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Replacing Pt by earth abundant catalysts is one of the most important tasks toward po-
tential large-scale HER applications. Among many potential candidates, low cost and earth
abundant transition metal dichalcogenides such as MoS, and WS, have been promising as
good H, evolution electrocatalysts when they are engineered into the structures with active
sites. In this work, we have performed systematic studies on the catalytic reactivity of both
MoS, and WS, materials produced by one-step and scalable thermolysis from (NH4),WS,
and (NH4),MoS, precursors respectively. Structural analysis shows that these materials
prepared at a higher thermolysis temperature exhibit higher crystallinity. The H, evolution
electrocatalysts efficiency for the MoS, prepared at a lower temperature is higher than
those at higher temperatures, where amorphous MoS, or S,? species instead of crystalline
MoS, is the main active site. By contrast, crystalline WS, prepared at high temperature is
identified to be the key reaction site. Both catalysts display excellent efficiency and dura-
bility as an electrocatalyst operating in acidic electrolytes. This work provides fundamental
insights for further design and preparation of emergent metal dichalcogenide catalysts,
beneficial for the development in clean energy.
Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights
reserved.

1. Introduction

splitting has gained more and more attention [1-12] since
the conversion of solar to electrical energy by a photovoltaic

Due to the rapid depletion of the carbon based fuels and
their environmental contaminations, an enormous world-
wide demand for an alternative clean energy is being
vigorously pursued. Hydrogen is thus an ideal energy carrier
because there is no green house gas such as carbon dioxide
(CO,) emitted during the combustion process. Particularly,
sustainable hydrogen production from electrolytic water

* Corresponding author. Tel.: +886 2 23668264.

cell is mature in industry. This water splitting reaction is
known as the hydrogen evolution reaction (HER). In order to
increase the efficiency of HER, i.e. mainly by lowering the
reaction overpotential, a highly active catalyst is essential.
Based on the volcano plot [13], Pt possesses an almost zero
overpotential for HER; however it is not a favorable candi-
date for HER because of its high cost and rareness on earth.

** Corresponding author. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan. Tel.: +886 2 23668205.
E-mail addresses: cychiang@gate.sinica.edu.tw (C.-Y. Chiang), lanceli@gate.sinica.edu.tw (L.-J. Li).

! These authors contributed equally.

0360-3199/$ — see front matter Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ijhydene.2013.07.021


mailto:cychiang@gate.sinica.edu.tw
mailto:lanceli@gate.sinica.edu.tw
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ijhydene.2013.07.021&domain=pdf
www.sciencedirect.com/science/journal/03603199
www.elsevier.com/locate/he
http://dx.doi.org/10.1016/j.ijhydene.2013.07.021
http://dx.doi.org/10.1016/j.ijhydene.2013.07.021
http://dx.doi.org/10.1016/j.ijhydene.2013.07.021

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 38 (2013) 12302—12309

12303

As a result, the scientific community has been eagerly
searching for an inexpensive and earth abundant substitu-
tion. Studies of density functional theory (DFT) on catalyst-
hydrogen binding energy have shown that molybdenum
disulfide (MoS) locates close to the top of the volcano curve
[13]. The capability of MoS, for serving as a HER catalyst was
subsequently verified by electrochemical measurements
[14—26]. More importantly, a widely used industrial catalyst,
MoS,, costs much lower than the Pt. Due to its structural
and electronic similarities to MoS,, tungsten disulfide (WS,)
has also received some attention as an electrocatalyst
recently [27,28]. However, to date most of the reports deal
with hydrogen evolution reaction (HER) either with amor-
phous or single crystal MoS,. Also, only very few papers deal
with HER employing WS,-based materials. The systematic
study for these materials is still lacking. Hence it is impor-
tant to explore the fundamentals, in particular the
structure-HER property for these emergent materials.

Liu and his coworkers have demonstrated that the ther-
molysis of ammonium tetrathiomolybdate ((NH4),Mo0S,) in a
chemical vapor deposition (CVD) furnace is able to produce
high-quality MoS, thin layers [29]. In this work, we synthe-
sized WS, and MoS, from the thermolysis of (NH4),WS, and
(NH4),MoS, precursors respectively on carbon cloth. The
reason for choosing CVD thermolysis as the method for
producing these materials is that it is a one-step synthesis
for MoS, and WS, and it also has the potential to serve for
the large scale production. Carbon cloth is selected as the
conducting substrate for loading these catalysts due to its
fairly high surface area. This study demonstrated that the
WS, catalyst prepared at high temperature has better per-
formance than that prepared a lower thermolysis temper-
ature, whereas the MoS, formed at lower temperature
shows better HER efficiency. Our HER results, spectroscopic
and structural analysis show that crystalline WS, is the
active catalyst, which is in clear contrast to the MoS, system
where amorphous MoS, or S,2 species is the key compo-
nent for HER.

2. Material and method
2.1 Preparation of WS, and MoS,

The preparation of WS, and MoS, is schematically illustrated
in Fig. 1(a). Carbon cloth (W0S1002 from CeTech) was used as
the conducting substrate to load the precursors, i.e. ammo-
nium tetrathiotungstate solution ((NH4),WS, (Alfa Aesa
99.9%); 5 wt% in dimethylformamide) or ammonium tetra-
thiomolybdate solution ((NH,),MoS, (Alfa Aesa 99.99%); 5 wt%
in dimethylformamide). The loading amounts for MoS, and
WS, on carbon cloth are 2.6 and 14 mg/cm?, respectively. After
loading the precursors by immersion, carbon cloth was then
baked on a hot-plate at 100 °C for 10 min. The precursor-
coated substrates were then fed into a tube furnace for ther-
molysis and the standard environment was kept at 500 torr
with the gas mixture of for H, and Ar (20 and 80 sccm
respectively) unless specified in text. WS, and MoS, were
subsequently formed on the carbon cloth at various temper-
atures set for thermolysis [29,30].

2.2. Characterization

X-ray diffraction patterns were obtained with a Philips PAN-
alytical X’Pert MPD using Cu Ka (0.154 nm) as incident radia-
tion. It was operated at 45 kV with 40 mA target current. Data
were collected from 5 to 80°. Raman spectra were used to
identify the composition of the samples and the spectra were
collected by a NT-MDT confocal Raman microscope and the
exciting laser wavelength and laser spot size are 473 nm and
~500 nm, respectively. The data were recorded for 10 s for
each sample. Si peak at 520 cm ™ was used as a reference for
calibration in Raman characterization. Chemical configura-
tions were determined by X-ray photoelectron spectroscope
(XPS, Phi V5000). XPS measurements were performed with an
Mg Ko X-ray source on the samples. The energy calibrations
were made against the C 1s peak to eliminate the charging of
the sample during analysis. Surface morphology of samples
was examined with a field-emission scanning electron mi-
croscope (FESEM, JSM-6500F). Electrochemical polarization
curves were recorded by AUTOLAB pontentiostat (PGSTAT
302N) with a scan rate of 5 mV/s in 0.5 M H,SO, electrolyte. A
three-electrode configuration was adopted for polarization
and electrolysis measurements using an Ag/AgCl (3.0 mol/kg
KClI) electrode as the reference electrode while a graphite rod
was used as the counter electrode and the WS, samples as the
working electrode. The bias voltages applied were then pre-
sented with the correction to the reversible hydrogen elec-
trode (RHE).

3. Results and discussion
3.1 Spectroscopic characterization for WS, and MoS,

The scanning electron microscopy (SEM) images in Fig. 1(b)
show the morphology of the pristine carbon cloth as well as
the WS,/carbon cloth and MoS,/carbon cloth electrodes pre-
pared at 200 and 1000 °C, respectively. The pristine carbon
cloth surface is smooth and the diameter is ~10 uym for each
fiber, while the surface of the WS, or MoS, coated carbon cloth
is relatively rough. For both materials, some nano-sized par-
ticles are observed on the surface when the thermolysis
temperature is set at 1000 °C. The surfaces for the samples
prepared at 200 °C are smoother than those at 1000 °C. The X-
ray diffraction (XRD) analysis is performed to reveal the
composition and crystalline structures of obtained MoS, and
WS,, as shown in Fig. 2(a) and (b) respectively. The signals
from the carbon cloth are observed at 26.8° and 43.5° (marked
as “C”) for all samples. As shown in Fig. 2(a), the presence of
(002) reflection peak at 26 about 14.2° indicates the periodicity
along the direction perpendicular to the planar structure of
MoS,. It is only observed for the MoS, samples produced at
1000 °C but not at a lower temperature. For the WS, samples
prepared at the lower temperatures, i.e. 200 and 400 °C, a weak
(002) reflection peak at 26 about 14.3° is observed. As the
thermolysis temperature increases, better crystallinity of WS,
is observed and other crystalline orientations such as (004),
(103), and (110) are also found. However, different from the
MoS,, the reflection peak for WO3 are pronounced (marked
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Fig. 1 — (a) Schematic illustration of the preparation of WS, and MoS, on carbon cloth electrode: Carbon cloth was used as
the conducting substrate to load the precursors. After loading the precursors by immersion, carbon cloth was then baked on
a hot-plate and then fed into a tube furnace for thermolysis, and (b) SEM images for pristine carbon clothes and those loaded
with WS, and MoS, prepared by thermolysis at different temperatures.

with *) for the WS, samples prepared at 800 and 1000 °C. At
such a high temperature, the trace amounts of oxygen in the
CVD system react with the precursors, resulting in the for-
mation of inevitable oxides. Note that there is no obvious
MoO; formation for the MoS, samples prepared at high
temperatures.

Raman spectra in Fig. 3(a) show that the characteristic
peaks of MoS; including Eg at 375 cm~! and Aqg at 402 cm™?!
[31]are observed for samples prepared at all temperatures and

the peak intensity increases with the thermolysis tempera-
ture. By considering the information obtained from XRD in
Fig. 2(a), it is concluded that amorphous MoS, is the major
component in the sample prepared at lower temperatures and
the content of crystalline MoS, component increases with the
thermolysis temperature. Different from the case for MoS,,
Fig. 3(b) shows that the three vibration modes of WS,,i.e. E;g at
~298 cm ™, E'5; at ~353 cm ™! and A, at ~418 cm™! are
observed for all the samples (200, 400, 800 and 1000 °C)
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Fig. 2 — XRD pattern for the samples obtained at different thermolysis temperatures: (a) MoS, on carbon cloth and (b) WS, on
carbon cloth. Peaks with notation C represent the carbon peaks from carbon cloth. (*) indicates the peaks from WO;.
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Fig. 3 — Raman spectrum of the samples with various preparation temperatures: (a) MoS, on carbon cloth and (b) WS, on

carbon cloth. (o) indicates the peak for WO;.

prepared in a standard environment (Ar:H, = 80 sccm:20
sccm). The top two curves are the reference samples prepared
at 1000 °C respectively in air and in pure Ar. Note that the
sample prepared in air is processed with very careful baking to
move residual moisture in the DMF solvent and pumping/
purging to reduce the presence of residual oxygen species in
the CVD system prior to synthesis. It is clearly seen that the
sample prepared in air exhibits characteristic O-W-0O
bending mode (~266 cm™') and broad stretching modes
(centered at ~700 and 810 cm™Y), indicating the presence of
WOs; [32]. By contrast the sample prepared in pure Ar only
shows the characteristic peaks of crystalline WS,. It is noted
that the sample prepared at 1000 °C in a standard Ar/H, con-
dition shows obvious vibration peaks for WOs, consistent with
the XRD results in Fig. 2(b).

The X-ray photoelectron spectroscopy (XPS) analysis for
both W 4f;/,.5/» and S 2ps/,.1/» Spectra are shown in Fig. 4. For
the crystalline WS, sample formed in pure Ar, the W 4f;,5.5/»
spectrum shows a peak doublet for W** (32.7—34.9 eV) and the
sample prepared in air exhibits a peak doublet for W°"
(36.0—38.1 eV) of WOs. For the WS, samples prepared at 200 °C,
the W 4f;,,.5/» spectrum can be fitted to several doublets, A for
W*" (32.8-35.0 eV) as in WS,, B for W>* (33.0-35.2 eV) in a
mixed environment as in WSs, and C for W®" (35.9—38.0 eV) at
oxygen-rich surrounding for tungsten atoms as in WOs. This
observation is also confirmed by the S 2ps/,.1» spectrum
shown in Fig. 4(b), where E peaks correspond to the S?~ in WS,
(162.0—163.1 eV), and the two partially overlapping doublets
attributed to S~ on the low energy side (shown as D;
161.4-162.6 eV) and to S,2~ pairs on the high energy side,
(shown as F; 163.7-164.6 eV) in a 2:1 ratio [33,34]. The XPS
spectra obtained for the WS, samples prepared at 1000 °C can
also be fitted to similar doublets with various peak area ratios
between A, B, C and D, E, F as shown in Fig. 4. An extra pair of
doublet corresponding to sulfone [35] was also found. Note
that the WO, distribution in the samples prepared at a high
temperature 1000 °C is not uniform; hence, the relative peak
ratios between doublets vary with the locations of the sample.

(See additional XPS results in Fig. S1 and Raman mapping in
Fig. S2 for details). In general, comparing to the samples pre-
pared at 200 °C, more WO; was revealed in the sample pre-
pared at 1000 °C. The actual reason for the unfavorable
formation of WOs in a pure Ar environment compared with
the H,/Ar environment is still not clear. One possible reaction
pathway is that the H, reduced the WS, to element W and
then oxidized in the ambient [36]. It might also be related to
the different thermolysis mechanisms [37,38].

Similar fitted results for both Mo 3ds/5-3/» and S 2ps/s.1/2
spectra obtained for MoS, prepared at different temperature.
However, the XPS results for MoS, samples demonstrate that
the similar B doublets for Mo (233.1 and 229.6 eV) in a mixed
environment as in MoS; are only observed in the samples
prepared at a low temperature such as 200 °C [30,39]. The
sample prepared at a temperature higher than 300 °C exhibits
only Mo*" doublets of MoS, without pronounced character-
istic peaks from MoOj; (Supporting Fig. S3).

3.2. Electrocatalytic performance for water splitting

Fig. 5(a) and (b) shows the polarization curves of MoS, and WS,
on carbon cloth electrodes prepared at various temperatures,
where the current density is defined as the measured current
normalized by the geometrical area (or projected area) of the
carbon cloth. The HER efficiency of the thermolysis-produced
MoS, decreases dramatically with the increasing annealing
temperature (or increasing crystallinity of MoS,), which is
consistent with the trend for MoS, grown on graphene re-
ported in our previous study [30]. At low thermolysis tem-
perature, Mo 3ds/, and 3ds;; binding energies at 233.1 and
230 eV revealed by XPS suggest the presence of Mo>" ions
[40—42]. Meanwhile, the bridging S, might exist in the
compound due to observation of characteristic peaks of S 2p,/»
and 2ps, at 164.3 and 163.2 eV as shown in Fig. S1 [40,42].
These unsaturated sulfur atoms in these materials such as
bridging S,?~ could be related to the HER activity [15,18,19,30].
It is noted that several recent reports have hypothesized that
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Fig. 4 — XPS analysis of (a) W 4f;/,.s,» peaks and (b) S 2p3/2-1/
» for the sample thermolysis at 200 °C in Ar/H,, 1000 °C in
Ar/H,, 1000 °C in Ar and 1000 °C in air. Doublet A is for W**
as in WS,, doublet B for W>* in a mixed environment as in
WS, and C for W°™" at oxygen-rich surrounding for
tungsten atoms as in WOs. Doublet E peaks correspond to
the S?~ in WS, and the two partially overlapping doublets
attributed to S~ on the low energy side (D) and to S~
pairs on the high energy side (F).

the amorphous MoS, might be also related to the HER reac-
tivity in MoS, materials although the MoS, materials prepared
in these reports were more defected or almost amorphous
since no characteristic Raman Az and Elgg peaks were
observed [18,39]. We can conclude from the above arguments
that crystalline MoS, does not contribute to the HER. The
unsaturated sulfur or amorphous MoS, play the key instead.
Surprisingly, an opposite trend is noticed for WS,/carbon
cloth samples. Fig. 5(b) clearly shows that the HER efficiency
increases with the thermolysis temperature. The current
density for the WS, prepared at 1000 °C (in Ar/H, environ-
ment) is about 23 mA/cm? (at —300 mV vs. RHE), which is
much better than the 0.01 mA/cm? for the WS, prepared at
200 °C. This may suggest that crystalline WS, is more active in
HER although one might argue with the formation of WO,
nanoparticles at the surface of the electrode might also have
positive effect on HER. To test the hypothesis, we include the
polarization curves for the two reference samples (prepared at
1000 °C in Ar and in air). The sample prepared in air, rich of
WOj3; proved by XRD and Raman, shows a low HER efficiency.
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Fig. 5 — Polarization curves at a scan rate of 5 mV/s in 0.5 M
H,S0, electrolyte for (a) MoS, on carbon cloth and (b) WS,
on carbon cloth obtained at the samples prepared at
different temperatures and gas environments.

By contrast, the sample prepared in Ar demonstrates the best
HER efficiency 42 mA/cm? (at —300 mV vs. RHE). These two
samples clearly prove that the highly crystalline WS, sample
is more active in HER.

The HER by electrocatalytic water splitting has been known
to proceed by the following mechanisms, and each mecha-
nism consists of two primary steps. The “discharge” step, the
Volmer reaction (Eq. (1)), occurs in all cases, while either
Heyrovsky reaction (Eq. (2)) or Tafel reaction (Eq. (3)) pre-
dominates to complete the reaction.

M+ H,0 +e =M — H+ OH (Volmer reaction) (1)
M -H+H,0+e =M+ H, + OH (Heyrovsky reaction) (2)

2M — H=2M + H,(Tafel reaction) (3)

where M is the catalyst active site. The catalytic performance
of electrodes for HER can be described by Tafel relationship

(Ea. (4)),

n=bln <l> ()
lo
where 7 is the overpotential, i is the observed current density,
and ip is the exchange current density. The Tafel slope b is the
measurement of the potential increase required to enhance
the resulting current density one order of magnitude. The
exchange current density corresponds to the interceptatn =0,
extrapolated from a linear portion of Tafel plot. As a result, by
analyzing the Tafel curves, the properties of various catalysts
on HER can be revealed. The Tafel plots in Fig. 6 reveal a slope
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Fig. 6 — The comparison of WS, and MoS, on the Tafel plot.
O represents for MoS, thermolysis in Ar/H, at 200 °GC, o for
WS, thermolysis in Ar/H, at 1000 °C, A for WS,
thermolysis in Ar at 1000 °C and < Pt.

of ca. 50 mV/dec for MoS,, 78 mV/dec for the WS, prepared at
1000 °C, 68 mV/dec for the WS, prepared in Ar (1000 °C) and ca.
30 mV/dec for Pt for reference. A Tafel slope is an intensive
parameter, which does not depend on the electrode surface
area, and it is mainly due to the properties of the material such
as hydrogen binding energy, the degree of crystallinity and so
on. Note that the Tafel slope for the WS, prepared in air is
205 mV/dec (Supporting Fig. S4), corroborating that the WO3 is
not the HER active sites in the WS, prepared at 1000 °C.
Moreover, based on DFT calculation, MoS, has the hydrogen
binding energies of AGy = 0.08 eV for the Mo-edge site and
AGy = 0.18 eV for the S-edge site but WS, has much larger
hydrogen binding energies, where both S-and W-edges are
equal to AGy = 0.22 eV [28]. As a result, the Tafel slopes for WS,
are expected to be larger than MoS,. We note that the Tafel
slop for our MoS, prepared at 200 °C is 50 mV/dec, which is in
between the 40 mV/dec from amorphous MoS, [18] and the
55—60 mV/dec from MoS, crystals [15], suggesting that the
MoS, materials obtained in our process are likely a mixture of
both. For our WS, materials prepared at 1000 °C, the Tafel
slope is close to the 72 mV/dec from WS, crystalline nano-
sheets reported by Wu et al. [43], corroborating that the HER
active sites of WS, are related to its crystalline structures. We
have tabulated the HER Tafel slopes and exchange current
density of MoS, and WS, obtained from this work and those
available in literature (Supporting Table S1).

The durability of HER catalysts is also one of the most
important factors. For MoS, serving as an electrocatalyst

AbNhao
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P L ]
o ©Wo~NO O
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o

Fig. 7 — The durability test of WS, on carbon cloth with
applied voltage of —200 mV vs. RHE over 180 min in 0.5 M
H,S0, electrolyte.

operating in acidic electrolytes, studies have done to prove the
durability [17,30]. However, only a few studies focused on the
durability of WS, related works [44]. Fig. 7 provides a three-
hour-long HER test for the WS, prepared at 1000 °C with
applied voltage of —200 mV vs. RHE. The current density for
hydrogen evolution reaction is about 2.2 mA/cm? and it kept
almost constant throughout the testing period in ambient. As
a result, WS, can serve as an electrocatalyst in acidic solution
as MoS,.

4, Conclusions

We have performed systematic studies on the catalytic reac-
tivity of both MoS, and WS, materials produced by one-step
and scalable CVD thermolysis process. It is observed that the
high temperature-produced crystalline WS, is the active
component for HER and it exhibits excellent stability in acidic
electrolyte solutions. High temperature-produced WS, may
serve for the applications requiring high thermal stability. By
contrast, the HER activity for low temperature-produced MoS,
is more active than its crystal form, and MoS, is thus a catalyst
which can be produced with a simple and convenient pre-
parative process. This work reveals the drastic difference of
WS, and MoS, in HER behaviors and provides valuable infor-
mation for further design of transition metal dichalcogenide
catalysts.
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