2013 7th International Conference on Software Security and Reliability

An Empirical Study on Data Retrievability in
Decentralized Erasure Code Based Distributed
Storage Systems

Hsiao-Ying Lin, Li-Ping Tung, Bao-Shuh P. Lin
Intelligent Information and Communications Research Center
National Chiao Tung University
hsiaoying.lin@gmail.com, Iptung@nctu.edu.tw, bplin@mail.nctu.edu.tw

Abstract—Erasure codes are applied in distributed storage
systems to provide data robustness against server failures by
storing data redundancy among many storage servers. A (n,k)
erasure code encodes a data object, which is represented as
k elements, into a codeword of n elements such that any %
out of these n codeword elements can recover the data object
back. Decentralized erasure codes are proposed for distributed
storage systems without a central authority. The characteristic of
decentralization makes resulting storage systems more scalable
and suitable for loosely-organized networking environments.
However, different from conventional erasure codes, decentral-
ized erasure codes trade some probability of a successful data
retrieval for decentralization. Although theoretical lower bounds
on the probability are overwhelming from a theoretical aspect,
it is essential to know what the data retrievability is in real
applications from a practical aspect. We focus on decentralized
erasure code based storage systems and investigate data retriev-
ability from both theoretical and practical aspects. We conduct
simulation for random processes of storage systems to evaluate
data retrievability. Then we compare simulation results and
analytical values from theoretical bounds. By our comparison, we
find that data retrievability is underestimated by those bounds.
Data retrievability is over 99% in most cases in our simulations,
where the order of the used finite field is an 8-bit prime. Data
retrievability can be enlarged by using a larger finite field. We
believe that data retrievability of decentralized erasure code based
storage systems is acceptable for real applications.

Keywords—erasure codes; code based distributed storage sys-
tems; fault tolerance; data retrievability

I. INTRODUCTION

To provide data robustness against server failures, many
coding techniques are applied on distributed storage systems.
Erasure codes provide data robustness by storing data redun-
dancy among many storage servers. A (n,k) erasure code
encodes a data object, which is decomposed as k elements,
into a codeword of n elements such that any k& out of these n
codeword elements can recover the data object back. When a
storage server stores a codeword element, the storage system
consisting of n storage servers tolerates (n — k) failed storage
servers.

The concept of network coding is also applied in distributed
networked storage systems [1], [2], [3], where each storage
server can encode received data and then store encoded data.
A data collector can recover the original data object back by
accessing k storage servers. The distributed storage system is
modeled as the information flow graph as shown in Fig. 1.

978-0-7695-5021-3/13 $26.00 © 2013 IEEE
DOI 10.1109/SERE.2013.27

30

Data storing Data retrieval

Storage server

Data source

o
O
;

Storage server

Data collector

Storage server

Fig. 1. The information flow graph of a distributed storage system.

A node models an element of a data object, a receiver or
sender interfaces of a storage server, or a data collector. An
edge from an element to a storage server models data storing.
An internal edge in a storage server models the storage cost
of the server. An edge from a server to the data collector
models data retrieval. A successful data retrieval is possible
if the flow of the min-cut is at least the size of the data
object. These codes are sophisticatedly designed such that
any possible data collector can successfully retrieve the data
object. Data retrievability is evaluated as the probability of a
successful data retrieval over all possible data collectors.

For storage systems without a central authority, decen-
tralized erasure codes are proposed. The characteristic of
decentralization makes resulting storage systems more scalable
and suitable for loosely-organized networking environments.
However, different from conventional erasure codes, decen-
tralized erasure codes trade some data retrievability for decen-
tralization. That is, few subsets of k£ storage servers cannot
recover the original data object.

In light of the beauty of decentralization, secure decentral-
ized erasure codes are proposed by integrating decentralized
erasure codes and data encryption schemes to simultaneously
address data robustness and confidentiality in storage sys-
tems [4], [5]. A new role of key servers is added into the
proposed storage system to provide key management services.
The newly proposed system model is called secure system
model in this paper. In this secure storage system, data
retrievability is at least 1 — k/p — e(k), where p is the order
of a finite field and €(k) = o(1) approaches 0 as k gets larger.

A specific distributed repair mechanism is designed for de-

IEEE
computer
psouety

centralized erasure code based storage systems to maintain data
redundancy [6]. When the storage system with failed storage
servers still has data retrievability at least 1 — k/p — e(k), the
distributed repair mechanism repairs all failed storage servers
such that the repaired storage system has no failed storage
server and data retrievability at least 1 — 2k/p — e =% — €(k).

Previous studies analyze and lower bound the probability of
a successful data retrieval taken over all possible k-subsets of
n storage servers. Although these bounds are overwhelming
from a theoretical aspect, it is essential to know what data
retrievability is in real applications from a practical aspect.
Our work is the first attempt to evaluate data retrievability
of decentralized erasure code based storage systems in real
applications and investigate the gap between analytical values
and simulation results.

We focus on the family of decentralized erasure code
based storage systems in two different system models with the
distributed repair mechanism. The two system models have
common bounds on data retrievability but differ in the way
of data retrieval. The first system model has a single data
collector, who directly queries storage servers to recover the
data object. The second one has distributed key servers, who
independently query storage servers, and a data collector, who
collects data from key servers to recover the data object back.
We would go into details about these two system models in
Section III.

Our main goal is to know how data retrievability would be
in real applications and investigate the gap between analytical
values and simulation results. Specifically, we are interested in
the following issues:

- For a storage system in an initial state (i.e., without
corruption), we wants to know what data retrievability
is. We also investigate the gap between simulation
results and the theoretical bound 1 — k/p — (k).

- For the distributed repair mechanism, we want to
know under what conditions a storage system can keep
satisfying the assumption on data retrievability (i.e.
at least 1 — k/p — e(k)). The results would provide
a reference for a system manager to decide when to
execute the repair mechanism.

- We are also interested in under what conditions a
repaired storage system can satisfy the theoretical
bound 1 — 2k/p — e F — €(k).

- By comparing the previous two results, we can ob-
server that whether the assumption and the bound on
data retrievability are tight.

We derive analytical values from theoretical bounds and
evaluate the probability of a successful data retrieval by Monte-
Carlo simulations with 10,000 trials. We simulate random
processes of data storing, storage server failures, data retrieval,
and the distributed repair mechanism. The probability of a
successful data retrieval is evaluated in three system states: the
initial state, the state with failure and the repaired state. We
also compare simulation results with analytical values derived
from theoretical bounds.

By our results, we make the following observations.

31

- Simulation results show that data retrievability is much
underestimated by theoretical bounds for both initial
systems and repaired systems. For initial systems, in
most cases of parameter settings in our study, data
retrievability is over 99%. For repaired systems, when
the fraction of failed storage servers is less than 30%,
data retrievability is over 95%.

- When the fraction of surviving storage servers keeps
over some threshold, the assumption on data retriev-
ability of the distributed repair mechanism holds.
Among all cases in our study, the highest threshold is
76%. Our results characterize conditions for executing
the distributed repair mechanism.

- When a storage system satisfies the assumption, the
repaired storage system has a better data retrievability
than the theoretical bound. In other words, the assump-
tion is overestimated on required data retrievability.

Our study explores data retrievability of decentralized
erasure code based storage systems in the initial state, the
state with failure, and the repaired state. Our simulations are
operated in a finite field of a 8-bit prime order. By simula-
tion results, the probability of a successful data retrieval is
underestimated by theoretical bounds. By using a larger finite
field, data retrievability will be higher. We believe that data
retrievability is acceptable for most real applications which
usually use a large finite field. Our results are positive evi-
dences showing that decentralized erasure code based storage
systems are practical in terms of data retrievability.

The rest of this paper is organized as follows. We briefly
review code based storage systems and repair mechanisms in
Section II. Decentralized erasure code based storage systems
with the distributed repair mechanism are introduced in Sec-
tion III. Simulations and results are presented in Section IV.
The conclusion are drawn in Section V.

II. RELATED WORK

We briefly review code based distributed storage systems
and repair mechanisms.

Code based distributed storage systems store encoded data
over many storage servers to provide data robustness against
server failures. As we mention in Section I, these codes are
designed such that in a storage system of n storage servers,
any k out of n storage servers can recover the data object. A
(n, k) linear code is an example.

The concept of network coding is also applied in distributed
storage systems [1], [2], [3]. Each storage server not only
receives data but also performs computation on received data
and stores the results. In this approach, a storage system is
modeled as an information flow graph. It has been proved that
when the flow of the min-cut in the graph is at least the size
of the data object, a code exists for the storage system. Hence,
the probability of a successful data retrieval is 100%.

Dimakis et el. [7] propose decentralized erasure code based
distributed storage systems. The probability of a successful
data retrieval is taken over all possible k-subsets of n storage
servers. By theoretical studies, the probability is lower bounded
by 1 — k/p — o(1) under certain system settings, where p is

the order of the operated finite field and o(1) approaches 0
as k gets larger. Later, Lin and Tzeng [4], [5] propose secure
decentralized erasure code based distributed storage systems.
They present a new system model, which consists of storage
servers and key servers, and integrate decentralized erasure
codes and data encryption schemes to address data robustness,
data confidentiality and secure data forwarding. They provide
a theoretical bound on data retrievability under various system
parameter settings.

Repair mechanisms are means of data redundancy main-
tenance. When storage servers fail over time, new storage
servers are added into the storage system to replace failed
ones. Surviving storage servers are then called old or available
storage servers. Repair mechanisms define how new storage
servers collect data from old storage servers such that after
data collection, any k& of n storage servers, no matter new or
old, can recover the original data object.

Regenerating codes are proposed with objectives to mini-
mizing repair bandwidth, the amount of transmitted bits for
repairing, storage cost, and the amount of stored data per
storage server [1]. The tradeoff between repair bandwidth and
storage cost is characterized as a curve. One of important
results of regenerating codes is that by collecting data from
n — 1 old storage servers, a new storage server utilizes
minimum bandwidth for repairing a failed storage server. More
constructions and discussions of regenerating codes can be
found in [8], [9], [10], [11], [12], [13]. These methods repair
storage systems from single-server failure.

Later, many repair mechanisms against multiple-server fail-
ures are proposed [14], [15], [16], [17], [18], [19], [20], [6]. Hu
et al. propose a mutually cooperative recovery mechanism [15],
where new storage servers not only communicate with old
storage servers but also communicate with each other to
recover the storage system. Therefore, a new storage server
has to query n — 1 storage servers. Wang et al. propose a
multi-loss flexible recovery mechanism [14], where a new
storage server queries a different number of old storage servers
and the objective is to optimize the overall bandwidth for
repairing all failed storage servers. Kenneth propose coopera-
tive regenerating codes [16], where a new storage server gets
different amount of data from a new storage server and an old
storage server. The tradeoff between storage cost and repair
bandwidth is also given. Above mechanisms [14], [15], [16],
[18], [19], [20] are analyzed by using the min-cut bound of
the information flow graph.

Oggier and Datta [17] propose self-repairing homomorphic
codes, where each new storage server queries a specific set of
old storage servers to regenerate a specific codeword element.
A central table is needed for storing the mapping from code-
word elements to their specific subsets of old storage servers.
Hence, this method is not suitable for decentralized erasure
code based storage systems.

Lin et al. propose a distributed repair mechanism for de-
centralized erasure code based distributed storage systems [6].
The repair mechanism repairs multiple failed storage servers at
the same time and minimizes the number of old storage servers
a new one has to query while keeping the probability of a suc-
cessful data retrieval overwhelming. Consider a storage system
contains multiple failed storage servers. The assumption on the

32

Data Object

Codeword

OEE@OO-0O®

Ci=a M +a M,+..+a M,

[Cl G, Cn]z[Ml M, Mk]'G
Ay Gy e Gy,
G — a|.2 a2.2 an.Z
[A,k

Fig. 2. The encoding processes of decentralized erasure codes.

system is that data retrievability is at least 1 — k/p — €(k),
where €(k) o(1). After being repaired, the system has
the same number of storage servers without failures and data
retrievability is lower bounded by 1 — 2k/p — e™* — ¢(k).

Data retrievability in above mentioned studies is all the-
oretically analyzed. To our best knowledge, our work is the
first attempt to investigate the probability of a successful data
retrieval by Monte-Carlo simulations.

III. BACKGROUND

We briefly introduce decentralized erasure code based
storage systems and their two different system models. Then
we review the distributed repair mechanism for these systems.
Theoretical bounds on data retrievability under certain param-
eter settings are presented for initial systems and repaired
systems, respectively.

A. Decentralized Erasure Code Based Storage Systems

We consider two system models. They have the same
encoding process and differ in the way of data retrieval. To
better distinguish them, we call the first one as basic system
model. The second one is called secure system model since it is
proposed for a storage system supporting data confidentiality.

The encoding process of decentralized erasure codes is
illustrated in Fig. 2. The storage system has n storage servers.
A data object is represented as k elements, M7, M, ..., M} in
a finite field GF(p) of prime order p. Each element is randomly
distributed to n storage servers for v times with replacement.
Each storage server picks a random coefficient from the finite
field for each received element and linearly combines all
received elements as a codeword element for this data object.
Finally, the storage server stores the codeword element C; and
all chosen coefficients a; 1,a;2,...,a;%, where coefficients
are set to 0 by default. All coefficients of all n storage servers
form a generator matrix G and overall the encoding process is

[Mla]VIQ',"‘aMk]'G: [01,02,.-.7071}

We illustrate the two ways of data retrieval in Fig. 3.
The upper one is basic system model, which is a typical

©EEHOO-O®

Data collector

a, a, kcoly[nns
Go|®e @) M, M, .. m,]
= K= ~k rows = 1
=lc, ¢, .. ¢k
¥
]
2 |
key) key J key J key)
server server server/ *'" | server
k
Data collector
Fig. 3. Two different decoding processes of decentralized erasure codes.

method of data retrieval. A data collector queries k out of
n storage servers to retrieve and decode codeword elements
for the original data object. The bottom one is secure system
model, which is designed for supporting data confidentiality.
The storage system not only has storage servers but also
key servers, who provide key management services. A data
collector informs at least k£ key servers and each informed
key server queries 2 storage servers. Then key servers forward
received codeword elements to the data collector. Finally, the
data collector recovers the data object back from data received
from key servers.

Remark. The secure system model consisting of storage
servers and key servers is firstly proposed in [4]. In that system,
elements are encrypted before distributed to storage servers.
In the data retrieval process, key servers perform partial
decryption for the data collector. Since data confidentiality is
out of our scope, we abstract the system model by ignoring
the encryption and decryption processes.

In both system models, the data collector would receive
codeword elements and coefficients. The condition of a suc-
cessful data retrieval is that the coefficients form a k x k
matrix K and the matrix K is invertible in GF(p) . When
the parameter v in the encoding process is small with respect
to m, the generator matrix G is sparse, i.e., containing many 0
entries, and then the probability of a k£ x k sub-matrix K of G
being invertible is smaller. When v is large, the communication
cost on element distribution is high.

In previous studies, a family of settings on (n,k,v) is
provided such that the probability of a successful data retrieval
is lower bounded in both system models, as shown in Lemma 1
and Lemma 2.

Lemma 1: (Theoretical bound in basic system model)

33

%%@‘ B

#old storage servers = an

@@@

C'=7,C+2,C, #new storage servers = (1-0) n

i
i
i
i
i
i
i
i
i
i
i
i
i
' = bd i 1
a'\;=za,,+ 2,0, ,1<i<k

Any k out of n servers

(]]] -]

Fig. 4. The distributed repair mechanism for decentralized erasure code based
distributed storage systems.

Consider a distributed storage system consisting of n storage
servers in basic system model. When n = ak® with a > v/2,
c > 1, v = bk 'Ink and b > 5a, the probability of a
successful data retrieval is at least 1 — k/p — e(k), where

e(k) =o(1) is

—k

a

“ + kl*b/a
(\/§>

(’“n*lé%{ {exp{2i(1 — ni) + In b(—2E — D 4oty

a
0 — 1
+ e~ ma2x {exp{2i(1 —1Inid) + Ink(bik* '1n i D}
1= n

(M

Lemma 2: (Theoretical bound in secure system model)
Consider a distributed storage system consisting of n storage
servers and at least k£ key servers in secure system model.
When n = ak® with a > V2, ¢ > 1.5, v = bk 'Ink and
b > ba, the probability of a successful data retrieval is at least
1—Fk/p—e(k).

The bounds on the probability of a successful data retrieval
for the two system models are the same except that the
requirement on the parameter c. In secure system model, each
key server independently queries storage servers. Hence, the
number of storage servers needs to be larger than one in basic
system model, such that the number of storage servers queried
by key servers is sufficient, i.e., at least k. As a result, it can
be seen that in Lemma 2, c is set to at least 1.5 while it is set
to at least 1 in Lamma 1, where n = ak®.

Later, in our simulations, we enlarge the range of ¢ for
secure system model by applying the condition of ¢ > 1.
This adjustment makes the comparison of data retrievability
more comprehensive between analytical values and simulation
results in two system models.

B. Distributed Repair Mechanism

A distributed repair mechanism, as shown in Fig. 4 is
proposed for both system models. Consider a storage sys-
tem which has n storage servers initially. When (1 — a)n
storage servers fail, (1 — «)n new storage servers join in
to repair the storage system. The assumption of the repair

mechanism on the data retrievability is that a k-subset of
old storage servers can recover the data object back with
probability at least 1 — k/p — e(k). The distributed repair
mechanism defines that each new storage server queries ¢ old
storage servers and picks a random coefficient from the finite
field for each received codeword element and corresponding
coefficients. A new storage server then linearly combines all
received data and finally stores the regenerated codeword
element and its coefficients. Fig. 4 shows a small example,
where a new storage server queries 2 old storage servers and
linearly combines two received data (C's,as1,a32,...,a03k)
and (Cy, a4,1, 04,2, - - -, asr) With two coefficients z; and z, as
(C1,d} 1,d] 5,...,a]). Recall that a successful data retrieval
is that a k-subset of n storage servers can recover the data
object back.

The number ¢ of old storage servers a new storage server
has to query is critical to data retrievability. There is a
tradeoff between the communication cost in terms of required
connections per new storage server and data retrievability.
The distributed repair mechanism is proposed with theoretical
bounds on data retrievability under a family of system settings
as shown in Lemma 3.

Lemma 3: (Theoretical bound for a repaired state)
Let the number an of old storage servers be k%, where d >
1 is a constant. Let the number n of all storage servers be
n = ak®, where a > v/2 and ¢ > 1. When q is set to satisfy
Equation (2), the probability of a successful data retrieval is
at least 1 — 2k/p — e™* — (k).

2k k
(d—1)Ink’ (d—1)Ink

¢ > min{k, max{ e

IV. SIMULATION SETTINGS AND RESULTS

We derive analytical values of data retrievability from the-
oretical bounds and run Monte-Carlo simulations to evaluate
the retrieval probability for an initial system, a system with
failed storage servers, and a repaired system, respectively. Our
simulations are done by using Matlab R2011a. We classify
our simulations in two sets, Exp®® and Exp™*", which are
designed for an initial state of a storage system and the other
two states, respectively.

A. Simulations of Exp™*

Simulations of Exp*® are designed to evaluate data re-
trievability of a storage system in an initial state. There are
three subsets of simulations in Exp®*. The first subset is
to derive data retrievability from the theoretical bound in
Lemma 1 and Lemma 2. The other two is to evaluate the
probability in basic system model and secure system model
by simulations, respectively.

We consider a set of system parameters on (a,b,c,k,p)
and compute other system parameters n and v accordingly.
We choose the smallest integer larger than /2 as a, ie.,
a 2. We then choose the smallest integer satisfying
b > ba for b, i.e., b = 11. The robustness parameter k
is considered as 8 ~ 32. We consider ¢ as 1,1.5,2,2.5
and 3 for various system scales n with respect to k, where
n = ak®. A larger p implies a better data retrievability while
it also introduces computation complexity of matrix inversion.

34

c=1
93%

91%

2“ . e —E— e
= 89% ::___‘/.__‘__’_,,,4’*-‘—4‘
=
=2

87%
_§ ——k=8
A, 85% = k=10
—
S 83% k=12
3 —— ——k=20
5 81% p—— — k=32
Q B
~ 799 =

77%

75%

131

137 139 149 151 157 163 167 173 179

Fig. 5. Analytical values of data retrievability to observe the impact of p.
c=1
93%
91% “+p=131
? 89%
% 87%
o
o 8%
kel
Ay
—_ 83%
B
>
o 81%
3
19%
(=2
17%
15%
8 9 1011 121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
k
Fig. 6. Analytical values of data retrievability to observe the impact of k.

For the parameter p, we consider 10 different 8-bit primes
131,137,139,149,151,157,163,167,173 and 179 to observe
the impact of p while the computing time is acceptable in our
machine.

Simulations. We simulate the random processes on co-
efficients in data storing and two different data retrieval in
basic and secure system models, respectively. For data storing,
we simulate that each element of a data object is randomly
distributed among n storage servers and each server chooses
a random coefficient for each received element.

For data retrieval in basic system model, we simulate that
a data collector randomly chooses k storage servers to recover
the data object. We simulate the choosing process iteratively.
In each iteration, the data collector chooses a storage server
from all n storage servers and each storage server is chosen
with probability 1/n. If the chosen storage server is chosen
in previous iterations, the data collector re-chooses one until a
unchosen storage server is chosen. After £ iterations, the data
collector chooses k distinct storage servers.

For data retrieval in secure system model, we simulate that
each of k key servers chooses 2 distinct storage servers and
a data collector uses the first k received data to recover the
data object. Again, in each iteration, a key server chooses a
storage server with probability 1/n. A key server chooses 2
distinct storage servers by 2 iterations. The data collector then
uses the first k received data of k distinct storage servers.

The received data form a square-matrix K. A successful
data retrieval is the event that (det(X) mod p) # 0. The
probability is evaluated by running the simulation for 10, 000

TABLE 1. AVERAGE DATA RETRIEVABILITY OVER p FOR EVERY PAIR
OF (k,c) IN BASIC SYSTEM MODEL
k\c 1 L5 2 2.5 3
3 99.34% | 99.33% | 99.35% | 99.34% | 99.38%
9 99.40% | 99.38% | 99.41% | 99.40% | 99.47%
10 99.96% | 99.95% | 99.98% | 99.96% | 99.96%
11~32 100%
times.

To speed up the simulation, we modify the random process
in two places.

- For cases of £k < 14, we make the modification.
For each element of a data object, a storage server
receives the element with probability 1 — (1 —1/n)".
In the original random process, each element is sent
to a randomly chosen storage server for v times with
replacement. By this modification, the number of
random number generating is reduced from kv to kn,
where v > n for k < 14.

- When a storage server receives an element, the
coefficient is firstly marked as 1. During the data
retrieval, a coefficient of a queried storage server
is then randomly chosen from Z, if it is originally
marked as 1. By this modification, the number of
random numbers generating is reduced from kv to at
most k2.

B. Results of Expit

Analytical values. Under considered parameters, we derive
data retrievability from the theoretical bound in Lemma 1 and
Lemma 2. To observe the impact of p, we fix ¢ = 1 and sum-
marize results of 10 different p in Fig. 5 for £ = 8,10,12,20
and 32. With the same k, data retrievability is better when a
large p is used. To observe the impact of k&, we fix ¢ = 1
and summarize results of £ = 810,20 and 32 in Fig. 6
for p = 131,137 and 179. The results show a curve that
with p = 131, when £k is set to about 11, the resulting data
retrievability is the best among all k. Moreover, for a larger
p, the peak of the curve occurs in a larger k. For instance, in
Fig. 6, the peak for p = 179 occurs in k£ = 12. This observation
indicates that when a system manager chooses a larger value
for k, a larger finite field gives a better data retrievability. In
addition, we find that the parameter ¢ does not have impact
on data retrievability since the probability of a successful data
retrieval is the same with fixed k and p for all considered c.

Simulation results in basic system model are almost 100%!
of data retrievability when k is larger than 10. With fixed ¢ and
k, we take average on the probability over all 10 considered p
and summarize results in Table I. All other cases of k between
11 and 32 have probability of a successful data retrieval 100%.

We fix ¢ 1.5 and summarize results of £ = 8,9,10
and 11 in Fig. 7 to observe the impact of p. We fix k = 8
and summarize results of p = 131,137 and 179 in Fig. 8 to
observe the impact of ¢. No significant impact of ¢ and p is
observed.

Simulation results in secure system model are almost 100%
of data retrievability. With fixed ¢ and k, we take average on

lonly few cases are 99.99%

35

c=1.5

100.00%

99.90%

99.80%

99.70%
99.60% k=8
—m k=9
k=10
ka1l

99.50%

99.40%

99.30%

Retrieval Probability

99.20%

99.10%

Fig. 7. Data retrievability of cases of ¢ = 1.5 and k = 8,9 and 10 in basic
system model.

99.60%

= 99.50%

99.40% ~p=131
-=-p=137

p=179
99.30%

Retrieval Probability

99.20%

99.10%

1 15 2

Fig. 8. Data retrievability of cases Sf k = 8 and p = 131,137 and 179 in
basic system model.

2.5 3

the probability over all 10 considered p and summarize results
in Table II. All cases of k between 11 and 32 and ¢ ranging
from 1.5 to 3 have probability of a successful data retrieval
as 100%. The exception cases happened on two settings: (1)
¢ > 1 and k£ <= 10 (as shown in Table II), and (2) c =1 (as
shown in Fig. 9). But even in the exception case, the worst
data retrievability is still more than 98.4%.

Comparison. To show the difference between analytical
values and two sets of simulation results with the impact of &,
we summarize results with fixed p = 131 and ¢ = 1 in Fig. 10.
Results show that analytical values are much smaller than
simulation results, no matter in basic or secure system model.
It means that the theoretical bound is not tight and implies
that code based storage systems can achieve a much higher
data retrievability than expected. The minimal difference over
k between analytical values and simulation results is about
10%. The closest analytical value occurs when k& = 11. The
difference gets larger when k is larger.

To show the difference with the impact of p, we summarize
results with fixed £ = 9 and ¢ 1, where the difference
between analytical values and simulation results is minimal,
in Fig. 11. By the results, the difference gets smaller when p
gets larger. It implies that the theoretical bound is more tight
for a storage system using a larger finite field. Among our
simulations, the minimal difference is 8.48%, which occurs
when p = 179.

To show the difference with the impact of ¢, we summarize
results with fixed p = 179 and k& = 9 in Fig. 12. There is no

c=1
100.00%

99.80%
99.60%
99.40%
99.20%

99.00%

Retrieval Probability

98.80%

98.60%
8 9 1011121314151617 181920212223 242526272829 3031 32

k
Fig. 9. Average data retrievability of cases of ¢ = 1 over p in secure system
model.

TABLE II. AVERAGE DATA RETRIEVABILITY OVER p FOR EVERY PAIR
OF (k,) IN SECURE SYSTEM MODEL
E\c 15 2 25 3
8 99.35% | 99.38% | 99.37% | 99.34%
9 99.43% | 99.55% | 99.44% | 99.46%
10 99.95% | 99.96% | 99.97% | 99.95%
11~32 100%

significant difference over c.

C. Simulations of Exp™™

Simulations of Exp™" are designed to evaluate data re-
trievability of a storage system with failed storage servers and
a repaired storage system. We would like to know that when
some storage servers fail, whether data retrievability remains
1—k/p — e(k), which is the basic assumption when we apply
the the distributed repair mechanism. We also investigate data
retrievability of a repaired storage system while the theoretical
bound gives a lower bound 1 — 2k/p — e™% — ¢(k). Again,
we use three subsets of simulations, analytical values and
simulation results for basic and secure system models, for both
system states to study the gap between theoretical bounds and
simulation results.

We perform the simulation as shown in Fig. 13. We
consider 30 continuous rounds which simulate 30 continuous
time units in real applications. In the first round, a storage
system is initialized. We consider that a storage server fails
in a round with a probability f. For the state with failure,
we evaluate data retrievability over surviving storage servers.
Thus, data retrievability may remain high but the number
of surviving storage servers in the system is decreased. The
state of the system is cloned and we apply the distributed
repair mechanism on the cloned state. We then evaluate data
retrievability of the repaired system. The second round starts
from the system containing failed storage servers. The storage
system accumulates failed storage servers over rounds.

We consider a set of system parameters on (a, b, ¢, k,p, f)
and compute other system parameters n and v accordingly.
We choose the same setting for a = 2 and b = 11. We set
the parameter p = 131 while the computing time is acceptable
in our machine. The robustness parameter &k is considered as
8,10,12,14 and 16. We consider ¢ as 1, 1.5 and 2 for various
system scales n with respect to k, where n = ak®. We set f =
0.01,0.03 and 0.05 to simulate different corruption degrees.

36

c=1
100.00% gt
—+ Basic

95.00% Secure
Z -
=] Analytical value
e}
8 9000%
]
-
~
S 8s.00%
S 8s.
o
2
=
]
/4 80.00%

75.00%

8 10 12 14 16 18 20 22 24 26 28 30 32
Fig. 10. Data retrievability of analytical values and simulation results with

p=131and c = 1.

c=1
100.00%

98.00%

96.00%

——Basic
94.00%
-=-Secure
Analytical value
92.00%

Retrieval Probability

90.00%

88.00%
131 137 139 149 151 157 163 167 173 179

p

Fig. 11. Data retrievability of analytical values and simulation results with
k=9and c= 1.

D. Results of Exp™™

We firstly probe data retrievability of a storage system
with failed storage servers. We are interested in when a
storage system satisfies the assumption of the distributed repair
mechanism, which requires data retrievability of the system to
be 1 —k/p—e(k). We fixed ¢ = 1 and k = 8 and summarize
analytical values and simulation results in basic and secure
system models in Fig. 14. Results are summarized by the
fraction of surviving storage servers. We identify threshold
values which indicate when a storage system satisfies the
required data retrievability. When the fraction of surviving
storage servers is over the threshold, the distributed repair
mechanism is applicable. Additionally, when the fraction is
getting close to the threshold from 100%, the storage system
needs to be repaired. In Fig. 14, the threshold for basic system
model is 62% and for secure system model is 74%. We observe
that in secure system model, the fraction of surviving storage
servers needs to be larger than one in basic system model
to meet the requirement of applying the distributed repair
mechanism.

We summarize threshold values of all considered system
parameters in basic and secure system models in Table III,
where “always” means that simulation results always satisfy
analytical values. From Table III, we make the following three
observations.

p=179

e

100.00%
99.00%

98.00%

>
Z
= 97.00%
ks
B 96.00%
e ——Basic
A, 95.00% —=—Secure
=
g 94.00% Analytical values
0
‘S 93.00%
o]
A 92.00%

91.00%

90.00%

1 15 2 25 3
C
Fig. 12. Data retrievability of analytical values and simulation results with

p=179 and kK = 9.

? Storing process

| Initial state<—— —
? Random failure process
! State with failur

@ Repair process

One round

measure

measure

A(

Repaired state

Fig. 13. Simulation processes of a storage system from an initial state through
a state with failure to a repaired state.

- With a fixed k, the threshold value is smaller as c is
larger. When ¢ = 1.5 or ¢ = 2, the threshold value is
smaller as k is larger. It implies that a storage system
with less storage servers need to be repaired more
often.

- When ¢ = 1, threshold values are almost the same
over k. It indicates that when a system manager sets
¢ = 1, he can consider the same condition on the
fraction of surviving storage servers for executing the
distributed repair mechanism.

- Threshold values in secure system model are at least
ones in basic system model. It implies that with fixed ¢
and k, a storage system in secure system model needs
to be repaired more often.

We also probe data retrievability of a repaired storage
system. We are interested in knowing under which conditions a
storage system can be repaired such that the repaired storage
system has data retrievability as in Lemma 3. Similarly, we
fixed ¢ = 1 and k¥ = 8 and summarize analytical values and
simulation results in basic and secure system models in Fig. 15
according to the fraction of surviving storage servers. We
identify threshold values on the fraction of surviving storage
servers, where they indicate the conditions we are looking
for. A larger threshold implies that a storage system has to
execute the distributed repair mechanism earlier than when the
fraction of surviving storage servers hits the threshold. Hence
the storage system needs to be repaired more often to achieve
data retrievability satisfying the theoretical bound. In Fig. 15,
the thresholds for basic and secure system model are both 60%.

Similarly, we summarize threshold values of all considered

37

c=1, k=8

100.00% A

Doarmoimormptnrn
»
.
9000% g ecessesesssocesssffosdoacsese
b
= 80.00% - + Basic
E 70.00% . © Analytical values
< e Secure
S 60.00%
[e] .
=
AL 50.00% -
S 4000% +
> o
& 30.00% ‘
Q k4
R~ 20.00% *
‘3
10.00% »
”‘
0.00% e et
0.00% 20.00% 40.00% 60.00% 80.00% 100.00%
Fraction of survival storage servers
Fig. 14. Comparison on data retrievability of a state with failure by the

theoretical bound and simulation results.

c=1, k=8

100% e —
-

90% -

80% ¢ oo oo eeeese o Analytical values

teseseesesevodosonel
n

Y,

it

s = Basic

70% 3
8 Secure

60%
.
0%

LI

40% n

30%

Retrieval Probabil

20% &

10% o
=l
vyt TET

20%
Fraction of survival storage servers

0%

0% 40% 60% 80% 100%

Fig. 15. Comparison on data retrievability of a repaired state by the theoretical
bound and simulation results.

system parameters in basic and secure system models in
Table IV. We then make the following obervations.

- With a fixed k, when c gets larger, threshold value is
smaller. With a fixed ¢, threshold values are smaller
when k gets larger. It means that when k is fixed and
the number n of storage servers is larger, the require-
ment on the fraction of surviving storage servers to
achieve theoretical data retrievability is decreased.

- With ¢ = 1, threshold values are close to each other.
The maximal difference is 4%.

By comparing Table III and Table IV, we can see whether
the assumption or the theoretical bound is tight. The threshold
62% of ¢ = 1 and k = 8 in basic system model in Table III
means that when the fraction of surviving storage servers
is at least 62%, the storage system satisfies the assumption.
By Lemma 3, after the system is repaired, the resulting data
retrievability is at least 1 — 2k/p — e™* — ¢(k). Meanwhile,
the threshold 60% of ¢ = 1 and k 8 in basic system
model in Table IV means that when the fraction of surviving
storage servers is at least 60%, the storage system can be
repaired such that the resulting data retrievability is at least
1—2k/p— e * —¢(k). As a result, we can observe that the

TABLE III. SUMMARY OF THRESHOLD VALUES IN BASIC AND SECURE
SYSTEM MODELS FOR A STATE WITH FAILURE
threshold values in basic system model
c\k 8 10 12 14 16
1 62% 63% 62% 60% 60%
1.5 24% 22% 14% 18% 17%
2 10% 7% 7% always | always
threshold values in secure system model
c\k 8 10 12 14 16
1 74% 76% 75% 74% 74%
1.5 30% 26% 20% 22% 20%
2 12% 9% 7% always | always
TABLE IV. SUMMARY OF THRESHOLD VALUES IN BASIC AND SECURE

SYSTEM MODELS FOR A REPAIRED STATE

threshold values in basic system model

c\k 8 10 12 14 16

1 60% 60% 57% 57% 56%
1.5 22% 20% 18% 17% 16%

2 9% 7% always | always | always
threshold values in secure system model
c\k 8 10 12 14 16

1 60% 60% 57% 57% 56%
1.5 26% 24% 18% 17% 18%

2 9% 8% always | always | always

assumption sets a more restricted condition on data retrievabil-
ity. In other words, the theoretical bound in Lemma 3 is not
tight.

We observe that for a repaired system, data retrievability
derived from the theoretical bound is less than 90%. We are
interested in knowing conditions of a storage system such that
the repaired system has data retrievability more than 95%.
We re-plot lines to find threshold values in basic and secure
system models. Fig. 16 shows results of ¢ = 1 and k = 8§,
where threshold values for basic and secure system models
are both 70%. We summarize results of thresholds in Table V.
It provides a reference for a system manager to decide under
what condition to execute the distributed repair mechanism
to have the repaired system with data retrievability 95%. For
instance, consider that a storage system with k¥ = 8 has n
storage servers, where n = 16 (i.e. a = 2 and ¢ = 1). A
system manager can monitor the fraction of surviving storage
servers in the storage system and decide to execute the repair
mechanism when the fraction is approaching 70% from 100%.
As a result, the manager maintains the system with data
retrievability at least 95%.

V. SUMMARY AND CONCLUSION

We summarize our empirical study to address data retriev-
ability of decentralized erasure code based storage systems as
follows.

- For a storage system in an initial state, data retriev-
ability is more than 99% except for the setting ¢ = 1
in secure system model. Even in the exception case,
the worst data retrievability is more than 98.7%. We
conclude that the gap between simulation results and
theoretical bound is significant. The minimal differ-
ence among our results is 8.48%.

- For the distributed repair mechanism, we characterize
when a storage system can keep satisfying the assump-
tion on data retrievability. Among our results, 76%

100% c=1, k=8
D IR I SRR S I ISP S S Y R IR)
90% -
"

80% - + Wanted data retrievability
> !
E'70% .] SBaslc
o= ecure
S 0% L
=}
[«) n
& 50% E
—
g 40% u
2 u
‘5 30% =
o] #
& 20% 4

i
10% 5
-
0% pramm———
0% 20% 40% 60% 80% 100%
Fraction of survival storage servers
Fig. 16. Threshold values on fraction of surviving storage servers for

achieving data retrievability 95%.

TABLE V. SUMMARY OF THRESHOLD VALUES FOR A REPAIRED STATE

WITH DATA RETRIEVABILITY MORE THAN 95%

threshold values in basic system model

c\k 8 10 12 14 16

1 70% 67% 66% 66% 64%
1.5 27% 24% 22% 20% 18%
2 11% 3% 7% always | always
threshold values in secure system model
\k B 10 12 4 16

1 70% 67% 66% 66% 64%
1.5 34% 30% 22% 20% 22%
2 11% | 10% 6% always | always

is the highest threshold for the fraction of surviving
storage servers for satisfying the assumption. The
results provide a reference for a system manager to
decide when to execute the repair mechanism.

- For the distributed repair mechanism, we characterize
when a storage system can be repaired such that
the resulting data retrievability is over the theoretical
bound. The bound is 80% in our cases. Among our
results, the highest threshold is when the fraction of
surviving storage servers is 60%. We also characterize
when a storage system can be repaired such that the
resulting data retrievability is at least 95%. When
a system with at most 70% storage servers being
survival, it can be repaired by the distributed repair
mechanism such that the resulting data retrievability
is at least 95%.

- We compare characteristics of when a storage system
can keep satisfying the assumption and when a storage
system can be repaired such that the resulting data
retrievability is over the theoretical bound. By the
comparison, we observe that the assumption results
in a slightly higher threshold value. Moreover, the
difference in secure system model is larger than one in
basic system model. Among all our results, the biggest
difference is 5% in basic system model and 16% in
secure system model, respectively. We conclude that
the assumption for basic system model is tighter than
for secure system model.

By our empirical study on data retrievability in decen-
tralized code based distributed storage systems, we conclude

that data retrievability is underestimated by theoretical bounds
for an initial system and for a repaired system. For an ini-
tial system, the gap between analytical values derived from
theoretical bounds and simulation results is significant. By
our simulation results, data retrievability is over 98% for an
initial system while analytical values are less than 90%. For a
repaired system, the gap is less significant. Data retrievability
is over 80% for a repaired system while analytical values are
about 80%. Our simulations are operated in a finite field of
a 8-bit prime order. Since a larger finite field gives a higher
data retrievability, a storage system using a larger finite field
would have a better data retrievability than our simulation
results. We conclude that decentralized erasure code based
storage systems are practical in terms of data retrievability.
Moreover, our simulation results provide some references for
a system manager to decide system parameters and under what
conditions to execute the distributed repair mechanism.

ACKNOWLEDGMENT

The research was supported in part by projects ICTL-
102Q707, ATU-102W958, NSC 101-2218-E-009-003 and
NSC 101-2218-E-009-008.

REFERENCES
[11 A. G. Dimakis, B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE
Transactions on Information Theory, vol. 56, no. 9, pp. 4539 — 4551,
2010.

T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413—
4430, 2006.

D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocation
for high reliability,” in Proceedings of IEEE International Conference
on Communications - ICC’10. 1EEE, 2010, pp. 1-6.

H.-Y. Lin and W.-G. Tzeng, “A secure decentralized erasure code
for distributed network storage,” IEEE Transactions on Parallel and
Distributed Systems, vol. 21, pp. 15861594, 2010.

——, “A secure erasure code based cloud storage system with secure
data forwarding,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 23, no. 6, pp. 995-1003, 2012.

H.-Y. Lin, W.-G. Tzeng, and B.-S. Lin, “A decentralized repair mech-
anism for decentralized erasure code based storage systems,” in Pro-
ceedings of the IEEE International Conference on Trust, Security and
Privacy in Computing and Communications - TrustCom’l1, 2011, pp.
613-620.

A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized
erasure codes for distributed networked storage,” IEEE/ACM Transac-
tions on Networking, vol. 14, pp. 2809-2816, 2006.

Y. Wu, A. G. Dimakis, and K. Ramchandran, “Deterministic regen-
erating codes for distributed storage systems,” in Proceedings of the
45th Annual Allerton Conference on Communication, Control, and
Computing - Allerton’07, 2007, pp. 1243-1249.

K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit
construction of optimal exact regenerating codes for distributed storage,”
in Proceedings of the 47th Annual Allerton Conference on Communi-
cation, Control, and Computing - Allerton’09, 2009, pp. 1243-1249.

N. B. Shah, K. V. Rashmi, and P. V. Kumar, “A flexibile class of
regenerating codes for distributed storage,” in Proceedings of IEEE
Symposium on Information Theory - ISIT’10, 2010, pp. 1943-1947.

S. Akhlaghi, A. Kiani, and M. R. Ghanavati, “A fundamental trade-off
between the download cost and repair bandwidth in distributed storage

systems,” in Proceedings of IEEE International Symposium on Network
Coding - NetCod’10, 2010, pp. 1-6.

(2]

(3]

(4]

(3]

(6]

(71

(8]

(9]

[10]

(1

39

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

S. E. Rouayheb and K. Ramchandran, “Fractional repetition codes for
repair in distributed storage systems,” in Proceedings of the 48th Annual
Allerton Conference on Communication, Control, and Computing -
Allerton’10, 2010, pp. 1510-1517.

Q. Yu, K. W. Shum, and C. W. Sung, “Minimization of storage cost in
distributed storage systems with repair consideration,” in Proceedings
of the Global Communications Conference - GLOBECOM’11, 2011,
pp. 1-5.

X. Wang, Y. Xu, Y. Hu, and K. Ou, “Mfr: Multi-loss flexible recovery in
distributed storage systems,” in Proceedings of the IEEE International
Conference on Communications - ICC’10, 2010, pp. 1-5.

Y. Hu, Y. Xu, X. Wang, C. Zhan, and P. Li, “Cooperative recovery of
distributed storage systems from multiple losses with network coding,”
IEEE Journal on Selected Areas in Communications, vol. 28, no. 2, pp.
268-276, 2010.

K. W. Shum, “Cooperative regenerating codes for distributed storage
systems,” in Proceedings of the IEEE International Conference on
Communications - ICC’11, 2011, pp. 1 -5.

F. E. Oggier and A. Datta, “Self-repairing homomorphic codes for dis-
tributed storage systems,” in Proceedings of the 30th IEEE International
Conference on Computer Communications - INFOCOM’11, 2011, pp.
1215-1223.

A.-M. Kermarrec, N. L. Scouarnecy, and G. Straub, “Repairing multiple
failures with coordinated and adaptive regenerating codes,” in Proceed-
ings of International Symposium on Network Coding - NetCod’11, 2011,
pp. 1-6.

K. W. Shum and Y. Hu, “Existence of minimum-repair-bandwidth coop-
erative regenerating codes,” in Proceedings of International Symposium
on Network Coding - NetCod’l1, 2011.

“Exact minimum-repair-bandwidth cooperative regenerating
codes for distributed storage systems,” in Proceedings of IEEE Inter-
national Symposium on Information Theory - ISIT’11, 2011, pp. 1442—
1446.

