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Background: The purpose of the present study was to determine whether magnolol, a free

radical scavenger, mitigates the deleterious effects of traumatic brain injury (TBI).

Material and methods: Traumatic brain injuries were induced in anesthetized male Sprague-

Dawley rats using fluid percussion, and the rats were divided into groups treated with

magnolol (2 mg/kg, intravenously) or vehicle. A group of rats that did not undergo TBI

induction was also studied as controls. Biomarkers of TBI, including glycerol and 2,3-

dihydroxybenzoic acid, were evaluated by microdialysis. Infraction volume, extent of

neuronal apoptosis, and antiapoptosis factor transforming growth factor b1 (TGF-b1) were

also measured. Functional outcomes were assessed by motor assays.

Results: Compared with the rats without TBI, the animals with TBI exhibited higher

hippocampal glycerol and 2,3-dihydroxybenzoic acid. Relative to the vehicle-treated group,

the magnolol-treated group showed decreased hippocampal levels of glycerol and hydroxyl

radical levels. The magnolol-treated rats also exhibited decreased cerebral infarction

volume and neuronal apoptosis and increased antiapoptosis-associated factor TGF-b1

expression. These effects were translated into improved motor function post TBI.

Conclusions: Our results suggest that intravenous magnolol injection mitigates the delete-

rious effects of TBI in rats based on its potent free radical scavenging capability, and the

mechanism of antieneuronal apoptosis is partly due to an increase in TGF-b1 expression in

the ischemic cortex.

ª 2013 Elsevier Inc. All rights reserved.
1. Introduction formation, leading to cell damage through cell membrane
In secondary damage after traumatic brain injury (TBI),

reactive oxidative injury plays an important role in early

neuronal damage [1]. It has been suggested that TBI triggers

overproduction of reactive oxygen species, such as free radical
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lipid peroxidation and destruction, cleavage of DNA, the oxi-

dation of proteins, and loss of their functions. Eventually, cells

die through the apoptotic pathway [2,3]. This hypothesis is

based on the brain’s being highly sensitive to oxidative stress

because of the following: (1) it possesses a higher oxygen
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metabolic rate than any other organ in the body, resulting

in intense reduction of reactive oxygen metabolites [4];

(2) membrane lipids in the brain have high levels of poly-

unsaturated fatty acids as a source for lipid peroxidation

reactions [5]; and (3) antioxidant activity in the brain is rela-

tively scarce [1,5]. These hypotheses raise the possibility

that high levels of oxidative stress will result in neuronal

degeneration or death in so-called reactive oxygen spe-

ciesedependent apoptosis or caspase-independent apoptosis

[6]. Hence, exogenous administration of pharmacologic agents

that promote the neutral antioxidant system has been regar-

ded as a useful strategy to prevent secondary injury induced

by TBI.

Magnolol, a blood-brain barrierepermeable hydroxylated

biphenyl compound, was isolated and purified from the cortex

of Magnolia officinalis [7e9]. Tsai et al. demonstrated that

magnolol has clear peripheral and central nervous system

pharmacokinetic effects; its half-life (2 mg/kg) in one bolus is

54.15 � 5.14 min. The mean hippocampus magnolol concen-

tration in rats 10 min after magnolol administration (5 mg/kg)

was approximately 13.41 � 1.10 mg/g [9]. Magnolol is a Chinese

medicinal herb that is commonly used in China for the relief

of stroke, myocardial infarction, headache, anxiety, diarrhea,

and fever [10]. In addition to being an effective scavenger of

free radicals, such as hydroxyl radicals [11], magnolol has

been demonstrated to attenuate heatstroke-induced increa-

sed free radical production and lipid peroxidation in the brain

[12], in rat liver mitochondria [13], and in rat heart mito-

chondria [14]. These results imply that magnolol might play

a role in protecting against secondary cerebral damage, as

well as in scavenging free radicals and subsequently reducing

the lipid peroxidation associated with TBI.

To date, the therapeutic applications of magnolol have

been used in many fields but not in neurotrauma. No direct

mechanism has been proposed for the effects of magnolol on

traumatic brain injury. In the current study, we chose mag-

nolol specifically because of its potent antioxidant effects and

because it is blood-brain barrier permeable, it has clear

pharmacokinetic activity in the central nervous system, and

it is a commonly used Chinese medicinal herb; most impor-

tantly, the therapeutic applications of magnolol have been

used in many fields but not in neurotrauma. In this study,

we hypothesized that magnolol would have therapeutic

effects on TBI based on its being a powerful free radical

scavenger. To test this hypothesis, experiments were con-

ducted to assess the therapeutic effects of magnolol on brain

cellular damage and ischemia, using an intracerebral micro-

dialysis technique. In addition, this study compared motor

deficits, cerebral infarction, and neuronal apoptosis and

antiapoptosis-associated factor transforming growth factor b1

(TGF-b1) expression during TBI in rats with or without mag-

nolol therapy.
2. Materials and methods

2.1. Animals

Adult male Sprague-Dawley rats weighing 300e400 g

were used in these experiments. The animals were kept under
a 12/12-h light/dark cycle andwere allowed free access to food

and water. All of the experimental procedures were approved

by the Animal Research Committee of the Chi-Mei Medical

Center, in compliance with the U.S. National Institutes of

Health’s regulations for the use of animals in research, to

minimize discomfort to the animals during surgery and

during the recovery period. At the end of the experiments, the

control rats and any rats that survived TBI were sacrificed

with an overdose of urethane.

2.2. Traumatic brain injury

The animals were anesthetized with intraperitoneal admin-

istration of sodium pentobarbital (50 mg/kg), ketamine

(intramuscular, 44 mg/kg), rompun (intramuscular, 6.77 mg/

kg), and atropine (intramuscular, 0.026 mg/kg). A craniectomy

2 mm in radius, 4 mm from the bregma and 3 mm from the

sagittal sutures and in the right parietal cortex, was per-

formed via stereotaxic framing. After craniectomy and

implantation of an injury cannula, a fluid percussion injury

(FPI) device was connected to the animal via Luer-loc fitting.

Moderate FPI (2.2 atm) and 25ms of percussion were produced

by rapidly injecting a small volume of saline into the closed

cranial cavity with a fluid percussion device (VCU Biomedical

Engineering, Richmond, VA). This procedure created a mod-

erate severity of brain trauma, as originally described by

McIntosh et al. [15]. A transient hypertensive response, apnea,

and seizure were observed immediately following fluid

percussion injury, and these reactions were used as the

criteria for separating the animals into sham-operated groups.

2.3. Drug administration

Magnolol was purchased from Yoneyama Pharmaceutical

Industries, Ltd (Osaka, Japan) (lot no. MZD1030). It was freshly

prepared prior to use and was dissolved in 0.5% carboxy-

methylcellulose (CMC). To determine and choose the effective

dosage,magnolol was injected via the femoral vein at a dosage

of 0.2 mg/kg or 2 mg/kg immediately after TBI.

2.4. Experimental groups

The animals were randomly assigned to the sham group, the

FPI brain CMC (vehicle) group, or the FPI brainmagnolol group.

All of the tests were performed with the investigators blinded

to the study groups, which were revealed only at the end of

analyses. In the FPI vehicle- and magnolol-treated groups, the

animals were treated, respectively, with 3 cc CMC or 2 mg/kg

magnolol via the right femoral vein immediately after injury.

2.5. Measurement of extracellular glycerol and
2,3-dihydroxybenzoic acid in the hippocampus

The total recorded time was 4 h from stable to 2 h post injury

in the acute stage. A microdialysis probe (4 mm in length,

CMA/2; Carnegie Medicine, Stockholm, Sweden) was stereo-

taxically and obliquely (anterior 4.3 mm) implanted into the

right hippocampus, according to the atlas and coordinates of

Paxinos and Watson [16]: P, 8 mm; R, 3 mm; and H, 5 mm.

According to the methods described previously [17,18],
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microdialysis was perfused at 2.0 mL/min, and the dialysates

were sampled in microvials. The dialysates were collected

every 20 min in a CMA/140 fraction collector (Carnegie Medi-

cine). Aliquots of the dialysates (5 mL) were injected onto

a CMA 600 microdialysis analyzer (Carnegie Medicine) for the

measurement of lactate, glycerol, pyruvate, glutamate, and

hydroxyl radical.

For the measurement of extracellular hydroxyl radicals in

the hippocampus, the implanted probe was perfused with

artificial cerebrospinal fluid containing 10 mM salicylic acid,

using a high-pressure pump (CMA/Microdialysis; RosLagsvä-

gen, Stockholm, Sweden) at a flow rate of 1.2 mL/min [19]. It is

known that salicylate can react with hydroxyl radicals to

generate stable dihydroxybenzoic acid (DHBA) derivatives, in

particular 2,3-DHBA, which can be used as an in vivo index

of hydroxyl radical levels [20]. The volume of 2,3-DHBA in

dialysates was measured by high-performance liquid chro-

matography using a two-channel electrochemical detector

(LC-4C; Bioanalytical Systems, West Lafayette, IN). Only

experiments in which the hippocampal localization of the

microdialysis probes was confirmed histologically were

included in the results.

2.6. Cerebral infarction assay

Infarct volume was assessed using 2,3,5-triphenyltetrazolium

chloride (TTC) (Sigma, St, Louis, MO) staining, as demon-

strated in a previous study [17]. Three days after injury, all of

the animals were sacrificed. The brain slices in 2-mm sections

were incubated in 2% TTC, dissolved in phosphate-buffered

saline for 30 min at 37�C, and then transferred to 5% formal-

dehyde solution for fixation. The volume of infarction, as

revealed by negative TTC staining (pale color), was measured

in each slice and was totaled using computerized planimetry

(PC-based Image Tools software; Media Cybernetics, Inc). The

infarction volume was calculated as 2 mm (thickness of the

slice) � (sum of the infarction area in all brain slices [mm2]).

2.7. Neuronal apoptotic assay

Three days after injury, neuronal apoptotic cells were identi-

fied by double staining with terminal deoxynucleotidyl

transferaseemediated dUTP-biotin nick end labeling (TUNEL)

and the neuronal nuclear marker Neu-N [21]. These proce-

dures followed those described previously [3]. The number of

TUNEL/Neu-N-positive cells was calculated in five coronal

sections from each rat and was totaled using computerized

planimetry (PC-based Image Tools software). The following

antibodies were used in this study: monoclonal mouse anti-

Neu-N antibody (MAB377; Chemicon Millipore Corporation,

Billerica, MA), detected with Alexa-Fluor 568 anti-mouse (IgG)

antibody (A11031; Life Technologies Co, Grand Island, NY).

2.8. Neuronal apoptosiseassociated TGF-b1 expression

TGF-b1 expression in neuronal cells was detected using im-

munofluorescence. Adjacent 50-mm sections, corresponding

to coronal coordinates 2.0e7.0 mm posterior to the bregma,

were obtained consecutively. These procedures followed

those described previously [3]. Polyclonal rabbit anti-TGF-b1
antibody (ab92486; Abcam, Boston, MA) was used, which was

then detected with Alexa-Fluor 488 anti-rabbit (IgG) antibody

(A11034; Life Technologies Co). The numbers of labeled cells

were calculated in five coronal sections from each rat and

were expressed as the mean numbers of cells per section.

For negative coronal sections, all of the procedures were

performed in the same manner but without the primary

antibodies.

2.9. Functional outcomes

An inclined plane was used to measure limb strength. The

animals were placed facing right and then facing left,

perpendicular to the slope of a 20 � 20-cm rubber-ribbed

surface of an inclined plane, starting at an angle of 55 deg-

rees [22]. The angle was increased or decreased in 5-degree

increments to determine the maximal angle at which an

animal could hold to the plane. The data for each day con-

sisted of the mean of left and right side maximal angles.

2.10. Statistical analysis

The results are expressed as the means � standard errors of

the means for n experiments. Two-way analysis of variance

for repeated measurements (in the same animals) was used

for factorial experiments, whereas the Dunnett test was used

for post hocmultiple comparisons amongmeans. A value of P<

0.05 was considered to indicate a statistically significant

difference.
3. Results

3.1. Magnolol (2 mg/kg, intravenously) significantly
reduced FPI-induced cerebral infarction volume

From the preliminary experiments to determine the effective

dosage of magnolol in FPI rats, compared with that in the

sham and FPI controls, and due to treatment with 0.2 mg/kg

intravenously (iv), the FPI-induced infarction volume (183.8 �
17.7 mm2) was significantly decreased by magnolol treatment

with 2 mg/kg iv (110.5 � 7.2 mm2) but not treatment with

0.2mg/kg iv (169.7� 5.9mm2) (P< 0.05; n¼ 8) (Fig. 1). Thus, the

therapeutic dosage of 2 mg/kg magnolol was based on this

preliminary experiment.

3.2. Magnolol significantly attenuated FPI-induced
hydroxyl radical formation

Treatment with magnolol (2 mg/kg, iv) immediately after

FPI significantly attenuated the TBI-induced overproduction

of hydroxyl radicals in the hippocampus (P < 0.05; n ¼ 8)

(Fig. 2).

3.3. Magnolol decreased cell damage markers during FPI

Treatment with magnolol (2 mg/kg, iv) immediately after FPI

significantly attenuated the TBI-induced overproduction of

cellular injurymarkers (glycerol) in the hippocampus (P< 0.05;

n ¼ 8) (Fig. 3).

http://dx.doi.org/10.1016/j.jss.2013.04.059
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Fig. 1 e Effects of magnolol (2 mg/kg, iv) treatment on

FPI-induced cerebral infarction volume. *P < 0.05

compared with the sham group; DP < 0.05 compared with

magnolol (2 mg/kg, iv) treatment in the FPI group.

Fig. 3 e Effects of magnolol (2 mg/kg, iv) on the FPI-induced

extracellular levels of glycerol in the hippocampus.

*P < 0.05 compared with the sham group; DP < 0.05

compared with magnolol (2 mg/kg, iv) treatment in the FPI

group.
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3.4. Magnolol significantly decreased FPI-induced
neuronal cell apoptosis (TUNEL plus Neu-N stain assay)

The positive TUNEL plus Neu-N in neuronal cells from the

ischemic cortex were significantly increased (P < 0.05; n ¼ 8),

compared with those in the sham controls, at 72 h after TBI.

However, the number of TUNEL plus Neu-Nepositive cells

among neuronal cells in the cortex resulting from FPI induc-

tion was significantly decreased (P < 0.05; n ¼ 8) by magnolol

therapy (Fig. 4).

3.5. Magnolol significantly increased TGF-b1 expression
in neuronal cells in the cortex (TGF-b1 plus Neu-N stain
assay) after FPI

The positive TGF-b1 expression in neuronal cells in the

ischemia cortex was significantly decreased (P < 0.05; n ¼ 8)
Fig. 2 e Effects of magnolol (2 mg/kg, iv) treatment on the

FPI-induced hydroxyl radical overproduction. *P < 0.05

compared with the sham group; DP < 0.05 compared with

magnolol (2 mg/kg, iv) treatment in the FPI group.
compared with that in the sham controls at 72 h after FPI.

However, the number of TGF-b1epositive cells among the

neuronal cells in the cortex resulting from FPI induction was

significantly increased (P < 0.05; n ¼ 8) by magnolol therapy

(Fig. 5).

3.6. Magnolol significantly attenuates FPI-induced
motor deficits

Three days after TBI, behavioral tests (P < 0.05; n ¼ 8) revealed

that vehicle-treated TBI rats had significantly lower perfor-

mance on motor function tests than the sham-operated

controls. FPI-induced motor dysfunction was significantly

reduced by magnolol (2 mg/kg, iv) therapy (Fig. 6).
4. Discussion

4.1. Novelty of the present study

In the current study, magnolol was administered at a single

dose of 2 mg/kg to counteract the cell damage, neuronal

apoptosis in the brain, and neurologic deficits induced by TBI

in rats by exerting its potent free radical scavenging abilities.

To our knowledge, this is the first study to present neuro-

protective effects using magnolol injection in traumatic CNS

injury. We further demonstrated that magnolol’s mechanism

of antieneuronal apoptosis occurs partly due to an increase in

TGF-b1 expression in the ischemic cortex.

4.2. Magnolol’s effects on FPI-induced hydroxyl radical
formation

In the present study, a microdialysis probe was implanted

into the hippocampus of the ipsilateral brain, which is

most susceptible to cerebral ischemia and injury after FPI [23].

http://dx.doi.org/10.1016/j.jss.2013.04.059
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Fig. 4 e Effects of magnolol (2 mg/kg, iv) treatment on the FPI-induced neuronal apoptosis at 3 d following FPI. Top panels

depict representative positive Neu-N and TUNEL staining for one sham rat, one FPI rat, and one FPI D magnolol-treated rat.

*P < 0.05 compared with the sham group; DP < 0.05 compared with magnolol (2 mg/kg, iv) treatment in the FPI group.
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The microdialysates obtained from the hippocampal region

were assayed for the measurement of hydroxyl free radical

formation and glycerol during FPI. 2,3-DHBA is regarded

as specific for hydroxyl radical production, and it can be

estimated with high-pressure liquid chromatography [20].

Although free radical formation and damage to neurons are

secondary events, hydroxyl radical concentrations could be

observed in the cortex of injured rats at 5 min post injury [24].

In our studies, we first measured the 2,3-DHBA level at 20min.

Thus, injection of magnolol immediately after injury could

mitigate the effects of free radicals. We also found that, in the

acute stage of FPI, 2,3-DHBA was detected at the maximum of
20 min after TBI (Fig. 2), and it significantly decreased at

60 min after magnolol administration. The hydroxyl radical

level was correlated with the cell damage marker glycerol

[25], a cellular marker of how severely cell membranes are

damaged by ongoing pathology over 100 min of measurement

(Fig. 3), as reported by Chang et al. [12]. The present data

indicate that early treatment with magnolol could attenuate

TBI by reducing the excessive accumulation of hydroxyl free

radicals in the brain. These findings are consistent with those

of several other animal models. For example, treatment with

magnolol has proved neuroprotective in rat endothelial cells

[26] and liver ischemia-reperfusion injury [27]. These results

http://dx.doi.org/10.1016/j.jss.2013.04.059
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Fig. 5 e Effects of magnolol treatment on TGF-b1 expression in neuronal cells in the cortex (TGF-b1 plus Neu-N stain assay)

at 3 d after FPI. Top panels depict representative positive Neu-N and TGF-b1 staining for one sham rat, one FPI rat, and one

FPI D magnolol-treated rat. *P < 0.05 compared with the sham group; DP < 0.05 compared with magnolol (2 mg/kg, iv)

treatment in the FPI group.
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also supported that magnolol has potentially therapeutic

effects in TBI via its powerful free radial scavenger ability.

4.3. Magnolol’s effects on neuronal cell protection

After TBI, the secondary injury mechanisms are very complex

and include early free radicaleinduced reactive oxidative

injury and, finally, apoptotic cell death [1,28]. The present

results demonstrated thatmagnolol therapy at a single dose of

2 mg/kg caused attenuation of TBI-induced early free radical
formation (as evidenced by increased 2,3-DHBA levels), cell

damage markers (evidenced by increased glycerol concentra-

tion), and, later, neuronal apoptosis (evidenced by increased

numbers of TUNEL-positive cells) and cerebral infarction

volume (evidenced by TTC staining) when evaluated 3 d after

FPI. Magnolol therapy also demonstrated improvement in

motor deficits. Altogether, in addition to the powerful free

radical scavenger ability of magnolol, the neuroprotective

effects of magnolol could also result from its antiapoptotic

effects. Our results supported the idea that any agent that can

http://dx.doi.org/10.1016/j.jss.2013.04.059
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Fig. 6 e Effects of magnolol (2 mg/kg, iv) treatment on

TBI-induced motor deficits evaluated by maximum angle

in inclined plane grasp at 3 d after FPI. *P < 0.05 compared

with the sham group; DP < 0.05 compared with magnolol

(2 mg/kg, iv) treatment in the FPI group.
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concurrently attenuate oxidative stress and exerts anti-

apoptotic effects, such as magnolol, constitutes a promising

strategy for the rescue of neurons following TBI [6].
4.4. Magnolol’s effects on FPI-induced TGF-b1
expression in neuronal cells

According to a review of the related literature, TGF-b1 is

involved in the signaling pathway of cell apoptosis. As a pro-

tective factor, TGF-b1 levels are elevated acutely after injury

[29e31]. Furthermore, injection of the anti-inflammatory

cytokine TGF-b1 after injury in rodents reduced inducible

nitric oxide synthase (iNOS) production [32], reduced lesion

size, and improved function [33]. In the current study, mag-

nolol increased TGF-b1 expression in neuronal cells. It

can also decrease neuronal apoptosis and, finally, improve

motor function. We believe that increased level of TGF-b1 in

the injured cortex, resulting in a decrease in neuronal

apoptosis, is one mechanism by which functional recovery

might occur.

Magnolol, in addition to being a free radial scavenger, has

demonstrated several protective mechanisms in other animal

models. For example, it decreased lung tumor necrosis factor

a levels in rats submitted to septic shock [34], suppressed lung

iNOS expression in rats with mesentery ischemia-reperfusion

[35], attenuated heat strokeeincreased levels of glutamate in

a ratmodel [12], and activated the apoptotic biomarker ERK1/2

and Bcl-xl proteins [36]. In our previous studies, we found

reactive astrogliosis and microgliosis, upregulated expression

of iNOS and neuronal NOS, and caspase-3 and neurogenesis

activation following fluid percussion injuryeinduced TBI

[3,37,38].Whethermagnolol treatment has the same effects as

noted above on TBI rats needs to be evaluated.
5. Conclusion

Based on our results, we conclude that magnolol, adminis-

tered as a single dose of 2 mg/kg, counteracted the oxidative

brain injury, apoptosis, and neurologic deficits induced by TBI

in rats, by exerting its potent free radical scavenging ability.

We also suggest that the antiapoptosis mechanism of mag-

nolol might occur in part due to an increase in TGF-b1

expression in the ischemic cortex.
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