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Abstract: We present two methods for the precise independent focusing of 
orthogonal linear polarizations of light at arbitrary relative locations. Our 
first scheme uses a displaced lens in a polarization Sagnac interferometer to 
provide adjustable longitudinal and lateral focal displacements via simple 
geometry; the second uses uniaxial crystals to achieve the same effect in a 
compact collinear setup. We develop the theoretical applications and 
limitations of our schemes, and provide experimental confirmation of our 
calculations. 
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1. Introduction 

As the field of nano-optics advances, it is becoming critical to have complete control over the 
temporal and spatial distribution of light, including its vector character (i.e., polarization), 
with applications ranging from optimizing coupling with nanophotonic devices like plasmonic 
antennas, to using tailored optical beams to drive microscopic motors [1–6]. Polarization-
dependent focusing (PDF) refers to the general idea of simultaneously focusing orthogonal 
polarizations to spots at customizable longitudinal and transverse locations. Such a capability 
is useful, for example, in optimally pumping downconversion crystals to generate 
indistinguishable entangled photon pairs or for collection of these photons [7,8]. Similar 
capabilities could also be useful for individually addressing different spin states of atoms in 
neighboring sites of an optical lattice [9]. 

    Ideally, one could arbitrarily control the polarization and phase of a beam’s cross-
sectional profile, enabling the creation of numerous useful focal fields [10]. In practice, this 
remains expensive, lossy, and imperfect, and requires a large setup involving multiple spatial 
light modulators. Another possibility is to fabricate a birefringent lens, though this is 
technically challenging, expensive, and in fact does not yield optimal results [11–17]. 
Specifically, known aberrations [14,15] distort the extraordinary beam beyond practical limits 
for focal separations outside the Rayleigh range [16,17]. Several similar experiments [18,19] 
did manage to increase a system’s depth-of-focus, but only on the micron scale. In addition, 
birefringent lenses are not tunable and cannot provide lateral separations. The large amount of 
past work on this topic is further motivation for our research, which greatly extends the 
capabilities of polarization-dependent focusing and solves the beam aberrations present in 
birefringent lenses. 

    To achieve the same result with readily available optical elements, in the simplest case, 
one might imagine focusing light through a birefringent slab or beam displacer, so as to shift 
the extraordinary focus with respect to the ordinary focus (conceptually, sending the light 
through equal-thickness slabs with index ne or no should seemingly simply lead to two 
longitudinal focal planes). This approach fails, however, as walk-off distorts the beam’s 
spatial mode, leading to blurred beam waists and elongated focal spots. In fact, even without 
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walk-off, this method does not work due to different ne(θ) for each of the spatially-variant 
input angles over the beam’s profile [20]. Here we present two rather different schemes to 
achieve precise independent focusing control of two orthogonal polarization states. Our first 
scheme uses a Sagnac interferometer, while the second relies on uniaxial crystals. 

2. Polarization Sagnac scheme for polarization-dependent focusing 

2.1 General layout 

To geometrically achieve PDF, one could use polarizing beam splitters in an unbalanced 
interferometer to send orthogonal polarizations along paths of different lengths after a 
focusing lens; however, this arrangement is non-optimal for any applications which require 
the two beams to have a stable coherent phase relationship. Our novel approach involves 
placing a lens offset from the center of the hypotenuse of a polarizing Sagnac interferometer 
(Fig. 1). The counterclockwise and clockwise beams from the polarizing beam splitter (PBS) 
trace the same routes, thus retaining the unusual stability and simplicity of a Sagnac, while 
allowing the ability to independently shift the focal planes of the incident horizontal (H) and 
vertical (V) polarized beams. Specifically, these horizontally and vertically polarized spots 
move apart by twice the lens translation from the geometric center of the Sagnac. 

 

Fig. 1. Schematic of Sagnac with offset lens for focal separation along propagation axis. 

2.2 Focal displacement along propagation axis 

A Sagnac interferometer corresponding to Fig. 1 was set up with a 670-nm diode laser source. 
The laser output was first coupled to a single-mode fiber (SMF) to purify the spatial mode, 
and the 150-μW SMF output was then magnified to a collimated beam of radius of 2.2 mm. 
The focusing lens, placed inside the 150-mm hypotenuse of the Sagnac, had focal length of 
400 mm, and was biconvex to keep aberrations symmetric (plano-convex lenses would be 
preferable, if only a single pass were used, but in our double-pass arrangement, the two 
directions would experience significantly different aberrations.). The focal plane of each 
polarization was separately measured by rotating the input polarization such that the beam 
took only one path at a time through the interferometer. For focal separations well outside the 
Rayleigh range, the defocused beam would have a negligible contribution to the focused 
power distribution. The measurement was taken by scanning a beam profiler (Thorlabs model 
BP104-VIS) along the propagation axis. All focal sizes and locations hereafter were found 
using this same method. 

    Focal separations (the distance from the focal plane of the H-polarized beam to the focal 
plane of the V-polarized beam) from 0.4 mm to 20 mm were measured; the focal separation 
versus lens displacement is plotted in Fig. 2. A linear fit shows that the theoretical slope of 2 
is almost perfectly satisfied by our data with a slope of 2.003 ± 0.023. The error was 
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calculated using Monte Carlo simulated data [21].The beam waist at every sample point 
exhibited the desired Gaussian-mode profiles for both polarizations, with radii of around 38 
μm (the theoretical diffraction limit is ~37 μm) indicating that any aberrations introduced by 
the extra optics are negligible. In section 2.4 we discuss methods for even tighter focusing. 

 

Fig. 2. No-free-parameter theory and experimental data for focal separation versus lens 
displacement. Vertical and horizontal error are negligible. 

2.3 Lateral focal displacements 

Another advantage of our geometric approach to PDF is that one can also induce lateral focal 
displacements simply by translating one of the mirrors. With an ideal thin lens, simple 
trigonometry shows that offsetting either of the mirrors by a distance d along the hypotenuse 
causes an expected transverse shift of d/√2, as illustrated in Fig. 3. 

    Experimental results for small lateral offsets in the range from −2 to 2 mm about the 
center of the mirror are shown in Fig. 4(a); the slope of the best-fit line for focal separation 
versus mirror offset was 0.706 ± 0.005; for larger mirror offsets ranging over 24 mm (Fig. 
4(b)), the measured slope was 0.714 ± 0.006. 

 

Fig. 3. Schematic of Sagnac setup for lateral focal separation induced by mirror offset. We 
show a large offset for illustration purposes. Note that a mirror translation induces both 
longitudinal and transverse separations; the ratio of these two effects can be tuned by changing 
the Sagnac geometry, specifically the deflection angle at the translating mirror. 
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Fig. 4. Experimental data and theoretical slope of 1/√2 for focal separation versus mirror offset 
for small offsets (a) and larger offsets (b). Vertical error bars are small but included; horizontal 
error is negligible (< 10 μm). 

    Here we note two further caveats. First, this lateral translation is also accompanied by a 
shift along the propagation axis(1 + 1/√2)d. This does not pose a problem even if pure lateral 
displacement of the foci were desired, since such an effect can always be compensated by 
offsetting the lens as in Subsection 2.2. Second, since this scheme involves one beam hitting 
the lens off-center, the two orthogonal polarizations will be traveling in slightly different 
directions at the focus. This deviation will depend on the focal length of the lens and on the 
mirror offset, and will often be insignificant. 

2.4 Two-lens scheme for tighter focusing 

Some applications may require a much smaller waist radius, and therefore tighter focusing. 
Since the size of the Sagnac constrains the minimum focal length lens allowed in a setup such 
as Fig. 1, we considered a scheme using an additional lens outside the interferometer to 
achieve two equally sized, tightly focused, longitudinally separated focal points. While such a 
two-beam, two-lens system could in principle be quite complicated, we show in Appendix A 
that with the correct placement of the additional lens, the first lens (inside the Sagnac) may be 
translated to change the focal sizes and separation with no further adjustments to the second 
lens (outside the Sagnac). 

 

Fig. 5. Schematic of Sagnac for tighter focusing with two lenses. 

    To test this delightfully simple result, we placed a plano-convex lens with a focal length 
of 15 mm after the output port of the polarizing beam splitter, as shown in Fig. 5, and 
decreased the input beam radius to 1.7 mm for convenience of measurements. The lens after 
the Sagnac was then translated until the waist radii of the H- and V-polarized beams were 
identical to within measurement error, typically ± 0.2 μm; this lens was then kept at this 
location as the intra-interferometer lens was translated. 
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    In Appendix A we derive the theoretical beam waist and focal separation versus lens 
translation. This derivation uses an approximation that will be valid for a large range of 
systems, giving a model for our two-lens setup as illustrated in Fig. 5. We find 
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where Δ is the longitudinal displacement of either foci relative to a “pivot” point (a focal 
length f2 away from the second lens); wout is the beam waist of the foci; α is a constant 
determined by parameters of the setup; d is the displacement of the lens in the Sagnac from its 
center location (for d = 0 both polarizations focus to the same spot); f1 and f2 are the focal 
lengths of the first and second lens, respectively; λ is the wavelength; and w is the input beam 
radius.	For our experiment, f1 = 400 mm; f2 = 15 mm; λ = 670 nm; and w = 1.7 mm; thus, α 
~11.8 mm. 

    Because the lens could not be translated indefinitely inside our Sagnac without hitting 
another optical component, data points were impossible for d values from around 50 to 100 
mm. However, data points from d = −10 to d = 40 mm (hereafter, range 1) were measured 
with the lens translating in the hypotenuse; and those for d = 105 to d = 150 mm (hereafter, 
range 2) were measured with the lens instead translating in one arm of the Sagnac. For both 
ranges 1 and 2, the absolute lens displacement value d was measured with respect to the 
geometric center of the Sagnac; the location of this central point could not be measured 
directly for range 2, and so was first extrapolated from the data using the single-lens setup and 
methods of Subsection 2.2. 

    The plots for Δ and wout versus d are shown in Fig. 6(a) and 6(b), respectively. For large 
d values, the theoretical curves are followed closely in both plots; however, the Δ-versus-d 
data points deviate significantly from theory when d is smaller than 10. Since this deviation 
occurs only at small values of d, it is of minimal concern; the two-lens setup is only necessary 
when small spot sizes are required, which corresponds to large values of d, as seen in Fig. 
6(b) [22]. 

 

Fig. 6. (a). Data and fit for the focal separation Δ versus lens offset d; (b). data and fit for the 
beam waist wout versus lens offset d. Horizontal error is again negligible (< 10 μm). 

    We note that this two-lens system is not as tunable as the single-lens system 
demonstrated in Subsection 2.2, since the beam sizes are dependent on the same parameters as 
the focal separation. However, this setup is nevertheless particularly useful when the desired 
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beam size is smaller than those reachable by a single lens with a finite aperture. The focal 
separations and focal sizes can then be tailored over a reasonable range using Eqs. (1)–(3). 

3. Birefringent block focusing 

3.1 One-crystal setup 

Our Sagnac method for polarization-dependent focusing is highly customizable and allows for 
tunable longitudinal and transverse separations over a range from microns to millimeters. 
However, a collinear setup is often more desirable for its robustness, efficient use of space, 
ease of alignment, and potential for miniaturization. To this end, one could imagine focusing a 
beam through a birefringent crystal as in Fig. 7(a); then, the extraordinary beam H sees an 
index of refraction different from that of the ordinary beam V, resulting in different focal 
shifts, given by Δ = 1 - 1/n(θ). However, in fact this equation does not hold, since the crystal 
induces a large astigmatism in the extraordinary beam, blurring out the focal plane by several 
times the desired focal separation, as suggested in [20]. 

 

Fig. 7. (a). Schematic for one-block focusing; this model induces astigmatism. (b). Two-block 
setup for canceling aberrations; this model incurs additional lateral focal separations. 

To demonstrate, consider focusing light through a 39.7-mm-long calcite crystal with optic 
axes at θ  = 45° (arranged as in Fig. 7(a)) using a 200-mm focal length lens. For this 
configuration, calculations using Appendix B.3 show that the o-rays, e-rays in the x-z plane, 
and e-rays in the y-z plane all focus to different locations. This can be characterized by the 
theoretical values Δzo,ex  = 1.11 mm and Δzo,ey  = 4.13 mm, the distances from the two 
respective e-ray focal planes to the o-ray focal plane. Thus we see that the e-ray has gained a 
longitudinal astigmatism greater than the induced “focal separation”, which is completely 
washed out. This result was tested experimentally by sending a laser beam (λ = 702 nm) with 
input radius 1.5 mm through the setup described above, and scanning the aforementioned 
beam profiler to find the focal locations, obtaining good agreement with theory: Δzo,ex = 1.17 
± 0.15 mm and Δzo,ey  = 4.09 ± 0.15 mm. All data taken in Section 3 used the same 
measurement method, same input beam, and crystals with parameters identical to the above. 

   The manifestation of this astigmatism- an elongation of the beam radius along one axis- 
can be avoided only if the crystal’s optic axis lies along the propagation axis. Unfortunately, 
in this case, the eigenmodes of the crystal are then, by symmetry, the radial and azimuthal 
polarization states [23], while the system’s desired eigenmodes are H and V. 

3.2 Two-crystal setup 

The astigmatism induced from focusing through a crystal of arbitrary axis cut can be 
compensated for by propagating through a half-wave plate (HWP) and an identical crystal, 
rotated about the propagation axis by 90°, as seen in Fig. 7(b). (The HWPOHWP merely 
ensures that ordinary and extraordinary do not swap roles.) The system now becomes 
symmetric along the x- and y-axes, such that elongations in one crystal are inverted in the 
second crystal, and the beam leaves the setup with the desired symmetric cross-section. 
Having eliminated aberrations, we now turn to the relative focal locations produced in this 
two-crystal scheme, as calculated with the algorithm in Appendix B. 
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    The dependence of the separation (per crystal length T) Δz/T along the z-axis between 
the o-ray and e-ray focal planes versus optic axis angle θ (with respect to the surface normal) 
is shown in Fig. 8(a). We find that as θ increases from 0, Δz decreases monotonically until it 
reaches a constant small value (10’s of microns) determined by the type and thickness of the 
crystals. Near θ  = 0, linear polarizations again no longer correspond to ordinary and 
extraordinary eigenmodes, and near θ  = 90°, the focal separation goes to zero. Thus, to 
achieve two separated, diffraction-limited H and V focal spots, one must use two crystals with 
an optic axis angle in between these two extremes. A potential limitation of this elegant 
solution is that in addition to focal separation, walk-off of the e-ray creates focal 
displacements along the x- and y-axes. These displacements, Δx and Δy, are on the same order 
of magnitude as the z-axis displacement Δz; see Fig. 8(b). 

 

Fig. 8. Theoretical characterization of longitudinal focal separation (a) and lateral focal 
separation Δr = √[Δx2 + Δy2] of ordinary and extraordinary spots (b) per crystal thickness T 
versus the optic axis angle θ for the two-block scheme shown in Fig. 7(b). For simplicity, the 
focal separations were calculated assuming the two input polarizations were ordinary and 
extraordinary, not necessarily horizontal and vertical (see text for discussion). 

    To test our aberration compensation model, we focused a laser (λ = 702 nm, w = 1.5 
mm) through a HWP and two 39.7-mm-long calcite crystals with optic axes at θ  = 45° (as in 
Fig. 7(b)) using a 200-mm focal length lens. Our algorithm predicts a theoretical focal 
separation of the H- and V-polarized spots of Δz  = 5.24 mm and transverse separations of Δx 
= Δy  = 4.26 mm. Experimental values for the separations Δzx and Δzy, with beam waists 
measured in the x-z and y-z planes, respectively, agreed with theory: Δzx  = 5.26 ± 0.15 mm 
and Δzy  = 5.14 ± 0.15 mm. Transverse separations were Δx  = 4.37 ± 0.11 and Δy = 4.14 ± 
0.11. The error was estimated by repeating the measurement multiple times after realigning 
the setup. Both focused beam waists were circular, and nearly diffraction limited, at just under 
22 μm. The large astigmatism was thus successfully canceled, as seen in Fig. 9. 

    While repeating the experiment to find the measurement error, we noticed that changing 
the precise input position on each crystal altered the error significantly. The data given above 
was measured for a single set of crystals and orientations; by averaging data for various 
permutations, we found Δzx  = 5.38 ± 0.25 mm and Δzy = 5.18 ± 0.23 mm. Although this 
agrees with our calculations, the increased variation in data could be problematic for practical 
applications. It is important to note that by translational symmetry, homogenous and identical 
crystals would only exhibit such a problem if mis-aligned, or given other imperfect 
components. We measured alignment tolerances and other potential sources of error, such as 
beam aberrations, beam clipping, crystal wedge, and cross-talk; none contributed significant 
error. 
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Fig. 9. Cross-sectional photographs of the extraordinary beam’s intensity every 0.6 mm along 
the propagation axis of the laser. a.) Elliptical beam distortions (with maximum aspect ratio 
2:1) are quite evident in the cross-sectional intensity profile of the extraordinary beam after 
focusing through 79.4 mm of calcite with optic axis at angle 45°. b.) The circular, un-aberrated 
profile is restored if the same focusing beam instead traverses two 39.7-mm blocks of calcite, 
oriented as in our compensation scheme. 

Therefore, we suspect that small imperfections in the calcite itself were responsible for the 
variance in our data. This problem returns in our four-crystal setup, where the increased 
number of crystals increases the effect. 

3.3 Four-crystal setup 

If purely longitudinal focal displacements are necessary, we must finally compensate for the 
walk-off such that Δx  = Δy  = 0. We could accomplish this by mirror-reflecting the setup 
about the final crystal face, thus providing a Δz twice that of the two-block scheme, but now 
with the beam walking off-axis and then back. Rearranging allows us to use fewer waveplates; 
the most economical setup we found requires four birefringent blocks and one HWP, oriented 
as shown in Fig. 10. Both lateral and longitudinal displacements are proportional to crystal 
thickness, but the relative effects can be tuned by changing the optic axis cut. If an application 
is somewhat insensitive to transverse separations, then the simpler two-block scheme may 
suffice. (We note a superficial resemblance to four-crystal transverse field modulation in 
Pockels cells [24]; however, the basic idea and end product are entirely unrelated.) 

 

Fig. 10. Collinear, four-block setup for purely longitudinal, aberration-free focal displacements. 

    We tested this model using a lens with focal length 400 mm and the setup shown in Fig. 
10, with the same beam and crystals specified above. For one specific input position, we 
found the values Δzx  = 10.39 ± 0.15 mm and Δzy = 10.43 ± 0.15 mm, in good agreement with 
theory (Δz  = 10.48 mm). However, we again observed data variation depending on the 
precise transverse crystal positions. Averaging over various input positions, we obtain the 
values Δzx  = 10.73 ± 0.37 mm and Δzy = 10.80 ± 0.68 mm. The fairly large standard 
deviation of these measurements suggests the need for higher quality crystals; nonetheless, it 
is evident that this scheme for polarization-dependent focusing matches our calculations. The 
transverse separation went nearly to zero as expected, with Δx = 6 ± 7 μm and Δy = 9 ± 7 μm. 
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4. Conclusion 

We have designed and demonstrated two schemes for achieving precise polarization-
dependent focusing: a highly customizable method based on geometric path differences in a 
Sagnac interferometer, and a compact collinear method using birefringent crystals. Given a 
desired focal placement and waist size, one can determine which system is the most efficient, 
and then use it to control the relative focal locations of H and V in three dimensions. Simple 
modifications grant this scheme great flexibility. For example, if the desired eigenmodes were 
L and R, one could place two quarter-waveplates, one before our setup and one after, to 
achieve the same polarization-dependent focusing. As an added bonus, by varying the 
polarization angle of the input, one can automatically control the relative intensities of the two 
focal spots. One could also readily control the coherence between the two polarizations by 
using a tunable unbalanced interferometer (with polarizing beamsplitters), whose polarization-
dependent path lengths may be adjusted outside the coherence length of the incident light. We 
envision the use of our techniques in polarization-sensitive optical-micromachining and 
plasmonic applications, as well as for shaping ideal sources and collection optics in quantum 
information processing. 

Appendix A: Derivation of equations for two lenses 

The following derivations use ABCD matrices for Gaussian beams using complex beam 
parameters under the thin-lens approximation [25]. We will derive the relation between the 
displacement of our intra-Sagnac lens and focal plane displacements about a pivot point, and 
the relation between this lens displacement and the final beam waist size. 

 

Fig. 11. Schematic of two Gaussian beams propagating through two lenses. The CW (a) and 
CCW (b) paths correspond to the collinear model of the same color displayed in (c). Our 
calculations for both of these paths are split into two parts, forward and backward, as shown 
with yellow boxes. Setting the forward and backward beams from the two calculations to have 
equal beam parameters at their intersection then provides our final result. 

Because the mirrors and beamsplitters in our Sagnac (Fig. 5) merely redirect the beam 
without modification, we “collinearize” our setup (to simplify the calculation). We then 
effectively have two beams traveling through two lens systems, one beam corresponding to 
the clockwise (CW) path in the Sagnac; the other to the counterclockwise (CCW) path (as in 
Fig. 11). The only difference between the lens systems is that the first lens is offset in opposite 
directions by a distance d, as in Subsection 2.2. We require both the CW and CCW paths to 
have the same incident beam waist and the same output beam waist, but with focal plane 
locations differing by 2δ as labeled. We can split our calculation up into two parts, henceforth 
called “forward” and “backward”. For the forward calculation, we trace the input beam of 
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waist w through the first lens and through free space to the second len’s surface; in the 
backward calculation, we assume our target solution, two focal spots of the same radius 
separated by 2δ, and propagate these beams backwards through the second lens. Finally, we 
match the complex beam parameters of the two calculations at the second lens. 

 First, we calculate the backward propagation. Assuming our target solution gives us 
two Gaussian beams, 

  0a aq z iz= +
   (4) 

  0.b bq z iz= +
 (5) 

After propagating through the second lens, we require these beams to have identical 
divergence angles θ = √[λ/(π z0)] and identical Rayleigh ranges z0

'. For an arbitrary optical 
element represented by an ABCD matrix we have [25]: 
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For a thin lens, A = 1, B = 0, C = −1/f, D = 1: 
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To satisfy our condition of identical Rayleigh ranges, 
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The second solution za + zb = 2f2 is the relevant equation. Thus, we can define za ≡ z+ = f2 + δ;   
za ≡ z- = f2 - δ which then gives us 
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Next we carry out the forward calculation. Assuming that the input beam is collimated, 
then the Gaussian beam parameter for both polarizations will be qi = iπw2/λ, where πw2/λ = z0i 
is the Rayleigh range. Focusing the beams through the first lens, we again use Eq. (9) to 
obtain: 
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Thus, the forward calculation gives the beam parameters qi ± of the CW and CCW beams, 
respectively, at the second lens, as qi ± = zi

' + L ± d + iz0i
' = -πw2α/f1 + L ± d + iα, where L is 

the distance from the center location of the first lens to the location of the second, d is the 
displacement of the first lens from its center location, and α is defined for convenience. 

Now, we match the beam parameters from the forward and backward calculations: 
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to obtain the following solutions: 
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We can make one more simplification if the beam parameters lie within a reasonable 
range. Given our input parameters w ~ 1.5 mm, f1 ~ 400 mm, and λ ~ 670 nm, we observe that 
πw2 ~ 5 mm2 while λf1 ~ 0.27 mm2; therefore, (πw2)2 >> (λf1)

2 by a factor of 700, which allows 
us to drop the (λf1)

2 term in Eq. (19), obtaining α = λf1
2/πw2, as given in Eq. (3). 

Appendix B: Algorithm for calculation of focusing through uniaxial crystals 

Here we provide an algorithm for calculating the effect of propagating a focusing beam 
through a birefringent crystal using standard ray-tracing. We first determine what percentage 
of an incident beam with a given polarization propagates as extraordinary light, and what 
fraction as ordinary light. We then calculate how a single ray traces through a single uniaxial 
crystal, and finally determine the net effect on a focusing beam. 
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B.1 Power ratio of two eigenmodes for single ray 

Given an input k-vector of polarization H or V incident at a polar angle θ  with respect to the 
optic axis, one can calculate the ratio of energy behaving as e-rays versus o-rays. The 

polarization vector of the o-ray component is given by ( ) ( )  E OA k E OA k = × • × 
     
o , 

and the polarization vector of the e-ray component must then be 
e oE E E= −
 

. Thus, we 

obtain the power ratio between the o-ray and e-ray components for a given input ray: 
2 2

/  /o e o eA A E E=
 

. This calculation shows that as the optic axis approaches the 

propagation axis, an incident H or V beam no longer corresponds to ordinary and 
extraordinary, but rather a mixture of each. As stated above, in this case the system’s 
eigenmodes are radially and azimuthally polarized beams. 

B.2 Propagation of single ray through a uniaxial crystal 

In order to calculate shifts in x, y, and z of the focal location of a given o- or e-ray after 
propagation through a given set of uniaxial crystals, it often suffices to trace a single ray 
through a single crystal. One can obtain a more exact result by tracing multiple rays with this 
algorithm. 

 

Fig. 12. Propagation of the o-wave (a) and e-wave (b). 

 First, we define the optic axis to be in y-z plane at angle Φ from the z axis, as in Fig. 
12(b). We then separate our problem into two parts, the o-ray and e-ray component; the final 
output could be found by considering the power ratio found in Subsection B.1. To calculate 
the o-wave propagation focal shifts, we simply apply Snell’s law, θo = arcsin[nair/nosin(θi)]. 
Because the ordinary beam does not experience walk-off, simple trigonometry gives the 
transverse shifts δxo = dkx

o/kz
o and δyo = dky

o/kz
o. 

To trace the e-ray’s path, we must also take into account both spatial walk-off and angle-
dependent index of refraction. Snell’s law then gives θe = arcsin[nair/neff sin(θi)]. However, the 
e-ray now has an index of refraction neff = {[sin(Φ)/ne]

2 + [cos(Φ)/no]
2}-1/2 which depends on 

the angle arccos[( ) / (|  || |)]k OA k OAΦ = •
   
e e  between the e-ray k-vector and the optic 

axis. Solving for θo, and therefore ke, thus requires numerically solving a transcendental 
equation. 
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Fig. 13. Schematic of k-surfaces [25]. 

After refracting into the crystal, e-rays experience walk-off, and travel in the direction of 
the Poynting vector S , which is proportional to the gradient of the k-ellipsoid (at the point 

where the extension of k

e  pierces the ellipsoid) [25]. Thus, we can obtain the ray direction 

S  by finding the intersection point of a line with slope k

e  and the k-ellipsoid (which is 

specified by the optic axis orientation), as in Fig. 13, and then calculating the local gradient of 
the k-ellipsoid. Finally, propagating S  through the crystal by trigonometry gives the 
transverse walk-offs δxe = dSx

e/Sz
e and δye = dSy

e/Sz
e. Thus far, we have merely calculated the 

positional shift of a single ray in traveling through a uniaxial crystal. 

B.3 Net effect on focusing beam 

 

Fig. 14. Schematic for focal plane displacement of the top- and bottom-most e-rays in the x-z 
plane. The schematics for e-rays in the y-z plane, and for o-rays in both planes, are similar. 

We can now find the distance between e-ray and o-ray focal planes in a focusing beam. 
The calculation is simplified by assuming the focusing beam is enveloped by the two 
outermost rays along both x and y, and the focal plane is at their intersection. (An exact 
calculation can be done with the algorithm above, but exact models using Zemax ray-tracing 
software validate the above assumption.) Thus, we consider the outer pairs of rays within the 
focusing cone of rays for both H and V in the x- and y- directions. This total of 8 rays will 
give 4 focal locations. Here we consider only one pair; other pairs of rays behave similarly, 
except that for o-rays, the k-vector and Poynting vector in Fig. 14 are collinear. 
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To see how one pair of rays behaves, consider an extraordinary ray with polarization H 
and traveling in the x-z plane. The focus is where the rays meet (Fig. 14); thus, we can 
trigonometrically calculate the displacement of the focus in the direction of propagation: 

 
Abs[δx δx ]

δz T ,
2w / f

+ −−
= −  (20) 

where the plus (minus) sign denotes the top (bottom) incident rays, f is the lens focal length, 
and w is the beam waist incident on the lens. Note that δz is now defined as the distance from 
the focal plane after the crystal to where the focal plane would have been if focusing in free 
space. This convention (different from that in our paper) allows the calculation to be done 
generally and for each pair of rays independently.  For rays in the y-z plane, we find the focal 
displacement along the z-axis δz = T - Abs[δy+ - δy-]f/2w and focal displacements along the x- 
and y-axis of δx = Abs[δx+ + δx-]/2 and δy = Abs[δy+ + δy-]/2 respectively. 

One can now calculate the effect of focusing through a given set of uniaxial crystals. For 
any specific ray, one first calculates δxe, δxo, δye, and δyo, the transverse distances traveled by 
the ray within the block, and from this computes the final focal location in three dimensions 
with respect to their free-space location using the above formulas. If only the relative 
positions of the extraordinary/ordinary focus are required (as in our PDF schemes), then focal 
separations (given by the symbol Δ) in our paper’s main body are found simply by 
subtraction. 
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