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More and more enterprises have chosen to adopt a made-to-order business model in order to satisfy diverse and rapidly
changing customer demand. In such a business model, enterprises are devoted to reducing inventory levels in order to
upgrade the competitiveness of the products. However, reductions in inventory levels and short lead times force the
operation between production and distribution to cooperate closely, thus increasing the practicability of integrating the
production and distribution stages. The complexity of supply chain scheduling problems (integrated production and
distribution scheduling) is known to be NP-hard. To address the issues above, an efficient algorithm to solve the supply
chain scheduling problem is needed. This paper studies a supply chain scheduling problem in which the production stage
is modelled by an identical parallel machine scheduling problem and the distribution stage is modelled by a capacitated
vehicle routing problem. Given a set of customer orders (jobs), the problem is to find a supply chain schedule such that
the weighted summation of total job weighted completion time and total job delivering cost are minimised. The studied
problem was first formulated as an integer programme and then solved by using column generation techniques in
conjunction with a branch-and-bound approach to optimality. The results of the computational experiments indicate that
the proposed approach can solve the test problems to optimality. Moreover, the average gap between the optimal
solutions and the lower bounds is no more than 1.32% for these test problems.

Keywords: dynamic programming; column generation approach; identical parallel machine; supply chain scheduling

1. Introduction

Supply chain management has been one of the most widely discussed topics in the modern business world. A supply
chain represents all stages at which raw materials and components are transformed into finished products to be delivered
to end customers. The main objective of supply chain management is to satisfy customer demands through the most
efficient use of resources. Traditional approaches consider production and distribution separately and sequentially, with
little or no coordination between these two stages. When there is a sufficient amount of inventory between production
and distribution, the operations of these two stages can be decoupled; hence, traditional approaches are able to deliver
reasonable and effective solutions. However, a high inventory level leads to increased inventory holding costs and
longer material flow times through the supply chain; this would impair a company’s ability to respond promptly to the
demand changes and eventually worsen the total supply chain profitability.

In the current competitive global market, companies are forced to lower the amount of inventory needed across their
supply chain but still have to be more responsive to customers’ requirements. Reduced inventory creates a closer inter-
action between production and distribution activities and thus increases the practical usefulness of integrated models
(Sarmiento and Nagi 1999). Nowadays, many enterprises have adopted a make-to-order business model, where products
are custom-made and are delivered to customers within a very short lead time directly from the factory without the
intermediate step of finished product inventory (Su et al. 2010; Shao and Dong 2012). Co-ordinating the production and
distribution activities is complex. The complexity of supply chain scheduling problems (integrated production and
distribution scheduling) is known to be NP-hard. A decision that is optimal with respect to both stages (i.e. production
and distribution) might not be an optimal decision for each stage, especially when each stage has its own performance
measure. The optimal solution to one stage may adversely affect the other. Consider a simple example in which a
company produces different products for multiple customers who reside at different locations. Products have to be
delivered to customers by some vehicle right after they are produced. The travel time and transportation cost are
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non-negligible. To save the distribution cost, orders from closely located customers may be delivered together within
one batch. It is then reasonable to schedule these products such that they are produced at similar times. However, pro-
ducing these products may require very different setups and thus would result in high production cost. On the other
hand, scheduling similar products together to save the production cost might result in higher distribution costs if they
are ordered by different customers who are located far apart from one another.

Among the existing models that explicitly address the integration of production scheduling and distribution schedul-
ing and routing, the main focus is on clarifying the problem complexity of various special cases for a general model
with different objectives, followed by developing dynamic programming algorithms with respect to some special cases,
or analysing the worst-case and asymptotic performance of some heuristics developed for these special cases (Lee and
Chen 2001; Chang and Lee 2004; Li, Vairaktarakis, and Lee 2005; Pundoor and Chen 2005). They either assume direct
shipment (i.e. no routing decisions need to be made) or consolidation of customers into one or two areas to simplify the
distribution stage. So far, only some of the problems studied by Chen and Vairaktarakis (2005) do explicitly consider
the routing decisions. They develop heuristics and perform computational experiments on the scale of 100 jobs and five
customer locations. Another set of studies assumes that job delivery can be made instantaneously without any transpor-
tation time and use batch delivery cost to account for distribution activities (Wang and Cheng 2000; Hall and Potts
2003). Routing decisions are not considered in these studies. As pointed out by Chen and Vairaktarakis (2005), more
academic research is needed to model direct production-distribution interactions and develop problem-solving techniques
that can be used in practice. Most of the special cases of this class of problems have already been classified as NP-hard,
especially when there are multiple machines for production and when there are multiple customer locations. Actually,
even standalone single-stage problems (i.e. only scheduling or only vehicle routing) are very complicated. For example,
the problem that involves one machine, multiple delivery locations, multiple delivery vehicles available, an equal-sized
job when considering loading to a vehicle, and with the objective of minimising the time when the last job is delivered
to its customer is NP-hard in the strong sense, even if the processing times at the first stage are all equal to zero (Lee
and Chen 2001).

The proposed work is to address the supply chain scheduling problems (integrated production and distribution sched-
uling) from an operational perspective by considering the detail scheduling at an individual job level. The problems can
be viewed as two-stage supply chain scheduling problems. At the first stage, jobs are arranged to be processed by some
manufacturing facility that can be modelled as a single machine, a set of parallel machines, or a series of flow shop
machines. After processing, jobs must be delivered to some customers who may reside at different locations by some
transportation means (e.g. delivery vehicles). The problems at the second stage involve detailed vehicle dispatching and
routing decisions that are typically referred to as vehicle routing problems, which have also been extensively discussed
in the literature (e.g. Bramel and Simchi-Levi 1997).

This research planned to develop exact algorithms to find the optimal solutions of the study problems. To achieve
that, problems are first formulated by integer programming (IP) and solved by a branch and bound approach in conjunc-
tion with the column generation technique. The rest of this article is organised as follows. We briefly review the litera-
ture in Section 2. Section 3 presents the research method, which jointly considers scheduling activities of production
and distribution in an integrated manner. Computational experiments were tested in Section 4. The final section makes
conclusions.

2. Literature review

2.1 Production scheduling

Due to the popularity of the just-in-time philosophy and total quality management concept, schedule plays an important
role in achieving the goal of on-time delivery, which in turn is one of the crucial factors for customer satisfaction. Most
researchers studied the machine scheduling problems without taking into account the underlying physical material han-
dling systems. The assumption was made that an unlimited capacity is associated with the material handling system and
that transportation times between machines are negligible. Only a few researchers have considered the joint optimisation
of machine scheduling and job transporting in an underlying material handling system. The first research that explicitly
considered the transportation issue is probably by Maggu and Das (1980). They studied a two-machine flowshop make-
span problem, in which they assumed that there are unlimited buffers on both machines and that a sufficient number of
transporters are available to transport jobs from one machine to the other with job-dependent transportation times. Kise
(1991) considered a similar problem but with only one transporter capable of transporting at most one job at a time. He
shows that this problem is ordinarily NP-hard, even with job-independent transportation times. Other related studies that
considered a similar problem, with limited buffer space and unit transporter capacity, was presented by Stevens and
Gemmill (1997) and Ganesharajah, Hall, and Sriskandarajah (1998).
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Another line of research has focused on problems in which job completion time is defined as the time when a job is
delivered to the destination. Hall and Shmoys (1992) studied a single-machine problem with unequal job arrival times
and delivery times. In their model, they implicitly assumed that a sufficient number of vehicles are available in the sys-
tem in order to deliver a processed job to the customer immediately. They provided a heuristic, justified by a worst-case
analysis. Lee and Chen (2001) studied machine scheduling problems with explicit transportation considerations. Two
types of transportation situations are considered in their models. The first type, called Type-1 transportation, involves
intermediate transportation of jobs from one machine to another for further processing. The second type, called Type-2
transportation, involves the transportation that is provided to deliver finished jobs to their destinations. Jobs are deliv-
ered in batches by the transporter(s). They assumed that all jobs require the same physical space on the transporter. Both
transportation capacity and transportation times are considered in their models.

Hurink and Knust (2001) independently studied robotic operations in the manufacturing environment, which is an
intermediate type of transportation. They assumed that there is only one transporter available to carry each single job
and that the return time of the transporter is zero. Chang and Lee (2004) extended Lee and Chen’s (2001) work to the
situation in which each job occupies a different amount of space in the vehicle. Li, Vairaktarakis, and Lee (2005)
extended Chang and Lee’s work by considering delivery to multiple customers at different locations.

2.2 Vehicle routing problem

If we consider only the vehicle routing problem, a tremendous amount of research has been conducted in the field of
vehicle routing problems in the last three decades. Various vehicle routing problem models have appeared. For the
results on basic vehicle routing problem models without time windows, many survey papers have appeared, including,
among others, Bodin (1990) and Laporte (1992). A more complicated model that involves customer time windows has
been studied extensively more recently. Some representative results for this model include, among others, Desrochers,
Desrosiers, and Solomon (1992), Bramel and Simchi-Levi (1997), and Fisher, Jornsten, and Madsen (1997). The most
general vehicle routing problem model is the so-called pickup-delivery model. For results on this model, see the papers
by Savelsbergh and Sol (1998).

Many researchers have considered so-called inventory-routing problems, where customers’ demands are replenished
over time and where the frequency and size of customer deliveries are decision variables as well. These problems can
be viewed as an extension of pure vehicle routing problems, where customer demands are filled only once. There are
also results addressing the integration of vehicle routing with other decisions. Many researchers consider problems of
integrating location and routing, where routing decisions are incorporated into traditional location models. Some repre-
sentative papers include, among others, Stowers and Palekar (1993) and Min, Jayaraman, and Srivastava (1998).

2.3 Column generation approach

Dantzig and Wolfe (1960) pioneered this fundamental idea, developing a strategy to extend a linear programme col-
umn-wise, as needed in the solution process. The column generation that was devised for linear programmes is a suc-
cess story in large-scale integer programming (Lübbecke and Desrosiers 2005). Among all existing exact methods,
branch and bound approaches that are based on the column generation method have recently been proven to be the
best for both machine scheduling problems and vehicle routing problems. A number of studies have reported promising
results obtained by applying column generation-based algorithms to solve machine scheduling problems (e.g. Van den
Akker, Hoogeveen, and Van de Velde 1999; Chen and Powell 1999; Chen 2004; Bard and Rojanasoonthon 2006).
Applying this approach, the size of solvable problems is larger than others. For example, for the parallel machine prob-
lem with the objective of minimising the total weighted completion times, Chen and Powell (1999) can solve the prob-
lem with 100 jobs and 20 machines, which is more than three times larger than the problem size solved by the best
existing result using other techniques. The column generation approach has also successfully solved various types of
vehicle routing problems (e.g. Desrochers, Desrosiers, and Solomon 1992; Savelsbergh and Sol 1998; Desaulniers
2007). For problems with tight customer time windows, it is reported (Desrochers, Desrosiers, and Solomon 1992) that
the column generation approach can solve instances with 100 customers and is faster than any other approach. In addi-
tion, column generation-based approaches are also superior for many other difficult combinatorial optimisation prob-
lems, including airline crew scheduling problems, cutting stock problems, the graph colouring problem, lot scheduling
problems, the generalised assignment problem, and telecommunications network design problems. It has been shown
that the column generation-based approaches are computationally more effective than any other approach for the corre-
sponding problems. A general framework of the column generation approach is given by Barnhart et al. (1998).
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3. Proposed approach

This paper applied a column generation-based algorithm to solve supply chain scheduling problems (integrated
production and distribution scheduling). First, it must establish a mathematical programming model. The original
complex master problem will decompose into a restricted master problem and several subproblems by the column
generation method’s characteristics. Each subproblem is representing the single machine scheduling problem and the
single batch delivery problem, using the dynamic programming method to obtain the solution of a subproblem.

3.1 Problem statement and notation definition

The problem is described as follows. There are n jobs, k customers, m unrelated parallel machines, and an unlimited
number of homogeneous vehicles available in the system. Each vehicle can only carry at most z jobs in one delivery
trip. The objective is to minimise a

P
wC þ ð1� aÞTC, where a is a given constant (0 � a � 1) representing the deci-

sion-maker’s relative preference on customer service level and total distribution cost. In this expression, TC is the total
distribution cost that includes the fixed and variable parts of the transportation cost, and wC is the order completion time
multiplication weight to transform cost.

This research that explored the problem has made the following assumptions:

• In the production part

(1) All jobs and machines are available at time 0.
(2) Each machine can process only one job at any given time.
(3) Does not consider the job rework or the machine breakdown.
(4) Each job j 2 N needs to be processed by any one of the machine without setup time.

• In the distribution part

(1) Only a logistics centre (manufacturing facility) and each vehicle can only transport once.
(2) Delivery vehicles without quantity and distance limit.
(3) The capacity upper bound and speed of each vehicle are the same.
(4) All vehicles are available and parking at the manufacturing facility at time 0.
(5) Each vehicle must finally return to logistics centre.

According to assumptions mentioned above, this research constructs the problem into a binary integer programming
model. The corresponding parameters are defined as follows:

N set of n jobs, N ¼ f1; 2; . . . ; ng,
K set of k customers, K ¼ f1; 2; . . . ; kg,
Nh set of jobs that are ordered by customer h 2 K,
nh number of jobs that are ordered by customer h 2 K, i.e. nh ¼ jNhj,
V set of homogeneous vehicles, V ¼ f1; 2; . . . ; vgðv � nÞ,
M set of m identical parallel machines, M ¼ f1; 2; . . . ;mg,
Bj set of jobs that can be processed before job j 2 N ,
pj processing time of job j 2 N ,
wj weight of job j 2 N ,
tlh the transportation time from customer l 2 K to customer h 2 K,
vhl the variable cost travelling from customer h 2 K to customer l 2 K,
Ffix the fixed cost by sending out one vehicle to deliver jobs, and
z the capacity of each vehicle.
a preference coefficient, 0 � a � 1 .

The decision variables are defined as:

cj the time when job j 2 N is finished processing by the manufacturing facility,
Cj the time when job j 2 N is delivered to its customer,
d0

u the time when vehicle u 2 V departs from the manufacturing facility,
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dh
u the time when vehicle u 2 V arrives at customer h 2 K,

xij = 1 represents job j 2 N is processed immediately before job j 2 Ni on this machine; otherwise xij = 0,
yhl

u=1 represents vehicle u 2 V travels from customer h 2 K to customer l 2 K {h}; otherwise yhl
u = 0,

aj
u= 1 represents job is delivered by vehicle u 2 V ; otherwise aj

u = 0.

For convenience, this paper introduces two dummy jobs, job 0 and job n + 1, with zero processing time and zero
sizes; c0 is defined as 0. Moreover, let customer 0 represent the location of the manufacturing facility where each
vehicle is initially located, and customer k þ 1 represents the location in the manufacturing facility where each vehicle
will return to. There is no travel time or cost between customer 0 and customer k þ 1. Based on the definition above,
this research can construct a binary integer programming mathematical model as follows:

Min a
X
j2N

wjCj

 !
þ ð1� aÞ Ffix

X
u2V

X
h2K

yu0h þ
X
u2V

X
h;l2K[f0;kþ1g
h–l

vhly
u
hl

0
B@

1
CA ð1Þ

Subject to

X
j2N

x0j � m ð2Þ

X
i2Bj[f0g

xij ¼ 1 8j 2 N [ fnþ 1g ð3Þ

cj ¼
X

i2Bj[f0g
cixij þ pj 8j 2 N [ fnþ 1g ð4Þ

X
l2Knfhg

yuhl �
X

l2Knfhg
yulh ¼ 0 8u 2 V ; 8h 2 K ð5Þ

X
h2K

yuh;kþ1 �
X
h2K

yu0;h ¼ 0 8u 2 V ð6Þ

X
h2K

yu0h � 1 8u 2 V ð7Þ

nh
X

l2Knfhg
yulh �

X
j2Nh

auj � 0 8u 2 V ; 8h 2 K ð8Þ

X
u2V

auj ¼ 1 8j 2 N ð9Þ

X
j2N

auj � z 8u 2 V ð10Þ

du
h ¼

X
l2K[f0gnfhg

ðdu
l þ tlhÞyulh 8u 2 V ; 8h 2 K ð11Þ

cj �
X
u2V

du
0a

u
j � 0 8j 2 N ð12Þ
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Cj �
X
u2V

du
ha

u
j ¼ 0 8j 2 Nh; 8h 2 K ð13Þ

xij 2 f0; 1g 8i 2 N [ f0g; j 2 N [ fnþ 1g ð14Þ

yuhl 2 f0; 1g 8h 2 K [ f0g; l 2 K [ fk þ 1g; u 2 V ð15Þ

auj 2 f0; 1g 8j 2 N ; u 2 V ð16Þ

The objective function (1) minimises the weighted sum of the total weighted job completion time and total distribu-
tion cost. Constraint (2) represents at most m jobs processed in m partial machines at time 0. Constraints (3) ensure that
each job either is processed at time 0 or has a job processed immediately before it. Constraints (4) define the time when
each job is finished processing by a machine and is ready for delivery. Constraints (5) and (6) represent the conserva-
tion-flow requirements. Constraints (7) ensure each vehicle is used at most once. Constraints (8) make sure that if a job
is delivered to its customer by a vehicle, then that vehicle has to visit that customer. Constraints (9) guarantee that each
job will be delivered to its customer exactly once. Constraints (10) associate with the vehicle capacity. Constraints (11)
and (13) define the job completion time; i.e. the time when a job is delivered to its customer. Constraints (12) make sure
that a job will not be delivered until a machine completes processing that job. Constraints (14) to (16) give the binary
constraints for the decision variables.

Clearly, this formulation is very complicated. Constraints (11) even incorporate nonlinear constraints that make this
problem intractable. Therefore, it is not appropriate to solve this formulation directly. This research applied
Dantzig-Wolfe decomposition to decompose this mathematical model to become a set-partitioning master problem and a
sub-problem. The parameters for the set partition-type formulation are defined as follows.

S set of all possible single-machine partial schedules for processing jobs on a single machine. Each job schedule
specifies what jobs are processed in what order and completed at what times.

N set of n jobs, N ¼ f1; 2; . . . ; ng,
M set of m identical parallel machines, M ¼ f1; 2; . . . ;mg,
Q set of all possible delivery schedules for a vehicle. Each delivery schedule specifies what jobs are delivered to

their corresponding customers at what times and also specifies when a vehicle starts to deliver jobs. Note that a
delivery schedule could be empty; i.e. it may not deliver any job.

wj weight of job j 2 N ,
ajs = 1 if partial schedule s (s 2 S) covers job j (j 2 N ); 0 otherwise,
bjq= 1 if delivery schedule q (q 2 Q) covers job j (j 2 N ); 0 otherwise,
dq the time when delivery schedule q (q 2 Q) starts to deliver jobs,
cjs the completion time of job j (j 2 N ) in partial schedule s (s 2 S),
Cjq the completion time of job j (j 2 N ), defined as the time when it is delivered to its customer under delivery

schedule q (q 2 Q),
Fq total transportation cost for delivery schedule q (q 2 Q),
Ffix the fixed cost by sending out one vehicle to deliver jobs,
a preference coefficient, 0 � a � 1 .

Decision variables:

xs =1 if partial schedule s (s 2 S) is selected in the optimal solution.
yq =1 if delivery schedule q (q 2 Q) is selected in the optimal solution.

The set partitioning-type formulation, denoted as [SP], is as follows:

½SP� Min
X
q2Q

a
X
j2N

wjCjqbjq

 !
þ ð1� aÞðFfix þ FqÞ

" #
yq ð17Þ

Subject to
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X
s2S

ajsxs ¼ 1 8j 2 N ð18Þ

X
s2S

xs � m ð19Þ

X
q2Q

bjqyq ¼ 1 8j 2 N ð20Þ

X
q2Q

yq � n ð21Þ

X
s2S

cjsajsxs �
X
q2Q

dqbjqyq � 0 8j 2 N ð22Þ

xs 2 f0; 1g; 8s 2 S ð23Þ

yq 2 f0; 1g; 8q 2 Q ð24Þ

Equation (17) is the weighted sum of the total weighted job completion time and total distribution cost. Constraints
(18) make sure that each job has to be processed once by a certain machine. Constraint (19) guarantees that at most m
partial machine schedules will be selected in any feasible solution. Constraints (20) ensure that each job will be deliv-
ered to its customer exactly once. Constraint (21) ensures the distribution path of at most n deliveries. Constraints (22)
make sure that the departing time of delivery schedule q that contains job j is no earlier than the completion time for
job j on a certain machine. Constraints (23) and (24) are the binary requirements for the decision variables.

The column generation approach needs to relax the integer constraint when solving the master problem; this research
assume that this linear relaxation of the set partitioning master problem, denoted as [LSP], makes πj, σ, λj, β, and δj the
dual variables for the constraints (18) to (22). Due to the relationship of the dual property when all reduced costs are
greater than or equal to 0, the optimal solution is obtained. The sub-problem is divided into two types in this research.
One sub-problem is associated with the set of variables x, which regards the machine scheduling problems; this research
is called the single machine scheduling sub-problem. The other one is related to the set of variables y, which deals with
the job delivering problems; this research is called the single batch delivery sub-problem. The master problem is solved
to connect the single machine scheduling sub-problem and the single batch delivery sub-problem, generating columns to
improve the objective value to obtain the smallest total cost.

3.2 Single machine scheduling subproblem

Let Rs indicate that the decision variable x corresponds to the reduced cost. Then, the reduced cost Rs is as follows:

Rs ¼ �
X
j2N

pjajs � r�
X
j2N

cjsdjajs ð25Þ

The decision variables are ajs and cjs in this sub-problem. In Equation (25), pj ð j 2 NÞ, r, and dj ð j 2 NÞ are the
known constants. cjs represents the completion time of job j 2 N in partial schedule s 2 S. Therefore, this sub-problem
can be seen as the minimum weighted completion time of the single machine scheduling problem; its objective is to find
out a set of jobs beginning from time 0 sequence, processing to make the minimum Rs.

In order to fit the branch strategy of the branch and bound algorithm, this research added a job processing
precedence constraint in the sub-problem. Let Ej be the set of job processings before job j. Use the branch and bound
algorithm to solve the root node. Ej will cause the branching sub-node to divide into two kinds – one kind is jobs that
were contained in set Ej, and another kind is jobs that were not contained in set Ej. Ej is updated to follow the branch
behaviour in the solution process.
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This research follows Chen and Powell (1999), who proposed a dynamic programming method to solve the single
machine scheduling sub-problem (denoted as DP1). Let Fð j; tÞ denote job j, finished at time t in the partial schedule, to
reduce cost to a minimum, and Ej is the set of job processings before job j; the recursive relation is as follows:
DP1:
Initial state:

Fð j; tÞ ¼ �r if j ¼ 0 and t ¼ 0
1 otherwise

�
ð26Þ

Recursive relation:

Fð j; tÞ ¼ mini2EjfFði; tÞ � djt � pjg
t ¼ 0; � � � ; dmax ; j 2 N

ð27Þ

Optimal solution:

F� ¼ min Fð j; tÞj j 2 N ; t ¼ 0; � � � ; dmaxf g ð28Þ

From Equation (26), we can see that the reduced cost is a known constant that has not arranged any job of a single
machine scheduling subproblem in the initial state time 0. In order to avoid arranging a job before time 0, let the
reduced cost be infinity to avoid this situation happening. In Equation (27) Fði; tÞ is the reduced cost of the partial
scheduling before job j, and = �djt � pj represents the reduced cost contribution value after completion of processing
job i to arrange job j. Find a processing job with the minimum reduced cost to satisfy Equation (28), representing a sin-
gle machine scheduling sub-problem that has already obtained the optimal solution.

3.3 Single batch delivery subproblem

Let Rq indicate that the decision variable y corresponds to the reduced cost. Then, the reduced cost Rq is as follows:

Rq ¼ a
X
j2N

wjCjqbjq þ ð1� aÞðFfix þ FqÞ �
X
j2N

kjbjq � bþ
X
j2N

djdqbjq

¼
X
j2N

ðdqdj � kjÞbjq þ a
X
j2N

wjCjqbjq þ ð1� aÞðFfix þ FqÞ � b ð29Þ

In Equation (29), djð j 2 NÞ, kjð j 2 NÞ, Ffix, and b are the known constants. The decision variables are bjq, dq, Cjq,
and Fq in this sub-problem represents the delivery schedule q that contains job j, the vehicle departure time of delivery
schedule q, the time of job j when it is delivered to its customer under delivery schedule q, and the variable cost of
delivery schedule q, respectively.

This research lists all the possible combinations of the delivery schedule. Let the quantity of delivery schedule at
most be qmax � Uq j is the set of jobs that are ordered by path q, and j is the customer order of the path q. If we know
the vehicle departure time for job j containing the path q, then will know how much the reduced costs contribute value.
Let Fd,q( j, c) be the selection path q, vehicle departure time be d, and job j be the last job included in the batch, and
the vehicle capacity of all jobs for reduced costs is c in this batch. Let sq j be the transportation time from the factory to
the customer for job j of path q. Fq is the transportation cost for selected path q and selects the smallest processing time
of job on the machine, pmin. In order to fit the branch strategy of the branch and bound algorithm, this research added a
job delivery processing precedence constraint in the single batch delivery sub-problem. Let Dj be the set of delivery jobs
before job j. In the process, use the branch and bound algorithm to solve the node; its sub-node is divided into two
types – the jobs included in this set Dj and the jobs not included in this set Dj. The updated Dj follows branch behav-
iour in the process of the branch and bound algorithm. This research proposes using dynamic programming to solve the
single batch delivery sub-problem; the recursive relationship is as follows:

DP2:
Initial state:

Fd; pð j; cÞ ¼ ð1� aÞðFfix þ FqÞ � b if j ¼ 0; c ¼ 0
1 otherwise

�
ð30Þ
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For q ¼ 1; � � � ; qmax; d ¼ pmin; pmin þ 1; � � � ; dmax

Recursive relation:

Fd;qð j; cÞ ¼ min
i2fDj[f0gg\Uq j

fFd;qði; c� 1Þ � kj þ ddj þ awjðsq j þ dÞg

for j 2 fN \ Uq jg [ fnþ 1g; d ¼ pmin; pmin þ 1; � � � ; dmax; c ¼ 0; 1 � � � ; z ð31Þ

Optimal solution:

F� ¼ minfFd; qðnþ 1; cÞg
for d ¼ pmin; pmin þ 1; � � � ; dmax; c ¼ 0; 1; � � � ; z; q ¼ 1; 2; � � � ; qmax ð32Þ

From Equation (30), we can see that the reduced cost is a known constant that has not delivered any job in the sin-
gle batch delivery sub-problem in the initial state. In order to avoid a job delivery before a job process has finished, let
the reduced cost be infinity to avoid this situation happening. In Equation (31), Fd;qði; c� 1Þ is the reduced cost of the
batch before job j, and �kj þ ddj þ awjðsqj þ dÞ represents the reduced cost contribution value after add job j.
awjðsqj þ dÞ is the wait time for it to be delivered to customers. Find a delivery path with the minimum reduced cost to
satisfy Equation (32), representing the single batch delivery sub-problem that has already obtained the optimal solution.

3.4 Procedure of the proposed approach

This paper applies a column generation-based algorithm combined with a branch and bound algorithm to solve supply
chain scheduling problems (integrated production and distribution scheduling). The procedure of the proposed approach
is organised into five steps and explained as follows:

Step 1. Generate a restricted master problem.

Use the big M method to add artificial columns to generate a restricted master problem.

Step 2. Calculate the reduced cost and whether conditions of the optimal solution are satisfied.

After obtaining the dual variables from Step 1, calculate the reduced cost of decision variables to satisfy the condition
of the optimal solution. If any reduced cost is less than 0, then enter Step 3, and solve the single machine sub-problem
and the single batch delivery sub-problem; otherwise, go to Step 4.

Step 3. Solve the single machine sub-problem and the single batch delivery sub-problem.

Using the dual variable of Step 1, generate the single machine scheduling sub-problem and the single batch delivery
sub-problem, respectively. Then, use dynamic programming to solve the sub-problems. Use the updated decision
variables to obtain results to solve the single machine scheduling and the single batch delivery sub-problem, and add
them to the restricted master problem. Return to Step 1 to solve the updated restricted master problem.

Step 4. Determine whether to apply the branch and bound algorithm.

If the decision variables are not integers, then use the branch and bound algorithm to approach the integer solution; go
to Step 5. If the results are not needed to branch and represent the current solution already obtained in the best integer
solution, end the algorithm.

Step 5. Selected branch node and start branch.

Firstly, make the variable transformation of decision variables xs (s 2 S). Let qhj ¼
P

s2S e
s
hjxs, and eshj ¼ 1 represents

the situation where job h is processed immediately before job j in partial schedule s; otherwise eshj ¼ 0. Decision vari-

ables yq (q 2 Q) can also be transformed in a similar method. Let hhi ¼
P

q2Q oqhjyq, and oqhj ¼ 1 represents the situation

where job j is delivered immediately after job h in delivery schedule q; otherwise oqhj ¼ 0. After this transformation,

instead of directly branch on variables xs and yq, the new branching variables are ρhj and hhj. If some of the ρhj or hhj
are not integers, two branching rules, called 0.99 and 0.5 rules, can be applied. The 0.99 rule calls to select a branching
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variable that is the most close to 0.99; the 0.5 rule calls to select a branching variable that is the most close to 0.5. Once
a branching variable is selected, two sub-nodes are created to make the branching variable either 1 or 0. If ρhj = 1 is set
to be the sub-node in one branch, then job h has to be processed immediately before job j in all partial schedules
generated in this sub-node. Likewise, if hhj = 0 is set to be the sub-node of one branch, then job h cannot be delivered
immediately before job j in all delivery schedules generated in this sub-node. Each sub-node is actually one [LSP]
problem. If the lower bound value is less than the current upper bound, then the lower bound value is set to the new
upper bound and go to Step 1; otherwise, prune this sub-node.

Figure 1 shows the flowchart of the proposed algorithm.

4. Computational experiments

This research used C language and ILOG CPLEX 10.2 to compose the computer program, based on a design algorithm
of Section 3. The test hardware environment is an Intel Pentium D 3.00Ghz CPU, 3.25G RAM.

4.1 Add a column test to the restricted master problem

In the early period, use of the column generation to solve scheduling problems usually selects the least-reduced cost
column to add to the restricted master problem. Instead of adding one column at a time, some scholars propose to add
several columns to update the restricted master problem in the recent literature. For example, Chen and Powell (1999)
indicate that adding 5 to 10 columns is more efficient than adding 20 columns. This is because by adding 20 columns,

Figure 1. The flowchart of the proposed algorithm.
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the scale of the linear programming problem increases too quickly, causing the solution time to increase. In addition,
these 20 columns also possibly contain many insignificant columns for improving the objective value.

The number of machines (m) was 4; the number of jobs (n) was 8, 10, and 12; and preference coefficient a ¼ 0:5
for the test criteria. In the machine scheduling stage, all job processing times were drawn from the uniform distribution
U[1,5], and job weights were drawn from the uniform distribution U[1,10]. In the distribution stage, the fixed cost is 10
by sending out one vehicle and the upper limit of the vehicle capacity is 3 – customer distance and the delivery times
corresponding to the uniform distribution U[1,10]. It has three kinds of setting values – 2, 5, and 10 – in the part of the
add column quantity. Every kind of combination has 10 random test problems by computer in the three kinds of
combinations: n ¼ 8; 10, and 12. This research used col_2, col_5, and col_10 to add at most 2, 5, and 10 columns to
the restricted master problem. The result of adding different numbers of columns is shown in Figure 2.

Because the add-column quantity will affect the algorithm efficiency, this research used the computation time to
become the evaluating objective. Observe Figure 2; the col_5 computation time is the shortest when the order numbers
are 8 and 10, with the average difference of col_5 and col_10 within 60 s. However, col_10 had significant a difference
with two other kinds of settings when the order numbers increased to 12. In n ¼ 12, the col_5 average computation time
was more than about 300 s than col_10. Moreover, the average difference of col_2 and col_10 was 400 s of computa-
tion time. Therefore, this research suggests using column generation techniques to solve supply chain scheduling
(integrated production and distribution scheduling) problems, and it can add 2 to 5 columns to the restricted master
problem when the order number is less than 10; it can attempt to add at most 10 columns to increase the algorithm
efficiency when the order number is greater than 10.

4.2 Rule test to selected branch node

Let the computer following the uniform distribution randomly generate 10 test problems, respectively, under the differ-
ent numbers of machines and orders. The result of the average computation time is shown in Figure 3.

From Figure 3, we can see that the computation time of the 0.99 branching rule is less than 0.5 in three situations:
n ¼ 8, 10, and 12. Moreover, the computation time difference increases along with order number. Two kinds of rules of
the average computation time difference are less than 20 s when the order numbers are 8. But, the average computation
time difference increases to close to 200 s when the order numbers are 12.

In order to examine whether the computation time of using the 0.99 branching rule is significantly less than the one
using 0.5 branching rule, we performed an independent sample t test in these 120 test problems; the result is shown in
Table 1.

From Table 1, we can see that the p value is 0.027358 which is less than 0.05, representing that the population mean
has a significant difference of these two rules. Therefore, the computation time of the 0.99 branching rule will be

Figure 2. Add different numbers of columns of the computation time difference chart.

Figure 3. Different branching rules of the computation time difference chart.
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obviously less than the 0.5 branching rule when selecting the branch node. Based on this test result, this research used
the closest ρhj and hhj to 0.99 to become the branching node in the test sample problem.

4.3 Design of test problems

This subsection will use a computer simulation to generate test problems and apply column generation to solve supply
chain scheduling problems (integrated production and distribution scheduling). Due to this, the research used the exact
solution method to solve the NP-Hard problem. It must consider the computation time and the computer’s memory
limit. Therefore, we will not design more complex test problems.

This research used test numbers of machines (m) of 2, 4, and 6. When m ¼ 2, it must consider three situations of
numbers of jobs (n): 8, 10, and 12; when m ¼ 4, it must consider three situations of numbers of jobs (n): 8, 10, and 12;
when m ¼ 6, it must consider three situations of numbers of jobs (n): 10, 12, and 14. The setting values of the numbers
of customers (k) are 3, 4, and 5. In addition, it also tests different preference coefficients (α), 0.2, 0.5, and 0.8, in the
objective function. The number of machines, number of jobs, number of customers, and the preference coefficients
mentioned above have 81 kinds of combinations; the total has 405 test problems.

Table 2. Computational results for three customers.

k = 3 LP_IP gap Columns Nodes CPU time

α m n Average Maximum Average Maximum Average Maximum Average Maximum

0.2 2 6 1.30% 2.50% 754 863 48 60 4.908 14.14
8 4.80% 8.50% 30,147 33,941 2547 3156 55.938 209.97
10 0.90% 1.90% 59,321 69,421 7768 9768 993.627 1732.91

4 8 0.70% 1.10% 1708 2178 178 232 9.18 16.03
10 0.70% 1.40% 22,959 39,734 1963 3685 153.53 462.03
12 4.00% 7.60% 72,837 79,446 4705 5857 601.08 1289.30

6 10 0.90% 1.70% 4598 7826 612 1829 15.65 32.97
12 0.50% 1.10% 19,598 29,826 1392 2329 168.81 476.38
14 3.40% 6.90% 54,470 99,624 2041 3732 998.77 1547.11

0.5 2 6 3.80% 4.20% 1144 1768 87 156 3.51 12.38
8 1.60% 3.00% 10,798 14,404 977 1293 92.4 160.02
10 0.30% 0.50% 73,514 89,294 2236 3442 1273.75 1333.52

4 8 1.70% 3.30% 3642 5622 372 633 13.14 49.38
10 0.10% 0.20% 26,981 30,876 1750 1933 133.40 476.89
12 1.90% 3.50% 36,642 50,415 1800 3456 407.09 1211.98

6 10 0.50% 1.20% 7031 8024 1866 3420 13.54 61.59
12 0.30% 0.50% 23,531 39,024 1866 3420 50.37 113.94
14 2.00% 2.10% 64,730 108,188 2460 4099 710.95 1708.81

0.8 2 6 0.40% 0.70% 851 1249 64 115 1.04 4.08
8 0.30% 0.50% 32,443 43,193 5398 7765 16.03 33.56
10 0.80% 0.90% 69,401 126,841 3197 6004 496.05 632.74

4 8 1.70% 2.70% 3631 5277 353 427 4.07 7.38
10 0.10% 0.30% 12,095 20,065 652 1133 33.98 178.80
12 4.80% 9.40% 75,224 144,905 4683 7102 987.93 1514.84

6 10 0.20% 0.50% 3962 5968 1011 2245 13.54 18.45
12 0.40% 0.70% 19,662 24,968 1400 1945 47.72 84.58
14 0.30% 0.60% 185,560 262,545 29,345 35,358 1480.69 2550.47

Note: The total average of the LP_IP gap is 1.42%.

Table 1. T test for the mean population difference of two branching rules.

T-tests; Grouping: rule (Spreadsheet1)
Group 1: 099 rule
Group 2: 0.5 rule

Variable Mean 1 Mean 2 t-value df p
tTime 306.2333 448.9400 �2.23413 118 0.027358
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4.4 Test results and analysis

The test problems use computer simulation to test different numbers of customers; the results are listed in Tables 2 to 4.
The column ‘LP_IP gap’ represents the average gap of the optimal solution between [LSP] and [SP], the [LSP] optimal
solution is ZLP, and the [SP] optimal solution is ZIP. This formula is shown as below:

ZLP � ZIP

ZLP
� 100%

����
����

In these tables, ‘Columns’ represents the average number of columns generated for solving the test problem; the col-
umn ‘Nodes’ represents the total number of branch and bound nodes explored for solving the problem; the column
‘CPU’ time represents the spent computation time (in seconds) to obtain the optimal solution. ‘Average’ represents the
mean value of the five test problems; ‘Maximum’ represents the maximum output value of the five test problems. In
Table 4, the ‘ – ’ symbol’ represents the test problems already achieving the upper limit of computer memory resources
before obtaining the optimal solution; then, stop the programme.

From Tables 2 to 4, we can see that the average of the LP_IP gap is 1.42%, 1.13%, and 1.53% in the numbers of
customers 3, 4, and 5. The average of the LP_IP gap is 1.32% of all test problems. This result shows that the proposed
method can provide a lower bound that is very close to the optimal solution. Therefore, we must consider the computa-
tion time and the limit of computer memory resources in real-world problems, even if we have not obtained the optimal
solution but still can provide the lower bound of the solution.

This research confers the influence of machine number, order number, customer number, and preference coefficient
to LP_IP gap and the CPU time. Moreover, it performs multiple regression analysis in the test result. In k ¼ 5, the limit
on computer memory resources does not have the best integer solution data when the order number of test problems is
greater than 10. Therefore, delete these 70 problems to perform multiple regression analysis in the 335 test problems.
The results of the multiple regression analysis are shown in Table 5 and Table 6.

Table 3. Computational results for four customers.

k = 4 LP_IP gap Columns Nodes CPU time

α m n Average Maximum Average Maximum Average Maximum Average Maximum

0.2 2 6 2.30% 4.80% 1635 5331 167 575 1.895 2.31
8 1.50% 4.80% 19,843 66,387 1428 4881 382.315 421.08
10 1.40% 3.90% 131,031 218,267 6288 18,753 859.165 1363.39

4 8 2.10% 6.30% 2747 5456 282 621 7.26 9.73
10 1.40% 5.00% 42,298 112,834 3911 10,260 324.00 623.44
12 0.60% 1.90% 135,658 288,354 6533 17,392 1968.20 2468.45

6 10 0.50% 2.80% 6955 14,550 460 1027 14.44 29.09
12 0.60% 2.70% 45,354 100,711 3875 10,056 198.33 357.01
14 1.60% 4.20% 179,420 345,121 11,285 23,390 1561.38 2575.72

0.5 2 6 1.60% 5.20% 1550 2922 173 475 3.51 6.00
8 0.90% 2.80% 17,502 54,562 1144 3897 65.40 295.00
10 1.70% 4.50% 97,619 131,654 3771 12,190 1273.75 1536.33

4 8 1.00% 2.90% 4038 16,447 444 2061 18.71 32.16
10 1.20% 3.30% 68,685 121,025 3478 11,461 302.19 327.63
12 0.70% 1.90% 107,544 209,296 6189 16,837 1090.63 1868.92

6 10 0.80% 4.20% 6038 22,313 443 1989 49.07 64.67
12 0.90% 3.00% 20,968 41,888 1502 3431 345.82 658.19
14 0.10% 0.30% 156,087 319,532 8487 18,661 1335.43 2515.58

0.8 2 6 1.50% 3.80% 756 1679 54 129 3.17 5.51
8 1.40% 2.80% 5237 13,701 318 993 101.43 159.55
10 1.30% 4.90% 89,855 174,929 4379 23,876 1657.35 2943.22

4 8 0.90% 2.60% 1365 2216 103 203 23.65 35.77
10 0.70% 2.10% 13,582 57,485 1115 5502 113.69 211.72
12 1.10% 3.70% 127,229 252,932 4990 15,899 652.61 1279.55

6 10 0.80% 2.10% 6038 7454 443 439 11.34 40.39
12 1.50% 6.90% 15,293 24,758 1132 1917 210.24 298.59
14 0.50% 1.30% 115,947 208,078 16,140 32,175 1332.35 2507.86

Note: The total average of the LP_IP gap is 1.13%.
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From Table 5, we can see that the machine number, order number, and customer number do not have significant
influence; only the preference coefficient to LP_IP gap has the significant influence ( p-value = 0.013 < 0.05). Based on
the results of Tables 2 to 4, this research combines data at the same preference coefficient to obtain the mean value; the
LP_IP gap is 1.89%, 1.12%, and 0.96% in the preference coefficients 0.2, 0.5, and 0.8, respectively. It can discover the
LP_IP gap’s tendency of gradually decreasing following the increase in preference coefficient. That is because the smal-
ler preference coefficient represents more emphasis, considering the influence of total distribution cost. This research
used the time relationship to construct the mathematical model, linking two stages of production and distribution. When
the objective function emphatically considers the total distribution cost, it will cause the [LSP] solution and the best
integer solution of [SP] to have a bigger error. Otherwise, the bigger preference coefficient represents more emphasis on
the job completion times. This used the time relationship to link two stages of production and distribution to gain a big-
ger benefit, causing the LP_IP gap to be small.

From the analysis results in Table 6, we can see that the p-value is less than 0.05 for the machine number, order
number, and customer number. It can explain that these three factors all have a significant influence regarding the CPU

Table 4. Computational results for five customers.

k = 4 LP_IP gap Columns Nodes CPU time

α m n Average Maximum Average Maximum Average Maximum Average Maximum

0.2 2 6 2.50% 3.20% 1897 2519 133 199 19.79 32.08
8 1.40% 1.90% 38,685 51,025 6478 9461 233.40 376.89
10 － － － － － － － －

4 8 5.50% 6.20% 3787 4650 223 338 48.88 79.25
10 － － － － － － － －

6 10 2.90% 5.80% 12,601 20,459 658 1061 392.36 704.91
12 － － － － － － － －

0.5 2 6 0.60% 0.60% 2073 2903 155 266 24.88 43.59
8 1.90% 3.60% 10,052 12,682 602 758 394.01 563.78
10 － － － － － － － －

4 8 0.10% 0.20% 3390 3399 360 390 82.70 97.55
10 － － － － － － － －

6 10 1.00% 2.00% 15,922 17,717 687 967 491.51 626.09
12 － － － － － － － －

0.8 2 6 1.40% 1.90% 1232 1233 90 114 15.54 22.69
8 0.50% 1.00% 3716 4918 187 273 89.63 126.05
10 － － － － － － － －

4 8 0.20% 0.40% 3647 4760 249 386 58.88 69.25
10 － － － － － － － －

6 10 0.30% 0.60% 9460 11,713 602 737 404.28 574.94
12 － － － － － － － －

Note: The total average of the LP_IP gap is 1.53%.

Table 5. Multiple regression analysis for different factor influence LP_IP gap.

Regression summary for dependent variable: LP_IP gap
R= 0.36,361,715; R2 = 0.13,221,743; adjusted R2 = 0.076,623,146
F(4330) = 12.3616; p< 0.06,283; Standard error of estimate: 01,129

N= 335 Beta Set. error of beta B Standard Error of B t(330) p level

Intercept 0.017722 0.011245 1.57600 0.120115
Coefficient �0.300832 0.118436 �0.014265 0.005616 �2.54003 0.013604
Machines �0.189279 0.166034 �0.001335 0.005616 �1.14000 0.258670
Orders �0.041721 0.170470 �0.000212 0.000868 0.24474 0.807465
Customers 0.094243 0.122862 0.001477 0.001477 0.76707 0.445953
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time. The reason is that when the factor’s quantity increases the order number or customer number, the column combi-
nation will also be increasing in the [LSP]. It is easy to generate the phenomenon of degeneracy at this time and must
spend a long time to solve the linear programming problem. This research used the example of a test problem
(a ¼ 0:5;m ¼ 4; n ¼ 10; and k ¼ 5) that did not obtain the best integer solution, explaining the phenomenon of degener-
acy to influence the value of the objective function in the solution process; the result is shown in Figure 4.

In Figure 4, the LP_solution is the optimal solution of the [LSP] after the restricted master problem is updated every
time, and the INT_solution is the integer solution that satisfies the integer constraints. From Figure 4, we can see that
the objective function value improvement range is more obvious in the initial period. From the start of CPU time of
about 500 s, the LP_solution often appears as the phenomenon of degeneracy to cause the objective function value to
circulate between 190 and 210. Observe the INT_solution; we can see that the second-time integer solution improved
the first-time by about 8.7%, and obtaining the improved integer solution only needed about 240 s of CPU time. Then,
the improved objective function value range gradually flattens. The improved ranged remained 0.5% of the last two inte-
ger solutions before the program terminated and spent about 1300 s of CPU time. Because the solution generated too
much degeneracy, this kind of improved phenomenon of the range of the objective function value is very small, yet the
computation time increased.

5. Conclusions

Due to the diversity and rapidly changing customer demand as well as the competitive market environment’s change,
the product life cycle will shorten. On the other hand, to pursue customised products and simultaneously high lead time,
enterprises are faced with such consumer markets that gradually change to ‘make-to-order’ and ‘direct sales’ business
model. In such a business model, the enterprise pursues high customer service levels simultaneously but cannot take into
account the objective of cost minimisation. In practice, it has the trade-off relationship between cost and the customer
service level. The purpose of this research is to find out the optimal balance point between these two aspects. This class
of problems can be viewed as two-stage supply chain scheduling problems (integrated production and distribution
scheduling problem). In the objective function, in addition to considering the time when the products are delivered to

Table 6. Multiple regression analysis for different factor influence CPU time.

Regression summary for dependent variable: CPU time
R= 0.7,719,465; R2 = 0.5,958,699; adjusted R2 = 0.56,982,583

F(4330) = 121.66; p< 0.00,000; Standard error of estimate: 303.54

N= 335 Beta Set. error of beta B Standard error of B t(330) p level

Intercept �1687.30 302.3902 �5.57989 0.000001
Coefficient 0.027976 0.080821 52.28 151.0207 0.34615 0.730402
Machines �0.589247 0.113302 �163.75 31.4865 �5.20068 0.000002
Orders 1.091019 0.116329 218.82 23.3320 9.37874 0.000000
Customers 0.220079 0.083841 135.90 51.7707 2.62495 0.010899

Figure 4. The relationship graph of the objective function value’s improvement range and the CPU time.
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customer, to measure the performance of customer service level, the cost of product delivery is added to customers.
Obtain the optimal solution for the objective function definition – namely, find out the result of system optimisation.

The proposed algorithm is an applied column generation-based approach, combining dynamic programming and the
branch and bound technique to solve two-stage supply chain scheduling problems. The advantage of the proposed
approach can provide a lower bound that is very close to the optimal solution. The results of the computational experi-
ments indicate that the proposed approach can solve the test problems to optimality. Moreover, the average gap between
the optimal solutions and the lower bounds arise no more than 1.32% for these test problems. It showed that this algo-
rithm can provide a good-quality lower bound. In addition, this research also added the column quantity of the restricted
master problem to find a suitable setting value. The test results showed that when the order number is less than 10, it
suggests adding at most five columns each time; when the order number is bigger than 10, add at most 10 columns to
the restricted master problem.

There are still some directions remaining to be studied. Further research can be conducted to explore more practical
approaches in solving this class of problem. For example, metaheuristics, such as tabu search, genetic algorithms, parti-
cle swarm optimisation, and ant colony optimisation, can be applied to find near optimal solutions to this class of prob-
lem. Moreover, it is also important to discuss such problems under different cost structures such as including the due-
date related performance measures.
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