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This paper is devoted to the homogenization of the quasilinear theory of the plasma
turbulence described by the Vlasov–Poisson system. It is shown that the homogenization
limit, in the sense of two-scale limit, of the distribution function satisfies the linear Vlasov–
Poisson equations. Moreover, the limit distribution function can be decomposed into the
mean and the fluctuation parts and the mean part (the equilibrium distribution function)
is shown to be the solution of the nonlocal quasilinear velocity-space diffusion equation.
We also investigate the Landau damping from the point of view of homogenization through
the two-scale limit.
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1. Introduction

There are many situations in plasma, at a given instant where electrons are slightly displaced from their equilibrium
positions, that bring about a consequence of the internal electric fields produced by charge separation. Electrons can bounce
repeatedly back and forth as they interact with the self-consistent electric fields, and therefore these fields can be viewed as
highly periodic electric fields. Furthermore, the dynamics itself can cause the so-called quasilinear diffusion motion of the
electrons and the phenomenon of the interaction between particles and electric field. In order to focus on the most essen-
tial features of this theory we consider the homogenization problem of the one-dimensional, uniform, and unmagnetized,
one-species plasma described by the Vlasov–Poisson system

∂t f ε(x, v, t) + ε v · ∂x f ε(x, v, t) − e

m
Eε(x, t)∂v f ε(x, v, t) = 0, (1.1)

ε ∂x Eε(x, t) = −4πeρε(x, t) = −4πe

∫
Rv

f ε(x, v, t)dv, (1.2)

Eε(x, t) = ε ∂xΦ
ε(x, t), (1.3)

where f ε(x, v, t) = f ( x
ε , v, t) is the velocity distribution function of electrons at location x ∈ Ω which is a bounded periodic

domain in the spatial space Rx , traveling with velocity v in velocity space Rv at time t and v2 f ε(x, v, t) → 0 as |v| → ∞;
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e is the electron charge, Eε = E( x
ε , t) is the electric field, Φε is the electrostatic potential, and ρε is the space density. We

also point out that the small parameter ε is the character describing the microscopic behaviors. The ions are also assumed to
be infinitely massive, that is, ion motion will be neglected and the Vlasov–Poisson system (1.1)–(1.3) describes the nonlinear
plasma waves on a uniform ion background [22].

Quasilinear theory is a surprising complete extension to the Landau model of the plasma wave, which shows how
plasma waves can alter the equilibrium velocity distribution. It is assumed that the plasma is weakly unstable, and that the
instability leads to a broad spectrum of waves that modifies the background plasma in a self-consistent way via nonlinear
interaction. For the related theory of plasma, we will refer to [16,17,22]. To proceed, we define the spatial average of the
distribution function f (x, v, t) by

〈 f 〉x(v, t) ≡ 1

L

∫
f (x, v, t)dx (1.4)

where the spatial integration is carried out over the entire length L of the one-dimensional plasma. We note that the
derivations from the equilibrium state that cause the inhomogeneities are very small, so that they may be considered as
first-order quantities. And according to the quasilinear theory of plasma turbulence, a good approximation closed to the
equilibrium, we can write the distribution function f ε(x, v, t) as the sum of a mean (the slow variable) and a fluctuation
part (the fast variable) as follows;

f ε(x, v, t) = f0(v, t) + f ε
1 (x, v, t) (1.5)

where the ensemble averages of the above variables are〈
f ε

〉
x(v, t) = f0(v, t),

〈
f ε
1

〉
x(v, t) = 0,

∣∣ f ε
1

∣∣ 	 f0. (1.6)

Unlike linear theory, in quasilinear theory, one linearizes about a spatial averaged distribution f0(v, t), that is allowed
to vary slowly in time. Substituting (1.5)–(1.6) into Vlasov–Poisson equations (1.1)–(1.2), and separating the fast and slow
variables, we obtain the equation for the fluctuation distribution

∂t f ε
1 (x, v, t) + ε v∂x f ε

1 (x, v, t) − e

m
Eε(x, t)∂v f ε

0 (x, v, t) = 0, (1.7)

and the equation for the evolution of the mean distribution function

∂t f0(v, t) − e

m
Eε(x, t)∂v f ε

1 (x, v, t) = 0. (1.8)

That the second term of Eq. (1.8) depends on ε makes a description that the time derivative of f0 is a very slowly changing
equilibrium. Because the system is assumed to be neutral in the equilibrium and then given by a fluctuation electric field,
for the Landau model, the Poisson equation (1.2) becomes

ε ∂x Eε(x, t) = −4πe

∫
Rv

f ε
1 (x, v, t)dv. (1.9)

Because of the presence of an oscillating electric field Eε(x, t), the homogenization will be treated by the two-scale
limit on spatial variable. Eqs. (1.7), (1.8) and (1.9) constitute a closed set of equations, while Eq. (1.7) is the linear part
of quasilinear theory and Eq. (1.8) is the nonlinear part. The homogenizations of the linear and nonlinear parts are given
respectively by the following two theorems.

Theorem 1.1. Let f ε(x, v,0) = f in(x, v) > 0 be the initial distribution function satisfying that f in(x, v) and v2 f in(x, v) are bounded
in L1 ∩ L∞(Ω × Rv), Φε(x,0) = Φin(x) ∈ H1(Ω) and v2 f ε(x, v, t) → 0 as |v| → ∞ and Ω be a bounded periodic domain in Rx.
The sequence {( f ε, f ε

1 , Eε)}ε of solutions of (1.1), (1.7) and (1.9) converges in the two-scale limit to ( f̄ , f̄1, Ē) solution of the system

∂t f̄ (y, v, t) + v · ∂y f̄ (y, v, t) − e

m
Ē(y, t)∂v f̄ (y, v, t) = 0, (1.10)

∂y Ē(y, t) = −4πe

∫
Rv

f̄1(y, v, t)dv, (1.11)

∂t f̄1(y, v, t) + v · ∂y f̄1(y, v, t) − e

m
Ē(y, t)∂v f0(v, t) = 0. (1.12)

Next, we have the homogenization of the nonlinear part of the quasilinear theory. The time evolution of the average
distribution function f0 is the nonlocal quasilinear diffusion equation and the integration shows the memory (or nonlocal)
effect induced by homogenization.
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Theorem 1.2. Under the same hypothesis of Theorem 1.1, there is subsequence { f ε(x, v, t)}ε , still denoted by { f ε(x, v, t)}ε , of the
solutions of the Vlasov–Poisson system (1.1)–(1.3) such that f ε(x, v, t) converges weakly ∗ in L∞(0, T ; L2(Ω ×Rv )) to the equilibrium
distribution function f0(v, t) solution of the nonlocal quasilinear velocity-space diffusion equation

∂t f0(v, t) − ∂v

( t∫
0

D(v, τ , t)∂v f0(v, τ )dτ

)
= 0, (1.13)

where

D(v, τ , t) = e2

m2

∫
Y

Ē(y, t)Ē
(

y − v(t − τ ), τ
)

dy. (1.14)

Moreover, if D(v, τ , t) is a Dirac δ-function

D(v, τ , t) = D(v, t)δ(t − τ ), (1.15)

then (1.13) becomes the local quasilinear velocity-space diffusion equation

∂t f0(v, t) − ∂v
(

D(v, t)∂v f0(v, t)
) = 0. (1.16)

In particular, if the limit electric field Ē(y, t) has the same amplitude A for every Fourier mode then the diffusion coefficient D is

independent of v and is given by D(v, t) = D(t) = A2 e2

m2 e2ωI t , ωI being the constant imaginary part of the frequency.

From the scientific point of view, not so much is understood about turbulence and thus modeling of turbulence flow
is an important scientific and technological problem [24,27]. Ever since the appearance of quasilinear theory in plasma
turbulence, there have been recurring controversies concerning its validity, theoretically or numerically [17,22]. Among
them, the Vlasov–Poisson equations play a very important role. Indeed, the Vlasov–Poisson equations form the simplest
system of equations which describe the microscopic properties of a plasma. Therefore, this system is the starting point
for any prediction about the microscopic properties of a plasma. Homogenization is a useful concept in understanding
the quasilinear plasma turbulence. Thus the mathematical analysis of the Vlasov–Poisson system and the related kinetic
models have been the subject of research in the last twenty years. For the existence of the solutions of the Vlasov–Poisson
system we refer to [28,29]. The homogenization of the Vlasov–Poisson system with a strong external magnetic field is
studied by Frénod and Sonnendrücker in [9] and various asymptotic limits are discussed by Golse and Saint-Raymont [10].
Similar results concerning the semiconductor Boltzmann–Poisson system are studied in [5,6,19] and the transport equation
is referred to [4,8,11]. For homogenization tackling memory effects the readers are referred to [1,4,14,12,13,15,23–27].

This paper is organized as follows: In Section 2, we recall the useful properties of the two-scale convergence and prove
the basic estimates. These estimates are essential to derive the homogenization limit. In Section 3, we apply the uniform
bounds obtained in Section 2 to prove Theorems 1.1 and 1.2. The final section is devoted to the Landau damping through
the two-scale limit. In particular, the explicit formula is obtained for the normalized Maxwellian initial distribution.

2. Basic a priori estimates

The two-scale convergence was introduced by G. Nguetseng [20] and G. Allaire [2] as an efficient tool to study the
homogenization problem. It is an alternative approach to the energy method of Tartar (see [7] and references therein). In
particular, in applications there are homogenization problems where the solutions do not have classical limit and the weak
limit cannot be viewed as a satisfactory approximation of the solution, the asymptotic behavior of the solution can be
characterized by so-called two-scale limit (see [3,11,18,21] for detail and applications).

We denote by C∞
# (Y ) the space of infinitely differentiable functions in Rx where the subindex x indicates the x-variable

dependency, that are periodic of period Y = [0,1). For p > 1 and an open subset Ω ⊂ R, Lp(Ω; C∞
# (Y )) is the space of

measurable functions v(x, y) on Ω × Y such that for almost all x the function y → v(x, y) belongs to C∞
# (Y ) with∫

Ω

(
sup

Y

∣∣v(x, y)
∣∣)p

dx < ∞.

A bounded sequence {uε}ε of Lp(Ω) is said (weakly) two-scale converge to u(x, y) ∈ Lp(Ω × Y ) if and only if

lim
ε→0

∫
Ω

uε(x)ψ

(
x,

x

ε

)
dx =

∫
Ω

∫
Y

u(x, y)ψ(x, y)dy dx (2.1)

for any function ψ(x, y) ∈ D(Ω; C∞
# (Y )) that is Y -periodic with respect to the second argument. This definition is justified

by the following compactness theorem.
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Theorem 2.1. Let ψ(x, x/ε) be measurable in Ω and ψ(x, y) ∈ Lp(Ω; C∞
# (Y )), 1 < p < ∞, then for ε > 0 we have

∥∥∥∥ψ

(
x,

x

ε

)∥∥∥∥
L p(Ω)

�
∥∥ψ(x, y)

∥∥
L p(Ω;C∞

# (Y ))
≡

[∫
Ω

sup
y∈Y

∣∣ψ(x, y)
∣∣p

dx

] 1
p

. (2.2)

Moreover, if ψ(x, y) ∈ Lp(Ω; C∞
# (Y )) then

lim
ε→0

∫
Ω

ψ p
(

x,
x

ε

)
dx =

∫
Ω

∫
Y

ψ p(x, y)dy dx (2.3)

and ψ(x, x
ε ) two-scale converges to ψ(x, y).

The proof is similar to the L2 case as given by Allaire in [2] with modification (see also [3,11]). Therefore, the proof is
omitted. We now focus our attention to derive the a priori estimates that are available for the Vlasov equation. First of all,
we notice that its solution f ε(x, v, t) satisfies the following estimate.

Lemma 2.1. Under assumptions (1.1)–(1.4), there exists a constant C independent of ε such that the solution f ε of the Vlasov–Poisson
system satisfies∥∥ f ε

∥∥
L∞(0,T ;L2(Ω×Rv ))

� C . (2.4)

Proof. Multiplying the Vlasov equation (1.1) by f ε and integrating over Ω ×Rv we obtain the following equality

1

2

∫ ∫
Ω×Rv

∂t
(

f ε(x, v, t)
)2

dx dv + ε v
1

2

∫ ∫
Ω×Rv

∂x
(

f ε(x, v, t)
)2

dx dv

− 1

2

e

m

∫ ∫
Ω×Rv

E

(
x

ε
, t

)
∂v

(
f ε(x, v, t)

)2
dx dv = 0. (2.5)

The second and third integrals vanish after integration by part. Hence, we get

d

dt

∫
Ω×Rv

(
f ε(x, v, t)

)2
dx dv = 0. (2.6)

The L2 norm of f ε is conserved and (2.4) follows immediately because f in ∈ L2(Ω ×Rv). This completes the proof. �
We deduce from Lemma 2.1 that there exists f ∈ L∞(0, T ; L2(Ω ×Rv)) such that, up to subsequence,

f ε ⇀ f in L∞(
0, T ; L2(Ω ×Rv)

)
weak-∗. (2.7)

The homogenization of the Vlasov–Poisson equation relies on the macroscopic averages such as the density and current.
Integrating Eq. (1.1) over Rv , we get

∂t

∫
Rv

f ε(x, v, t)dv + ε ∂x

∫
Rv

v f ε(x, v, t)dv −
∫
Rv

e

m
Eε(x, t)∂v f ε(v, t)dv = 0. (2.8)

Then integrating by parts, we derive the charge continuity equation

∂tρ
ε(x, t) + ε ∂x J ε(x, t) = 0, (2.9)

where ρε is the macroscopic density

ρε(x, t) = ρ0(t) + ρε
1 (x, t)

=
∫
Rv

f0(v, t)dv +
∫
Rv

f ε
1 (x, v, t)dv. (2.10)

We note that ρε
1 (x, t) = − ε

4πe ∂x Eε(x, t) and J ε is the macroscopic current density

J ε(x, t) = J0(t) + J ε1(x, t)

=
∫

v f0(v, t)dv +
∫

v f ε
1 (x, v, t)dv. (2.11)
Rv Rv
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Integrating Eq. (1.8) over Rv we derive ρ0 is independent on t and Eq. (2.11) means the current J0 is independent on x.
We can further rewrite charge continuity equation (2.9) as

∂tρ
ε
1 (x, t) + ε ∂x J ε1(x, t) = 0. (2.12)

Employing (2.12) and integrating by part we obtain∫
Ω

J ε1(x, t)Eε(x, t)dx = ε

∫
Ω

J ε1(x, t)∂xΦ
ε(x, t)dx

= −ε

∫
Ω

∂x J ε1(x, t)Φε(x, t)dx

=
∫
Ω

∂tρ
ε
1 (x, t)Φε(x, t)dx. (2.13)

Thus, by Poisson equation (1.9) and integrating by part we have∫
Ω

∂tρ
ε
1 (x, t)Φε(x, t)dx = ε2

4πe

∫
Ω

(
∂t∂xΦ

ε(x, t)
)
∂xΦ

ε(x, t)dx

= ε2

8πe
∂t

∫
Ω

(
∂xΦ

ε(x, t)
)2

dx. (2.14)

Moreover, we multiply the Vlasov equation (1.1) by v2 and integrate over Rv × Ω to obtain

∂t

∫ ∫
Rv×Ω

v2 f ε(x, t)dv dx − e

m

∫ ∫
Rv×Ω

Eε(x, t)v2∂v f ε(x, v, t)dv dx = 0, (2.15)

then after integration by parts, (2.15) becomes

∂t

∫ ∫
Rv×Ω

v2 f ε(x, t)dv dx + 2
e

m

∫ ∫
Rv×Ω

Eε(x, t)v f ε(x, v, t)dv dx = 0. (2.16)

Since f ε = f0 + f ε
1 , we can rewrite (2.16) as

∂t

∫ ∫
Rv×Ω

v2 f ε(x, t)dv dx + 2
e

m

∫ ∫
Rv×Ω

v Eε(x, t) f0(v, t)dv dx

+ 2
e

m

∫ ∫
Rv×Ω

v Eε(x, t) f ε
1 (x, v, t)dv dx = 0. (2.17)

Because of the mean zero of the electric field Eε , the second term of (2.17) vanishes and it becomes

∂t

∫ ∫
Rv×Ω

v2 f ε(x, t)dv dx + 2
e

m

∫
Ω

Eε(x, t) J ε1(x, t)dx = 0. (2.18)

Using relation (2.13), Eq. (2.18) can be further rewritten as

∂t

∫ ∫
Rv×Ω

v2 f ε(x, t)dv dx + 2
e

m

∫
Ω

∂tρ
ε
1 (x, t)Φε(x, t)dx = 0. (2.19)

Also by means of Eq. (2.14), we get

∂t

∫ ∫
Rv×Ω

v2 f ε(x, t)dv dx + 1

4πm

∫
Ω

∂t
(
ε∂xΦ

ε(x, t)
)2

dx = 0, (2.20)

or

d

dt

( ∫ ∫
Rv×Ω

v2 f ε(x, v, t)dv dx + 1

4πm

∫
Ω

(
Eε(x, t)

)2
dx

)
= 0. (2.21)

Thus we have proven the following lemma.
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Lemma 2.2. Let v2 f in be bounded in L1(Ω ×Rv) and εΦin bounded in H1(Ω), i.e., Eε
in bounded in L2(Ω). Then there is a constant

C such that∥∥v2 f ε
∥∥

L∞(0,T ;L1(Ω×Rv ))
+ ‖Eε‖L∞(0,T ;L2(Ω)) � C . (2.22)

We also note that∫ ∫
Rv×Ω

v2 f ε(x, t)dv dx =
∫ ∫
Rv×Ω

v2( f0(v, t) + f ε
1 (x, v, t)

)
dv dx

=
∫ ∫
Rv×Ω

v2 f0(v, t)dv dx. (2.23)

This implies that v2 f0 is bounded in L∞(0, T ; L1(Ω × Rv)), hence v2 f ε
1 is bounded in L∞(0, T ; L1(Ω × Rv)). Employing

the conservation laws of mass and energy, we deduce that the current

J ε1(x, t) =
∫
Rv

v f ε
1 (x, v, t)dv

is bounded in L∞(0, T ; L1(Ω)). Indeed, we have

∫
Ω

∣∣ J ε1(t)
∣∣dx �

( ∫ ∫
Rv×Ω

∣∣v2 f ε
1

∣∣dv dx

)1/2( ∫ ∫
Rv×Ω

∣∣ f ε
1

∣∣dv dx

)1/2

� C .

Lemma 2.3. Let v f ε
1 (x, v, t) ∈ L∞(0, T ; L1(Ω ×Rv)). Then

ε ∂x Eε(x, t) = −4πeρε
1 (x, t) = −4πe

∫
Rv

f ε
1 (x, v, t)dv

is bounded in L∞(0, T ; L2(Ω)).

Proof. Let R > 0, then by Cauchy–Schwarz inequality we have

∣∣ρε
1 (x, t)

∣∣ =
∫

|v|�R

∣∣ f ε
1 (x, v, t)

∣∣dv +
∫

|v|>R

∣∣ f ε
1 (x, v, t)

∣∣dv

� 2R
∥∥ f ε

1 (x, v, t)
∥∥

L∞(Ω×Rv )
+ 1

R

∫
Rv

∣∣v f ε
1 (x, v, t)

∣∣dv.

Choosing R such that

2R
∥∥ f ε

1 (x, v, t)
∥∥

L∞(Ω×Rv )
= 1

R

∫
Rv

∣∣v f ε
1 (x, v, t)

∣∣dv

we obtain the inequality

∣∣ρε
1 (x, t)

∣∣ � C

( ∫
Rv

∣∣v f ε
1 (x, v, t)

∣∣dv

) 1
2

,

for some constant C depending on ‖ f ε
1 (x, v, t)‖L∞(Ω×Rv ) . Therefore, we derive the estimate∫

Ω

∣∣ρε
1 (x, t)

∣∣2
dx � C

( ∫
Rv×Ω

∣∣v f ε
1 (x, v, t)

∣∣dv dx

)
.

This completes the proof. �
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3. Proofs of Theorems 1.1 and 1.2

This section is devoted to the proofs of Theorems 1.1 and 1.2. The basic ideas follow from the following compactness
theorems of two-scale convergence. The proofs and further descriptions are referred to [2,7,20].

Theorem 3.1. For each bounded sequence {uε}ε in Lp(Ω), 1 < p � ∞, there exists a subsequence still denoted by {uε}ε which
two-scale converges to u(x, y) ∈ Lp(Ω × Y ).

Theorem 3.2. Let uε and ε∇uε be two bounded sequences in L2(Ω) and (L2(Ω))3 . Then, there exists a function u(x, y) in
L2(Ω; H1

#(Y )) such that, up to a subsequence, uε and ε∇uε two-scale converge to u(x, y) and to ∇yu(x, y), respectively.

We remark that Theorem 3.1 shows the well-definiteness for the two-scale convergence, and which further generalizes
the notion of weak convergence. Theorem 3.2 gives the properties of the derivatives, which points out that the functions can
be decomposed into the divergent free part and the gradient part with divergent free part zero. From Lemmas 2.1 and 2.2
we have the two-scale limiting of the Vlasov equation, and combining Lemma 2.3 with Theorem 3.2 we will obtain the
two-scale limiting of the Poisson equation. The detail is given as follows.

Proof of Theorem 1.1. We look at the weak formulation of Vlasov–Poisson equations. Multiplying the Vlasov equation (1.1)
by the admissible function ψε(x, x

ε , v, t) = ψ(x, y, v, t) with compact support in (x, v, t) and periodic in y = x
ε then we

have ∫
O

∂t f ε(x, v, t)ψ

(
x,

x

ε
, t, v

)
dx dt dv

+
∫
O

ε v · ∂x f ε(x, v, t)ψ

(
x,

x

ε
, t, v

)
dx dt dv

− e

m

∫
O

E

(
x

ε
, t

)
∂v f ε(x, v, t)ψ

(
x,

x

ε
, t, v

)
dx dt dv = 0, (3.1)

where O = Ω × (0, T ) ×Rv . After integrating by parts, Eq. (3.1) can be rewritten as

−
∫
O

f ε(x, v, t)∂tψ

(
x,

x

ε
, t, v

)
dx dt dv

−
∫
O

ε v · f ε(x, v, t)∂xψ

(
x,

x

ε
, t, v

)
dx dt dv

−
∫
O

v · f ε(x, v, t)∂yψ

(
x,

x

ε
, t, v

)
dx dt dv

+ e

m

∫
O

E

(
x

ε
, t

)
f ε(x, v, t)∂vψ

(
x,

x

ε
, t, v

)
dx dt dv = 0, (3.2)

or

−
∫
O

f

(
x

ε
, t, v

)
∂tψ

(
x,

x

ε
, t, v

)
dx dt dv

−
∫
O

ε v · f

(
x

ε
, t, v

)
∂xψ

(
x,

x

ε
, t, v

)
dx dt dv

−
∫
O

v · f

(
x

ε
, t, v

)
∂yψ

(
x,

x

ε
, t, v

)
dx dt dv

+ e

m

∫
E

(
x

ε
, t

)
f

(
x

ε
, t, v

)
∂vψ

(
x,

x

ε
, t, v

)
dx dt dv = 0. (3.3)
O
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Passing to the two-scale limit in Eq. (3.3), yields

−
∫
O

∫
Y

f̄ (y, v, t)∂tψ(x, y, t, v)dy dx dt dv

−
∫
O

∫
Y

v · f̄ (y, v, t)∂yψ(x, y, t, v)dy dx dt dv

+ e

m

∫
O

∫
Y

Ē(y, t) f̄ (y, v, t)∂vψ(x, y, t, v)dy dx dt dv = 0. (3.4)

Again integrating by parts again, we can rewrite Eq. (3.4) as∫
O

∫
Y

∂t f̄ (y, v, t)ψ(x, y, t, v)dy dx dt dv

+
∫
O

∫
Y

v · ∂y f̄ (y, v, t)ψ(x, y, t, v)dy dx dt dv

− e

m

∫
O

∫
Y

Ē(y, t)∂v f̄ (y, v, t)ψ(x, y, t, v)dy dx dt dv = 0. (3.5)

Therefore, we have the two-scale limit equation

∂t f̄ (y, v, t) + v · ∂y f̄ (y, v, t) − e

m
Ē(y, t)∂v f̄ (y, v, t) = 0. (3.6)

Similarly, the two-scale limiting of Eq. (1.7) takes the form

∂t f̄1(y, v, t) + v · ∂y f̄1(y, v, t) − e

m
Ē(y, t)∂v f0(v, t) = 0. (3.7)

Note that the two-scale limit of the density function f ε is of the form

f ε(x, v, t) = f0(v, t) + f ε
1 (x, v, t) ⇀ f0(v, t) + f̄1(y, v, t), (3.8)

and the two-scale limiting of the Poisson equation (1.9) is

∂y Ē(y, t) = −4πe

∫
Rv

f̄1(y, v, t)dv. (3.9)

This completes the proof of Theorem 1.1. �
Proof of Theorem 1.2. The proof will be divided into two steps.

Step 1: Combining Eqs. (3.6)–(3.7) we have

∂t f0(v, t) − e

m
Ē(y, t)∂v f̄1(y, v, t) = 0. (3.10)

Note that f0 changes because of the product of E and f̄1 which is a second-order quantity. We need to eliminated the
y-variable. In fact, the quasilinear diffusion equation describing the time evolution of the average distribution, is obtained
by integrating Eq. (3.10) over Y . Since |Y | = 1 we have

∂t f0(v, t) − e

m

∫
Y

Ē(y, t)∂v f̄1(y, v, t)dy = 0. (3.11)

Note that integrating Eq. (3.7) along the characteristic, we obtain the explicit form of f̄1(y, v, t):

f̄1(y, v, t) = e

m

t∫
Ē
(

y − v(t − τ ), τ
)
∂v f0(v, τ )dτ . (3.12)
0
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Using this representation of f̄1, Eq. (3.11) can be expressed as

∂t f0(v, t) −
∫
Y

e

m
Ē(y, t)∂v

[
e

m

t∫
0

Ē
(

y − v(t − τ ), τ
)
∂v f0(v, τ )dτ

]
dy = 0. (3.13)

Let

D(v, τ , t) ≡ e2

m2

∫
Y

Ē(y, t)Ē
(

y − v(t − τ ), τ
)

dy, (3.14)

then Eq. (3.13) is the (nonlocal) quasilinear velocity-space diffusion equation

∂t f0(v, t) − ∂v

( t∫
0

D(v, τ , t)∂v f0(v, τ )dτ

)
= 0. (3.15)

Step 2: Assume the limit electric field Ē(y, t) has the same amplitude A for every Fourier mode

Ē(y, t) =
∑

k

Ae−2π iω(k)t+2π iyk, ω(k) = ωR(k) + iωI (k)

where Ē and ω satisfy the parity conditions

Ē(k) = Ē∗(−k), ω(k) = −ω∗(−k).

Here ∗ denotes the complex conjugate. The real part of ω is an odd function of k and the imaginary part is an even function
of k, and the following identity holds

tω(k) + τω(−k) = tω(k) − τω∗(k) = (t − τ )ωR(k) + i(t + τ )ωI (k).

Then invoking the representation of the Dirac δ-function∫
Y

e2π iy(k+k̄) dy = δ(k + k̄) and
∑

k

e−2π ik(x−y) = δ(x − y)

and after some computations we obtain∫
Y

Ē(y, t)Ē(y − vt + vτ , τ )dy

= A2
∑

k

∑
k̄

e−2π i(ω(k)t+ω(k̄)τ )e−2π i(t−τ )vk̄
(∫

Y

e2π iy(k+k̄) dy

)

= A2
∑

k

∑
k̄

e−2π i(ω(k)t+ω(k̄)τ )e−2π i(t−τ )vk̄δ(k + k̄)

= A2
∑

k

e−2π i(ω(k)t+ω(−k)τ )e2π i(t−τ )vk

= A2
∑

k

e−2π i(t−τ )ωR (k)+2π(t+τ )ωI (k)e2π i(t−τ )vk

= A2e2π(t+τ )ωI
∑

k

e−2π i(t−τ )ωR (k)e2π i(t−τ )vk

= A2e4πωI tδ(t − τ ).

Note that we use the assumption that the frequency of the complex part of ω is constant, that is ωI (k) = ωI . Thus∫
Y

e2

m2
Ē(y, t)Ē(y − vt + vτ , τ )dy = A2 e2

m2
e4πωI tδ(t − τ ).

Hence

D(v, τ , t) = e2

m2

∫
Ē(y, t)Ē(y − vt + vτ , τ )dy = D(t)δ(t − τ )
Y
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where the quasilinear diffusion coefficient is D(t) = A2 e2

m2 e4πωI t . Thus we have the diffusion equation

∂t f0(v, t) − D(t)∂2
v f0(v, t) = 0.

This completes the proof of Theorem 1.2. �
4. Langmuir dispersion relation and Landau damping

In this section we investigate the Landau damping from the point of view of homogenization through the two-scale limit.
First we expand the fluctuations Ē and f̄1 in terms of Fourier series

Ē(y, t) =
∑

k

Ê(k, t)e2π iky, f̄1(y, v, t) =
∑

k

f̂1(k, v, t)e2π iky (4.1)

where Ê(k, t) and f̂1(k, v, t) are the Fourier coefficients of Ē(y, t) and f̄1(y, v, t) with respect to the y-variable respectively.
To determine the time dependence of Ê(k, t) and f̂1(k, v, t) we assume{

Ê(k, t) = Ê(k)e−2π iW (k,t)t,

f̂1(k, v, t) = f̂1(k, v)e−2π iW (k,t)t
(4.2)

where W (k, t) is a time-dependent complex frequency. Thus the real electric field Ē(y, t) and the perturbed distribution
function f̄1(y, v, t) can be represented respectively as

Ē(y, t) =
∑

k

Ê(k)e−2π iW (k,t)t+2π iky, (4.3)

f̄1(y, v, t) =
∑

k

f̂1(k, v)e−2π iW (k,t)t+2π iky . (4.4)

Employing the above transforms and assuming a normal mode dependence ∼ exp(2π iky −2π iW (k, t)t), the two-scale limit
equation (3.7) can be converted into

−2π iW (k, t) f̂1(k, v) + 2π ikv f̂1(k, v) − e

m
Ê(k)∂v f0(v, t) = 0, (4.5)

or

f̂1(k, v) = e

2πm
· Ê(k)∂v f0(v, t)

−iW (k, t) + ikv
. (4.6)

Similarly the two-scale limit Poisson equation (3.9) becomes

2π ikÊ(k) = −4πe

∫
Rv

f̂1(k, v)dv = −4πe2

2πm

∫
Rv

Ê(k)∂v f0(v, t)

−iW (k, t) + ikv
dv, (4.7)

and the following dispersion relation holds

1 = − e2

πmk

∫
Rv

∂v f0(v, t)

W (k, t) − kv
dv. (4.8)

Notice that, for high frequency electron plasma wave, the massive ions don’t have time to respond to them, so we ignore
the ion contribution; that is, the equilibrium function f0(v, t) can be viewed of the electron density, these waves are the
so-called Langmuir waves.

Now we return to Eq. (4.8) which has a singularity at v = W /k. To calculate this integral we need the Plemelj formula

lim
τ→0

∞∫
−∞

φ(t)

t − t0 − iτ
dt = P

∞∫
−∞

φ(t)

t − t0
dt + π iφ(t0), (4.9)

where P denotes the principal value, t0 is a point on the real axis and φ(t) is a continuous function of t . Applying the
Plemelj formula (4.9) to (4.8) we have the dispersion relation

1 = ω2
e

k2

(
P

∫
∂v f0(v, t)

v − W
k

dv + π i∂v f0

(
W

k
, t

))
, (4.10)
Rv
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where ω2
e = e2

πm . For large wavelength, i.e., k is small; we expand the denominator in powers of kv
W to obtain the approxi-

mation

1 = ω2
e

k2

[
− k

W

∫
Rv

∂v f0(v, t)

(
1 + kv

W
+ k2 v2

W 2

)
dv + π i∂v f0

(
W

k
, t

)]
. (4.11)

When the diffusion is independent of velocity v , D = D(t), the equilibrium distribution function f0 of the velocity-space
equation (1.16) is given by

f0(v, t) = 1√
4πb(t)

∫
R

e
−|v−ξ |2

4b(t) f in(ξ)dξ, (4.12)

where b(t) = ∫ t
0 D(s)ds. Moreover, we can compute f0 explicitly for Gaussian initial data f in(v) = 1√

2π
e−v2

, i.e., the normal-

ized Maxwellian with zero mean velocity. Indeed, using the facts∫
Rv

f0(v, t)dv = 1,

∫
Rv

v f0(v, t)dv = 0,

∫
Rv

v2 f0(v, t)dv = 2b(t) + 1, (4.13)

Eq. (4.11) becomes, after integration by parts and using (4.13),

1 = ω2
e

W 2
+ π i

ω2
e

k2
∂v f0

(
W

k
, t

)
. (4.14)

We will discuss (4.14) separately. First, if limv→ W
k

∂v f0(v, t) = 0, then W 2 = ω2
e . We have the real-valued dispersion

relation W and W ∼ ωe , the cold plasma approximation, then integration by part of the right-hand side of (4.8) yields

1 = e2

πm

∫
Rv

f0(v, t)

(W (k, t) − kv)2
dv. (4.15)

Expanding the denominator of the integrand up to and including second-order terms in vk
W , Eq. (4.15) leads to the approxi-

mation

1 = e2

πmW 2(k, t)

∫
Rv

f0(v, t)

(
1 + 2kv

W (k, t)
+ 3k2 v2

W 2(k, t)

)
dv. (4.16)

Employing the integral relations (4.13) for Maxwellian we obtain the dispersion relation

W 2(k, t) − ω2
e − ω2

e

W 2(k, t)
3k2(2b(t) + 1

) = 0. (4.17)

Using the approximation W 2 ∼ ω2
e , we derived the so-called Langmuir wave dispersion relation;

W 2(k, t) = ω2
e + 3k2(2b(t) + 1

)
. (4.18)

Second, ∂v f0(
W
k , t) �= 0, i.e., W is complex-valued from (4.14). Using the exact solution of f0 given by (4.12), we deduce

from (4.14)

1 = ω2
e

W 2
− iα

ω2
e W

k3
πe− ( W

k )2

2(1+2b(t)) , α = 1√
2π(1 + 2b(t))

3
2

. (4.19)

For convenience, we write (4.19) as

0 = Dr(W ) + iDi(W ) ≡
(

1 − ω2
e

W 2

)
+ i

ω2
e W πα

k3
e
− W 2

2k2(1+2b(t)) . (4.20)

For convenience we write W = ωe − iγ . Then, up to a first approximation of (4.20), equating the coefficients of the imaginary
i from the both sides we obtain

γ = Di(ωe)

(
dDr(ωe)

dW

)−1

= παω4
e

2k3
e
− ω2

e
2k2(1+2b(t)) . (4.21)

Because of γ > 0, the distribution function is ∼ exp (iky − iωet − γ t) and is damped in time. This is the well-known Landau
damping. The distribution function is monotonically decreasing so as to cause Landau damping of the waves.
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