¼ t00l�1 ¼ tB
l�1. Note that,

tqs
l�1 ¼ tq�

l , the time at which the queue on link l start to spill back to link l � 1. While it is possible to detect that the queue
spills back based on Eq. (36), tracing the propagation of the perturbation flow in the case of queue spillback is still very dif-
ficult. In order to strike a balance between computational efficiency and numerical accuracy, this study applies Proposition 3
to the analysis of link marginal effects on the current link l under fully congested states, and does not trace back the flow
perturbation from link l to link l � 1.

Next, we discuss the evaluation of partial derivatives of two sequential links in merge or diverge junctions using the illus-
trative network depicted in Fig. 7. Assume that link b is sufficiently long or consists of several links, so the two junctions are
distantly separated. The additional perturbation flow goes through links a1, b, and c1 in order. In the merge junction, the
inflow capacity of link b is assumed to be distributed according to the number of lanes of the incoming links (i.e., links
a1 and a2), so the perturbation flow from link a1 to link b does not affect the density and flow on link a2. Therefore, the anal-
ysis results presented above for two sequential links (i.e., Cases (i)–(iii)) can be directly employed to determine the path mar-
ginal effects of link flow and density.

When the perturbation flow arrives at the diverge junction, if there is a bottleneck active on link c1 or a bottleneck active
on each of the two links, b and c1, the results discussed above for two sequential links can be applied to evaluate the path
marginal effects of interest. Besides, a bottleneck active on link c2 will not affect the evaluation of the path partial derivatives
on links b and c1, unless the queue on link c2 spills back to link b. In this case (i.e., there is no inflow capacity on link c2 to
accommodate the incoming flow), due to the FIFO constraint, the perturbation flow cannot enter link c1 until the vehicles in
front of it in the vertical queue of link b get discharged. We may consider this case as there is a bottleneck at the downstream
end of link b, and adopt the results in Proposition 2 to determine the link/path partial derivatives.

Lastly, we illustrate the evaluation of the partial derivative of path travel time with respect to an unit of additional flow in
the same time interval, i.e., @cðw;s;pÞ

@rðw;s;pÞ in Eq. (31), based on the case of two partially congested links (i.e., case (iii)), depicted in

Fig. 8. Note that the analysis result can be applied to the other two cases (i and ii). Let link l � 1 be the first (congested) link of
a path under evaluation. Consider a vehicle veh that enters link l � 1 at time t0l�1 and leaves at time t00l�1. According to Prop-
osition 2, the extra delay experienced by this vehicle on link l � 1 is 1/c, due to the perturbation flow entering the link in the
same time interval, where c is the capacity of link l � 1. Then, veh enters link l at time tin

l and leaves at time tout
l , but the im-

pact of path flow perturbation on link l occurs at a later time stamp t0l ¼ tB
l�1 > tin

l ¼ t00l�1. Because @cðw;s;pÞ
@rðw;s;pÞ refers to the marginal

effect of the perturbation flow on the path travel time, c(w,s,p), of vehicle veh, c(w,s,p) is affected by the perturbation flow only
on link l � 1. The perturbation flow, which departs in the same time interval s as vehicle veh, will not affect the travel time of
veh after link l � 1. Therefore, the partial derivative can be approximated as @cðw;s;pÞ

@rðw;s;pÞ ¼ 1=c.
(a) (b)
Fig. 6. Link marginal analysis for the case of queue spillback.
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Fig. 7. An illustrative network with merge and diverge junctions.

Fig. 8. Illustration of the scenario with two partially congested links.
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4.3. Computational method for evaluating partial derivatives due to path flow propagation

Based on the above analyses, we now present Algorithm 2, which traces the propagation of an additional unit of flow and
calculates the gradients in Eqs. (29) and (30) of a given path at departure time s. Let ts

l and te
l be the starting and end times of

(event) impact period on link l, respectively. Under the event-based mesoscopic traffic simulation framework, te
l can take on

one of the three values: ts
l þ FFTTðlÞ; tB

l , or tq�
l , corresponding to the free-flow condition, congested without queue spillback

(or partially congested), and congested with queue spillback (or fully congested), respectively.

Algorithm 2. Computational method for path partial derivatives

Initialize link entry time ts
l ¼ departure time s, and link index l = 1.

Do while link index l 6 L
Given ts

l , determine the end time of impact period te
l as follows:

Step 1: Set the tentative entrance time to the vertical queue as ttemp
l ¼ ts

l þ FFTTðlÞ.
Step 2: (Determining the current traffic condition)
Step 2.1: If there is no vertical queue at time ttemp
l and ttemp

l is not equal to the beginning of the queue (tqs
l Þ, then the

perturbation flow enters link l under uncongested conditions: perform Step 3; otherwise, time ttemp
l is under con-

gested conditions.
Step 2.2: Next, if there is no queue spillback between time ts

l þ FFTTðlÞ and tB
l , then perform Step 4; otherwise,

perform Step 5.

Step 3: (Free-flow condition)

Step 3.1: te

l ¼ ts
l þ FFTTðlÞ.

Step 3.2: Update link inflow, outflow and travel time partial derivatives according to Proposition 1.
Step 3.3: If link l has the measurements (e.g., �q and �k), then cumulate rhq(r) and rhk(r), according to Eqs. (29)
and (30).
Step 3.4: Set l = l + 1 and ts

l ¼ te
l�1.

Step 4: (Congested condition without queue spillback)
Step 4.1: Set te

l ¼ tB
l .

Step 4.2: Update link partial derivatives according to Proposition 2 for impact period ts
l ; te

l

� �
.

Step 4.3: If link l has the measurements (e.g., �q and �k), then cumulate rhq(r) and rhk(r), according to Eqs. (29) and
(30).
Step 4.4: Set l = l + 1 and ts

l ¼ te
l�1.

Step 5: (Congested condition with queue spillback):

Step 5.1: Find the queue spillback time (in terms of link entrance time) tq�

l , and set te
l ¼ tq�

l .
Step 5.2: Update link partial derivatives according to Proposition 3 for impact period ts

l ; te
l

� �
.

Step 5.3: If link l has the measurements (e.g., �q and �k,), then cumulate rhq(r) and rhk(r), according to Eqs. (29)
and (30).
Step 5.4: Keep l unchanged, set ts

l ¼ te
l , go back to Step 4.

End Do



Note that, because of the limitation of using local (instead of global) link partial derivatives and the lack of an exact ap-

proach to keep track of the propagation of perturbation flows, the gradients obtained using Algorithm 2 are still numerical
approximates. Thus, the proposed solution algorithm, based on the approximate gradients, is a heuristic that cannot be guar-
anteed to find (globally) optimal solutions.
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5. Numerical experiments

Three sets of numerical experiments were conducted on three different networks to systematically evaluate the perfor-
mance of the proposed dynamic OD demand estimation algorithm under different scenarios. The first network is a simple
two-link corridor with steady state travel time functions. The second network is a simple freeway corridor with time-depen-
dent sensor data. The last network is a real-world transportation network with time-dependent sensor data.

5.1. Experiments on a simple two-link corridor with steady state travel time function

In the first set of experiments, we aim to examine the convergence pattern of the proposed algorithm on a simple corridor
with a single OD pair connected by two parallel links (or paths). A simple linear travel time function, Eq. (37), is used in per-
forming the traffic assignment which loads a total peak-hour demand, 8000 vehicles/hour (or veh/h) to those two paths.
Then, the resulting UE assignment results, shown in Table 1, are used as the ground-truth condition to evaluate the path flow
estimation performance under various testing conditions.
Table 1
User eq

Path

Path
Path
TðlÞ ¼ FFTTðlÞ þ rl=capðlÞ; ð37Þ
where T(l) and FFTT(l) are the travel time and free-flow travel time on link/path l, respectively. rl and cap(l) are the flow vol-
ume and capacity of link/path l, respectively.

First, we start with an initial path flow distribution that loads 3000 veh/h to each link. The ground-truth demand of
8000 veh/h is set as the target demand, and the error-free flow counts (r1 = 5400,r2 = 2600) are used as the observations.
In this case, the objective function of problem P1 can be simplified as follows:
Min LðrÞ ¼ bdf ðrÞ þ bqhqðrÞ þ k½gðr;pÞ� ð38Þ
For simplicity, the weight parameters bd = 1, and bq = 1, which means that the decision maker has the same level of con-
fidence on target demand and flow observations. By further considering the Lagrange multiplier, k = 1, the first order partial
derivative of the objective function with respect to path flow on path 1 is
@LðrÞ=@r1 ¼ 2ðr1 þ r2 � 8000Þ þ 2ðr1 � 5400Þ þ Tð1Þ � pþ r1=capð1Þ; ð39Þ
where the minimum path travel time p is considered as an exogenous variable for this restricted optimization problem, and
it can be obtained as p = Min{T(1),T(2)} in each iteration. The second order partial derivative for path flows r1 and r2 are
4 + 2/cap(1) and 4 + 2/cap(2), respectively. Similar to the Newton-type algorithm, if the inverse of the second order gradient
is used as the step size in Eq. (26), then the step size cm in inner iteration m for updating the flow on path l can be approx-
imated as 1/4, as 2/cap(l) reduces to a very small value. This leads to the following approximate gradient-projection-based
flow updating formula
rmþ1
l ¼ max 0; rm

l � 1=4� @LðrÞ
@rl


 �
ð40Þ
Figs. 9 and 10 demonstrate the convergence patterns of the proposed path flow estimation algorithm in the first 20 inner
iterations. We can observe that, after 3 or 4 inner iterations, the total estimated demand is quickly adjusted to a level very
close to the ground-truth demand, while the equilibrium processes of path flow distribution and path travel times are
relatively slow.

The following experiment was conducted to examine the impact of different values of the Lagrange multiplier k on the
solution quality. We consider two different criteria for evaluating the solutions, (i) the total gap g(r,p) that measures the
distance from the UE conditions and (ii) the value of bdf(r) + bq hq(r) that measures the total deviation from the target demand
and observed path flows. In this experiment, a slightly biased target demand with 7000 veh/h and flow observations
(r1 = 5500,r2 = 2500) are adopted. The weight parameters remain as bd = 1, and bq = 1, but the Lagrange multiplier k was var-
ied from 0.1 to 10 to obtain different solutions. By solving the optimization problem in Eq. (38) using Microsoft’s Excel Solver,
uilibrium traffic assignment results on the two-link corridor.

FFTT (min) Capacity (veh/h) Assigned flow (veh/h) Travel time (min)

1 20 3000 5400 56
2 30 3000 2600 56



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20

Fl
ow

 V
ol

um
e

Iteration

Ground-truth total 
demand

Estimated total 
demand

Ground-truth flow on 
route 1

Estimated Flow on 
route 1

Estimated Flow on 
route 2

Ground-truth flow on 
route 2

Fig. 9. Path flow volume convergence pattern as a function of inner iteration number.

40

45

50

55

60

65

70

0 5 10 15 20

T
ra

ve
l T

im
e 

(m
in

)

Iteration 

Estimated travel time on route 1

Estimated travel time on route 2

User equilibrium travel time

Fig. 10. Path travel time convergence pattern as a function of inner iteration number.

Fig. 11. User equilibrium gap vs. total deviation under different weights on the gap function.

C.-C. Lu et al. / Transportation Research Part C 34 (2013) 16–37 31
we can construct the resulting trade-off plot between user equilibrium gap and total deviation, as shown in Fig. 11. Essen-
tially, a larger Lagrange multiplier/penalty associated with the gap function leads to a solution closer to the UE conditions at
the expense of an increased total deviation from the target demand and the observations.

It should be noted that, in order to iteratively search for the maximum value of the Lagrangian dual problem, one can use
the rule, described in Eq. (26), to determine the step size a(n) in an outer iteration n for updating the Lagrange multiplier
k(n+1). However, because the gap function value could vary significantly, e.g., from 0 to 14,000 in the above example, we
can use a simple line search method to update the step k(n+1) in this experiment to obtain stable improvement in the search
process.

As described in Step 2 of Algorithm 1, in each outer iteration n, the estimated OD demand and path and link flows (cor-
responding to a particular value of the Lagrange multiplier) are used to compute the lower bound (LB) of the primal problem,
P1, based on Eq. (33). On the other hand, the upper bound (UB) is obtained by solving the corresponding UE problem. Then, in
Step 3, the solution with the smallest gap between the UB and LB values is selected as the final solution. As shown in Fig. 12,



Fig. 12. Upper bound and lower bound of objective function as a function of Lagrangian multiplier.

Table 2
Estimation results under different degrees of information availability.

Information availability Estimation result

Volume
observations on
path 1

Volume
observations on
path 2

Error-free target
demand, 8000 veh/h

Error-free travel
time on path 1

Flow on
path 1

Flow on
path 2

Total
estimated
demand

Equilibrium
travel time (min)

X 5051.7 2367.8 7419.5 53.7
X 4967.7 2311.8 7279.4 53.1

X X 5011.8 2341.2 7353.0 53.4
X X X 5387.9 2592.0 7979.9 55.9
X X X X 5401.1 2600.7 8001.8 56.0
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in this experiment, k = 7 gives the solution with the smallest gap, which corresponds to a total demand of 7353 veh/h, a path
flow distribution of (r1 = 5012, r2 = 2341), and equilibrium travel time of 53.4 min. In this final solution, the resulting relative
Lagrangian gap value=(UB-LB)/LB = 0.17%, indicating that a close-to-optimal solution is found to the original primal problem,
although the total demand, 7353 veh/h, is still slightly different from the ground-truth OD demand, 8000 veh/h, due to the
inherent error in the target demand, 7000 veh/h.

Note that, when varying the Lagrange multiplier from 0.1 to 7, we obtain several similar solutions, with the total demand
ranging from 7334 to 7353 veh/h. This demonstrates that the proposed solution framework is able to provide a theoretically
rigorous method to quantify the solution quality, generate alternative solutions, and finally identify the optimal solution that
can minimize the total measurement deviation and satisfy the UE conditions.

Table 2 shows the estimation results under different degrees of information availability, for example, partial vs. complete
sensor coverage, slightly biased vs. error target demand, as well with or without travel time observations. In general, more
information from either target demand or measurements leads to a demand/path flow estimate closer to the ground-truth
value.

5.2. Experiments on a freeway corridor with time-dependent sensor data

In the second set of experiments, we test the performance of the proposed algorithm on a freeway corridor with time-
dependent real-world sensor data. As shown in Fig. 13, the freeway corridor of interest is a 2-mile section of I-210 west-
bound, located in Los Angeles, CA. This corridor includes three on-ramps and one off-ramp. In the network representation
constructed for the proposed DNL model, we ignore the HOV lane and only consider four general purpose lanes on the free-
way. Traffic speed, flow count and occupancy are measured at 5-min intervals on freeway and ramp links.

In this simple corridor, each OD pair only has a single path, so it does not involve a complex flow equilibration process
required for multiple alternative paths. As a result, our focus is on demonstrating how the proposed gradient-based
Fig. 13. Network representation of a section of I-210 West bound corridor.
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adjustment algorithm adjusts the incoming demand pattern to capture the observed queue formation, propagation and dis-
sipation. We first describe the details for preparing the input data for the dynamic OD demand estimation problem under
consideration.
5.2.1. Traffic measurements
The traffic measurements were obtained from the PErformance Measurement System (PeMS) database (Varaiya, 2002).

This study considers a planning horizon between 6AM and 10AM, and uses the flow count and density data on April 28,
2008 as the measurements, while the density data are constructed based on the observed occupancy data on the same
day and estimated average vehicle length. Due to possible sensor malfunction, clean ramp sensor data are not always avail-
able for the entire planning horizon, so we use the historical average time series to fill out the data gaps on-ramps.
5.2.2. Traffic flow model
Using the historical data from April 22 to 25, 2008 (i.e., 4 weekdays) during the early peak hours between 6 AM and

10 AM, we calibrate the triangular traffic flow-density model for each link. For instance, Fig. 14 shows the flow-density rela-
tionship for sensor b with jam density Kjam = 120 veh/ml/lane, free-flow speed Vf = 76 mph, backward wave speed
w = 20 mph, and a maximum capacity of 1900 veh/h/lane.
5.2.3. Boundary outflow capacity
One of the critical boundary conditions in this OD estimation problem is the time-dependent maximum outflow dis-

charge rate (i.e. capacity) on the downstream sensor d, which is a result of the queue spillback from links further down-
stream and cannot be captured internally in the study network. Thus, we use the historical average flow data to
construct the link outflow apacity on station d and set it as the fixed input for the DNL model.
5.2.4. Historical demand
Based on the historical flow counts on the boundary sensors, namely, the stations on freeway location a and all on-ramps,

we estimate the total origin volume and then apply an estimated destination split to setup a historical OD demand table,
where the destination split assigns the majority of flow toward the freeway destination d. This historical demand table
serves as the target demand table in the experiment.
5.2.5. Initial demand table
To evaluate if and how the gradient-based algorithm can adjust a biased, initial OD demand table toward the target de-

mand table, we start with an OD demand table with only 70% of historical demand volume.
Fig. 15 shows the observed time series of the traffic speeds at stations b, c and d. After 6:30 AM, the traffic congestion from

downstream location d is propagated to upstream sensors b and c, leading to a slow-moving queue on freeway mainline seg-
ments between 7:00 AM and 9:00 AM. The traffic congestion starts to dissipate afterwards, but the overall speed is still sig-
nificantly below the free-flow level. The observed flow pattern at entrance station a can be viewed as the total origin demand
flow from station a to different destinations. The root mean squared absolute errors (RMSEs) of the estimation results for
speed measurements and for link count measurements are 13.2 mile/h and 159.1 veh/h/lane, respectively. Fig. 16 shows
the estimated and observed flow patterns on entry link a, and the corresponding average relative estimation errors are less
than 10%. This indicates that the proposed flow estimation algorithm can adjust a biased, initial demand pattern to match the
target demand volume at the entry point. The estimated space speeds and the observed point speeds at station c are plotted
in Fig. 17, which demonstrates that the DNL model is able to accurately reproduce the queue spillback phenomenon along
the corridor.
Fig. 14. Triangular relationship between flow and density at sensor b.



Fig. 15. Observed speed time series on freeway stations (demonstrating a congested period from 7:00 AM to 9:00 AM).

Fig. 16. Observed lane volume on station a vs. estimated lane volume on entrance link.

Fig. 17. Observed point mean speed at station c vs. estimated space mean speed on the link from off-ramp h to station c.
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5.3. Experiments on large real-world traffic networks

The third set of numerical experiments was performed on two real-world networks. The first is a subarea network within
the Portland, Oregon metropolitan area, which includes 858 nodes, 2000 links, and 208 OD zones shown in Fig. 18. We first
loaded a subarea OD demand matrix generated from a recent study (Kittelson et al., 2011) as the ‘‘historical’’ OD demand,
and obtain 5-min flow counts from 14 loop detectors and peak-hour flow counts converted from 392 annual average daily
traffic (AADT) counts. To assess the estimation performance of the proposed approach, we used the root mean squared abso-
lute error (RMSE) of peak-hour link volume as the estimation criterion. Fig. 19 shows a decreasing pattern of the estimation
error as the iterative algorithm proceeds. The final RMSE value of peak-hour link volume is about 55.6 veh/link, correspond-
ing to 15% error compared to the total link volume and R2 = 0.91. The average travel time gap reduces to 0.33 min/veh on a
network with an average travel time of 7 min, which demonstrates that the proposed algorithm is able to produce accurate
estimation results for this medium-scale network.

The second real-world network is the Triangle Regional Model network, North Carolina, USA. This large-scale regional
network has 2389 zones, 20,259 links and about 2000 signalized intersections. Provided by the local metropolitan planning
agency, the morning peak-hour demand matrix has about 1.06 million vehicles, covering a time period from 6 AM to 10 AM.
There are about 16 and 14 sensors, respectively, on freeway and arterial links, producing a total of 120 hourly link count
observations. The experiments were performed on a PC with 16 GB memory and 8-core processors running at 2.70 GHz.
We implemented the proposed path flow adjustment algorithm in the open-source dynamic traffic assignment package DTA-
Lite (Zhou et al., 2012), which has a mesoscopic traffic network loading model based on Newell’s simplified kinematic wave
theory. The starting and ending timestamps of vehicles on each link are used to construct link-based cumulative arrival and
departure count curves, which are further used to track the queue spillback phenomena and shock wave propagation.



Fig. 18. Portland Beaverton subarea network with 392 AADT counting stations.

Fig. 19. MAE of the estimated link density as a function of iteration.

Fig. 20. Observed vs. estimated link volume on freeway links on the triangle regional model, NC network.
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The running time of this light-weight simulator is about 2 min and 45 s per iteration for the Triangle Regional Model net-
work. When incorporating the additional path flow adjustment process, the average running time increases to 5 min and 3 s
per iteration. The iterative sequential adjustment converged after 140 iterations, which take a total of 12 h of CPU time. The
scatter plots in Figs. 20 and 21 and additional three MOEs, namely R-squared, total estimated vs. observed flow ratio. The
average absolute link flow deviations are 435.15 and 212.21 veh/h per link, respectively, on freeway and arterial links, which
further demonstrate the effectiveness of the proposed method on both freeway and arterial links of the large-scale network.



Fig. 21. Observed vs. estimated link volume on highway and arterial links on the triangle regional model, NC network.
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6. Concluding remarks

With the particular focus on providing consistent and efficient time-dependent path flow estimators, this study proposes
a single-level dynamic OD demand estimation model, without using link proportions, based on the mathematical program
with complementary (or equilibrium) constraints approach. The Lagrangian relaxation-based heuristic which dualizes the
gap function-based DUE constraint is developed to solve the proposed models. In each iteration, the tightest upper bound
is updated according to the DUE assignment results of the OD demand table constructed from the estimated path flows,
while the tightest lower bound is determined by the (gradient projection-based) path flow adjustment process. The algo-
rithm proceeds until the gap between the upper bound and the lower bound is minimized.

The mesoscopic DNL model, based on Newell’s simplified KW theory, is proposed to realistically estimate network per-
formances for the DUE assignment result of an estimated OD demand table. Furthermore, based on the DNL model, we derive
partial derivatives of link flow, density and path travel time with respect to path flow perturbations, which are essential to
determine the feasible descent direction in the gradient-projection-based algorithm. The proposed OD demand estimation
model utilizes a wide variety of traffic measurements available from traffic sensor networks, and circumvents the difficulty
of providing complex mapping matrices between OD demand flows and those measurements in most of the existing dy-
namic OD demand estimation methods. The seamless integration between the path flow estimation and DTA models pro-
vides an effective and efficient way of utilizing heterogeneous data sources. The application to the three test networks
demonstrates the effectiveness and performance of the proposed models under different network and data availability
conditions.

In addition to examining its performance on large-scale networks in our future studies, the presented joint assignment
and flow estimation model has considerable potential for generalizing the modeling framework into the field of real-time
traffic state estimation and prediction. This would require further investigation into numerous issues, such as calibrating
the maximum queue discharge rates which critically affect flows on downstream links, utilizing emerging end-to-end AVI
travel times collected from Bluetooth readers, and accommodating possible modeling errors and behavioral heterogeneity
in the DUE assignment. Moreover, it will be interesting to conduct computational experiments for comparing the perfor-
mance of the proposed approach with that of other traditional approaches from the literature. Our subsequent research will
also conduct a wide range of sensitivity tests on different parameters in our OD estimation method, and evaluate the impact
of inaccurate input data on the estimation results.
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