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A Practical Optimization Framework for the Degree Distribution in
LT Codes
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SUMMARY LT codes are the first practical rateless codes whose re-
ception overhead totally depends on the degree distribution adopted. The
capability of LT codes with a particular degree distribution named robust
soliton has been theoretically analyzed; it asymptotically approaches the
optimum when the message length approaches infinity. However, real ap-
plications making use of LT codes have finite number of input symbols. It
is quite important to refine degree distributions because there are distribu-
tions whose performance can exceed that of the robust soliton distribution
for short message length. In this work, a practical framework that employs
evolutionary algorithms is proposed to search for better degree distribu-
tions. Our experiments empirically prove that the proposed framework is
robust and can customize degree distributions for LT codes with different
message length. The decoding error probabilities of the distributions found
in the experiments compare well with those of robust soliton distributions.
The significant improvement of LT codes with the optimized degree distri-
butions is demonstrated in the paper.
key words: LT codes, degree distribution, forward error correction, evolu-
tionary algorithms, digital fountain

1. Introduction

Luby transform (LT) codes [1] proposed by Michael Luby
in 2002 are the first practical implementation of digital foun-
tain codes. Two important features are considered in LT
codes. First, the degree of each encoding symbol is decided
by a particular probability distribution. Second, belief prop-
agation algorithm is employed on the receiver side for de-
coding with less computational cost. Due to the features,
the performance of LT codes totally depends on the adopted
degree distribution. Based on a mathematical analysis, two
degree distribution forms called soliton distributions were
also presented in the proposal [1]. One of them has optimal
performance in ideal case and the other is asymptotically
close to optimal when message length approaches infinity.
However, in practice, the message is usually divided into a
finite, or moderate, number of input symbols according to
different applications. Hence, efforts are needed to find bet-
ter degree distributions for LT codes with a small number of
input symbols.

In the present paper, an LT code optimization frame-
work utilizing evolutionary algorithms is proposed to search
for good degree distributions. Evolutionary algorithms are
heuristic search technologies that solve problems by mim-
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icking certain phenomena observed in nature. By develop-
ing the framework, we not only expect to find degree dis-
tributions with better performance than robust soliton dis-
tributions but also provide a tool that can customize degree
distributions for different purposes such as lower error rate
or lower reception overhead.

The remainder of the paper is organized as follows.
Section 2 gives the related work on improving LT codes by
refining degree distributions. Section 3 introduces the de-
tailed coding mechanism of LT codes and two evaluation
approaches of degree distributions. In Sect. 4, our optimiza-
tion framework is proposed and described in detail. Several
optimization results with different requirements are repre-
sented in Sect. 5, and the optimized distributions are com-
pared with the original design of LT codes in Sect. 6. Fi-
nally, Sect. 7 concludes this paper.

2. Related Work

LT codes have been applied to many applications and are
embedded as a basic component to develop other advanced
rateless codes. Improving the performance of LT codes is
therefore important if not necessary. Robust soliton distri-
bution has been proven near optimal when the number of
input symbols approaches infinity. Thus, most research top-
ics focused on how to improve the performance of LT codes
with a short message length [2], [3]. Reference [2] presented
an approach to obtain the optimal degree distributions for a
code length smaller than 30, while applications with such
a scale can easily be handled by Gaussian elimination [4],
[5]. To optimize LT codes with a greater size of input sym-
bols, Hyytiä [6] made the first attempt to introduce heuris-
tic search algorithms to optimize degree distributions for LT
codes with code length 100, while good degree distributions
are currently most in need for the range of the input sym-
bol size from hundreds to ten thousands. Aiming at this
range, our preliminary studies [7], [8] made use of evolu-
tionary algorithms on the optimization of degree distribu-
tions. A related work [9] focused on maximizing the inter-
mediate recovery rate by using multi-objective optimization
algorithms. In these studies, real transmission was simu-
lated to evaluate the performance of a particular degree dis-
tribution. The approach is feasible but not efficient. Based
on a similar idea for optimization, a practical framework in-
tegrated with a more efficient evaluation approach is intro-
duced in this paper to enhance the performance of LT codes

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



2808
IEICE TRANS. COMMUN., VOL.E96–B, NO.11 NOVEMBER 2013

and to enable the use of LT codes in the range of message
lengths from hundreds to ten thousands.

3. Overview of LT Codes

Before the proposed optimization framework is described,
an overview of the LT codes will be given in this section as
a background. First, the encoding and decoding procedures
are described in Sect. 3.1. Section 3.2 shows the two forms
of soliton degree distributions whose performance has been
confirmed. Furthermore, evaluating the quality of a degree
distribution is a necessity in evolutionary algorithms. Sec-
tion 3.3 introduces two methods for evaluating the decoding
error probability of LT codes.

3.1 Encoding and Decoding

To apply LT codes, information messages in general are di-
vided into k fragments of identical length called input sym-
bols. In contrast, the generated code words are called encod-
ing symbols. Before an encoding symbol is generated, a de-
gree d is chosen at random according to the adopted degree
distribution Ω(d), where 1 ≤ d ≤ k and

∑k
d=1Ω(d) = 1. The

degree d is the number of distinct input symbols involved
in composing an encoding symbol. d input symbols, also
named neighbors of the encoding symbol, are then chosen
uniformly at random and accumulated by XOR operations.

At the receiver side, when n encoding symbols are re-
ceived, where n is slightly larger than k, belief propagation
is used to reconstruct the source data step by step. All en-
coding symbols are initially covered in the beginning. For
the first step, all encoding symbols with only one neighbor
can be directly released to recover their unique neighbor.
When an input symbol has been recovered but has yet to be
processed, it will be queued in a set called the ripple. At
each subsequent step, an unprocessed input symbol is cho-
sen from the ripple and then removed from all the encoding
symbols which have the chosen input symbol as a neighbor.
If encoding symbols with only one remaining neighbor are
generated after the removal, the releasing step repeats and
may produce new members of the ripple to maintain a sta-
ble size of the ripple. Maintaining a sufficient size of the
ripple is crucial because the decoding process fails when the
ripple becomes empty with covered input symbols. In other
words, more encoding symbols are required to resume the
decoding process until all input symbols are recovered.

3.2 Soliton Distribution

The behavior of LT codes is determined by the degree distri-
bution, Ω(d), and the number of received encoding symbols,
n. The overhead ε = n/k−1 measures the performance of LT
codes and depends on the given degree distribution. Based
on a theoretical analysis, Luby proposed the ideal soliton
distribution of which the overhead is 0 in the ideal case.
Ideal soliton distribution ρ(d):

ρ(d) =

{
1/k for d = 1
1/d(d − 1) for d = 2, 3, . . . , k

. (1)

Ideal soliton distribution guarantees that all the release prob-
abilities are identical to 1/k at each decoding step. Hence,
there is exactly one expected ripple generated at each step
when the number of encoding symbols n = k. After k steps,
the source data can be recovered.

However, ideal soliton distribution works poorly in
practice. Belief propagation may be suspended by a small
variance of the stochastic encoding/decoding process be-
cause the expected size of the ripple is only one at any mo-
ment. According to the random walk theory, the probability
with which a random walk of length k deviates from its mean
by more than ln(k/δ)

√
k is at most δ, a baseline of the ripple

size that must be maintained to complete the decoding pro-
cess. Hence, in the same paper by Luby, a modified version
called robust soliton distribution was also proposed.
Robust soliton distribution μ(d):

S = c · ln(k/δ)
√

k

τ(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S/dk for d = 1, . . . , k/S − 1
S ln(S/δ)/k for d = k/S
0 for d = k/S + 1, . . . , k

. (2)

β =

k∑
d=1

(ρ(d) + τ(d)) (3)

μ(d) =
ρ(d) + τ(d)
β

for d = 1, . . . , k (4)

Variables c > 0 and δ are two parameters for tuning the
characteristic of robust soliton distribution. The distribu-
tion raises the expected ripple size from one to ln(k/δ)

√
k.

Robust soliton distribution hence can ensure a successful
decoding probability of at least 1-δ when n = k · β =
k + O(ln2(k/δ)

√
k) encoding symbols are received.

Robust soliton distribution is practical based on an
asymptotic analysis. However, in most situations, source
data cannot be divided into an infinite number of pieces, and
as a consequence, the behavior of LT codes do not exactly
match the analytical result, especially when k � ∞. Ro-
bust soliton distribution gives a continuous upper bound of
the overhead for LT codes with any k size, and there is still
room to reduce the overhead by customizing degree distri-
butions according to different numbers of input symbols.

3.3 Evaluation of Degree Distributions

An intuitive indicator to evaluate degree distributions is the
reception overhead, ε. However, the encoding process of
LT codes is stochastic, and uncertainty exists in the trans-
mission channel. A successful decoding cannot be guaran-
teed in the condition of a constant overhead. To consider
the overhead as a random variable, a large amount of sim-
ulations can be used to estimate the distribution and the
expected value of ε, but a huge computational cost is re-
quired for obtaining precise results. Therefore, an alterna-
tive approach used in the proposed framework is to evaluate
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the decoding error probability of LT codes with a partic-
ular reception overhead. In 2004, an effective evaluation
method [10] was proposed for LT codes with a finite mes-
sage length. Dynamic programming was utilized to con-
struct the distribution of the ripple size during the decod-
ing process. In short, the decoding error probability of
LT codes can be deterministically evaluated by this method
when the number of input symbols k and a constant over-
head are given. Unfortunately, the computation considers a
3-dimensional matrix of size k3. Even when several reduc-
tion techniques are applied, the computational complexity
is still O(k3 log2(k) log log(k)). Subsequently, a new method
for a rigorous analysis on LT codes has been proposed in
2006 [11]. The difference in this approach is to make an
assumption that the number of received symbols is a ran-
dom variable with mean n. Based on the assumption, a fast
evaluation with time complexity O(k2 log(k)) has been pre-
sented. Both the approaches are feasible to serve as an eval-
uation function in the framework and the second one with
a lower computational cost was implemented in our experi-
ments for efficiency. The approach can be denoted as func-
tion f (k,Ω, ε) which evaluates the error probability of LT
codes when the code length is k, the degree distribution is
Ω, and overhead ε has been received.

4. Optimization Framework

The paper employs optimization algorithms to search for
good degree distributions for LT codes. The whole frame-
work consists of three components, including an evolution-
ary algorithm, a distribution translation, and an evaluation
function. This section will illustrate each of components
and the cooperation between them.

4.1 Evolutionary Algorithms

Evolutionary computation [12], [13] is a branch of computa-
tional intelligence and widely used to solve real-world prob-
lems like searching, pattern design, and optimization. The
key idea of evolutionary algorithms is to emulate the most
important mechanism in natural, “survival of the fittest.” In
the emulation, each individual is represented by an encoded
string like chromosomes in creatures. The representation
form could be binary, integer, or real number strings de-
pending on the problem’s decision variables. These individ-
uals are initialized randomly and evaluated according to the
given objective function. Individuals with better fitness are
selected with higher probabilities as survivors, which can
reproduce offspring in the next generation. The reproduc-
tion process includes basic evolutionary operators such as
crossover and mutation. Offspring individuals are then cre-
ated to maintain the population usually of the same size as
initialization. The evolution continues until some stopping
condition is satisfied, which may be the fact that an individ-
ual with certain expected fitness is found or that a predefined
number of generations for evolution is achieved.

There are many different evolutionary algorithms, and

Algorithm 1 Procedure of CMA-ES
Input parameters: μ, λ
Strategic parameters: m, σ, C
While not terminated
1: Sample new λ offspring xi ∈ Rn for i = 1, . . . , λ;
2: Evaluate the fitness value of each individual xi;
3: Rank and select the best μ individuals;
4: Update m, σ and C according to the selected individuals;

they can be roughly classified according to the types of de-
cision variables. The optimization target in this work is the
degree distribution of LT codes, which consists of proba-
bilities and can be represented as real numbers. For the
variable type, covariance matrix adaption evolution strategy
(CMA-ES) [14] is introduced as the solution in this work.
CMA-ES is a famous variant of evolution strategies (ES)
[15], [16], which is an important family in evolution com-
putation. Evolution strategy has been developed since early
1960s for solving optimization problems in industry. De-
cision variables in evolution strategy are denoted as a real
number vector, and totally μ decision vectors are randomly
initialized to form the initial population. For each gener-
ation, new λ decision vectors are sampled from the deci-
sion space by various operators, and then μ individuals with
best fitness are selected as survivors to form the new popu-
lation. Evolution strategy is denoted as (μ+λ)-ES if the sur-
vivors are selected from the union of parents and offspring;
(μ, λ)-ES selects survivors from only the λ offspring individ-
uals. Evolution strategy can be summarized as several basic
steps including new offspring sampling, fitness evaluation,
and survival selection. As a variant of evolution strategy,
CMA-ES has a similar structure described by the pseudo
code presented in Algorithm 1, in which n is the dimen-
sionality, and some strategic parameters are used to control
the evolutionary operators. An important property of evo-
lution strategies is self-adaptation, a mechanism that itera-
tively tunes the strategic parameters before the reproduction
of new offspring. Inheriting the mechanism from ES, only
the input parameters need to be decided for the use of CMA-
ES because CMA-ES can adapt the other algorithmic pa-
rameters during the optimization process. Therefore, we can
focus on the problem itself and employ CMA-ES as a black-
box optimization tool. CMA-ES is adopted in this study not
only because it is a popular real-valued parameter optimiza-
tion method in evolutionary computation but also because
its search ability has been theoretically analyzed and em-
pirically verified on certain classic optimization problems,
such as Ackley’s function, Griewank’s function, and Rast-
rigin’s function. More details and variants of CMA-ES can
be found in the literature [17]–[19]. The source code for the
present study can be downloaded at [20].

4.2 Individual Representation

An essential step to employ evolutionary algorithms in gen-
eral is to encode the decision variables of the problem at
hand. More specifically, such an encoding, irrelevant to
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communication coding, is a function that maps solution in-
stances of a problem onto particular representations called
genotype. The relationship can be understood as that vari-
ous life types are decided by their own chromosome com-
position. Different encoding functions may influence the
design of evolutionary operators and the size of the search
space. The degree distribution is the optimization target in
the present work and can be intuitively represented as a real-
number vector of length k, depending on the size of input
symbols. However, the challenge here is the number of de-
cision variables, i.e., the problem dimensionality. Evolu-
tionary algorithms have been well developed to handle di-
mensions from ten to hundreds, even a thousand. However,
a problem of higher dimensionality means a larger search
space has to be explored, and finding the optimal solution is
usually harder. In other words, a huge computational cost
is required to achieve the optimization for such problems
of high dimensionality. To consider a successful decoding
process, encoding symbols with degree one are necessary
for triggering the belief propagation algorithm. Hence, a
feasible degree distribution must have a nonzero probabil-
ity on degree one. In contrast, the probabilities of the other
degrees are allowed to be zeros to construct a workable dis-
tribution. As a result, an alternative representation called
sparse degree distribution is suggested to reduce the num-
ber of dimensions. A sparse degree distribution has nonzero
values on a set of discrete degrees which are user-defined
and called tags. The representation has been widely adopted
in the literature [7]–[9], [21]. In fact, all degrees should be
considered as tags for searching for the global optimal distri-
bution, but it is not practical when k is greater than 100 due
to the optimization cost. Therefore, the proposed framework
tries to find near-optimal distributions based on a given set
of integers, i.e., tags. To choose appropriate tags is another
interesting issue goes beyond the scope of this paper. A re-
lated investigation can be found in [22]. The investigation
[22] shows that the functionality of a degree distribution can
be approximated by a sparse distribution and the effect of
approximation depends on the density of the tags. Based on
the result, in this paper, Fibonacci numbers smaller than the
source data length are suggested as tags to form the decision
variable vector v and the degree distribution, represented as
sparse degree distribution ω(d):

ω(d) =

{
v(i) d = the i-th Fibonacci number
0 otherwise

, (5)

where k is the size of input symbols. The formula shows
how to translate a real vector into a degree distribution, and
it is what the distribution translator does in Fig. 1. For an
example of k = 12, the nonzero probability is only al-
lowed on degrees of tags: {1, 2, 3, 5, 8}. The decision vari-
able vector v = (0.2, 0.3, 0.3, 0.1, 0.1) represents the distri-
bution ω = (0.2, 0.3, 0.3, 0, 0.1, 0, 0, 0.1, 0, 0, 0, 0). The au-
thors would like to emphasize that Fibonacci sequence is
feasible but not the only feasible setting to be selected as
tags. The reason to choose tags in this way is for the consis-
tency between different k’s such that the optimized results

Fig. 1 Basic components and evolutionary loop adopted in the proposed
framework.

of degree distributions can be systematically compared.

4.3 Optimization Flow

Figure 1 shows the flow chart of the evolutionary loop, in
which each optimization component has been introduced.
The three components are independent and can be replaced
with any feasible, equivalent module. The first block in-
cludes an evolutionary algorithm which is the core of the
framework and CMA-ES is employed in this paper. At the
beginning, the input parameters λ and μ are given and then
the initial population consists of random real vectors are cre-
ated for the first generation. The next block is the distri-
bution translator to translate a real vector into a reasonable
degree distribution as aforementioned. Usually, the initial
random vectors and later, new individuals, v(i), created by
general-purpose evolutionary operators would not be valid
probability distributions. For this reason, a normalization
step is needed to normalize arbitrary real-number vectors to
be probability distributions before the representation trans-
lation. Such an operation is easy and does not change the
feasibility of the proposed framework, although the compu-
tational complexity may be slightly increased. After nor-
malization, the real vectors, v(i), are translated into the
proper form of sparse degree distributions, ω(d), according
to the expression (5. The last block denotes the evaluation
function. Two evaluation methods for degree distributions
of LT codes are introduced in Sect. 3.3. The second one
[11] with a lower computational complexity is implemented
as the function f (k, ω, ε) to evaluate the error probability of
the individuals as their fitness. Finally, the fitness informa-
tion feeds back to the evolutionary algorithm for selecting
the survivors for next generation. After a fixed number of
iterations, the best individual discovered by the algorithm
will be recorded as the final result.

5. Experiments

In the present work, a general optimization framework that
searches for good degree distributions for LT codes is pro-
posed. The proposed framework can be operated with ease
because a small number of parameters need be determined.
The first part of this section will explain the parameters of
our experiments and present the optimization results. In the
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second part, a comparison between full and sparse degree
distributions is given to demonstrate that the degree reduc-
tion is feasible and practical. Note that all the experimental
results in this section are averaged over 30 independent runs
because of the stochastic nature of evolutionary algorithms.

5.1 Optimization Results

To ensure the readers to be able to reproduce the experiment,
all the detailed settings will be clearly stated. CMA-ES is
the evolutionary algorithm employed in this work, and the
source code of CMA-ES in Matlab is available on the web-
page of CMA-ES [20]. CMA-ES has the ability to self-adapt
the algorithmic parameters, and the default, recommended
parameter values except for the maximum number of func-
tion evaluations are used in this study. The evolutionary
process will terminate when the maximum number of func-
tion evaluations is reached. The value controls the expected
computation cost for each optimization run and roughly cor-
responds to the execution time because the evaluation func-
tion is usually considered the most expensive part in evolu-
tionary optimization. This limitation is identical to the use
of maximum number of generation because the population
size is fixed in the present work.

Figure 2 presents the results of optimization experi-
ments for sizes 100, 400, 700, and 1000 of input symbols.
The input parameters of CMA-ES are given as μ = 5 and
λ = 10. The maximum number of function evaluation is
5000, the evaluation overhead is 0.1, and distributions with
sparse degree are adopted. Based on our observation, the
value 0.1 is suitable for an length of input symbols rang-
ing from 100 to 1000 such that the experimental results can
be clearly plotted in the same figure. The users make use of
our framework can customize the value for different require-
ments. The plotted data are averaged result over 30 indepen-
dent runs of the optimization experiment. Partial informa-
tion of the standard derivation is presented in the figure for
a clear display. The variation of the standard derivation in-
dicates the convergence of searching. As the evolution pro-
ceeds, the average error probabilities decrease and converge
to different levels according to k. The results conform to
the property of LT codes that a greater length of message
brings a lower reception overhead; in other words, a lower
error probability can be achieved for a constant overhead.
In Fig. 3, the optimized sparse degree distributions obtained
with CMA-ES are plotted. Although the degree distribu-
tion seems similar to robust soliton distributions, they are in
fact quite different from robust soliton distributions because
there exist many tags with zero probability omitted in the
figure. The performance for LT codes with sparse tags will
be examined and shown to be comparable to that of LT code
with full tags in Sect. 6.

As for the overhead, we can examine the experimen-
tal results presented in Figs. 4 and 5, in which k = 1000
and ε ∈ {0.02, 0.05, 0.1, 0.2}. According to Fig. 4, for
ε ∈ {0.02, 0.05}, the error probability cannot be appropri-
ately reduced. This means that it is extremely hard to search

Fig. 2 Error probability variation during the optimization processes for
different input symbol sizes. For a clear display, partial information of the
standard derivation is presented.

Fig. 3 Optimized sparse degree distributions obtained by CMA-ES for
different input symbol sizes.

for good degree distributions with such a condition or per-
haps LT codes cannot work properly with such overheads.
When ε ∈ {0.1, 0.2}, the proposed framework starts to re-
duce the error probability significantly. The degree distribu-
tions corresponding to low error probabilities can be found
at earlier stages for a greater overhead. Figure 5 shows the
obtained degree distributions and indicates the relationship
between the error probability and the degree distribution.

We can observe that the obtained degree distributions
are similar but not identical. There is little difference be-
tween them, especially between cases ε = 0.02 and ε = 0.2.
Such a phenomenon reveals that the proposed optimization
framework is able to search for good degree distributions for
the given overhead. The framework is effective to seek the
lower bound of decoding error probability for given over-
heads and helps researchers to explore the limitation of LT
codes. The outcome is also consistent with the results pre-
sented in our previous study [7], in which we used transmis-
sion simulation to evaluate the overhead of a degree distri-
bution and found that LT codes might start to work properly
when ε was close to or greater than 0.1 for k = 1000.

5.2 Full Degrees

In the second experiment, the optimization of degree distri-
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Fig. 4 Error probability variation during the optimization processes for
different reception overheads.

Fig. 5 Optimized sparse degree distributions obtained by CMA-ES for
different reception overheads.

butions composed of different types of tags is investigated.
To decrease the dimensionality, the use of sparse degree dis-
tributions is suggested. Such a representation effectively re-
duces the search space, but the possible degree distributions
are apparently limited by not considering all the degrees.
The intention of this experiment is to examine whether the
effectiveness of the proposed framework is impacted by the
adoption of sparse degree distributions. Figure 6 presents
the comparison between sparse and full degree distributions.
The full degree distribution is defined as a probability dis-
tribution with values at each degree from 1 to k. Only one
experiment in which k = 100 was conducted because of the
very high computational cost to optimize full degree dis-
tributions. The maximum number of function evaluation
hence is set to 30000 in this experiment. It is clear that the
optimization of full degree distributions converges slowly
and reaches almost the same error probability at the final
stage. Figure 7 shows the obtained full degree distribution
after the optimization. To compare with the sparse degree
distribution in Fig. 3, the distributions seem quite different,
while a series of examinations presented in the next section
demonstrates a similar level of performance.

6. Investigation into the Optimization Results

In the previous section, several degree distributions with

Fig. 6 Optimization results of full and sparse tags are compared. More
function evaluations are required for full tags.

Fig. 7 Full degree distributions optimized by CMA-ES. Partial degree
values with 99% probability density are plotted.

a low error probability were found with a given reception
overhead. Table 1 lists the best degree distributions and the
corresponding error probabilities in the 30 independent runs
of our experiments. In the table, the entries that are not ap-
plicable are left blank. Furthermore, some tags with zero
probability after optimization give us an empirical evidence
that the use of sparse degree distributions is valid. These
degree distributions will be further examined with different
evaluation methods and compared with robust soliton distri-
butions. As Eq. (3), the characteristic of robust soliton dis-
tributions is determined by two parameters, δ and c. Luby
gave the theoretical analysis [1] to show that LT codes with
such robust soliton distributions can ensure a successful de-
coding process with a failure probability δ when k · β input
symbols are received. Thus, the three robust soliton distribu-
tions are chosen with a fixed δ that equals the optimization
results in Table 1 and different c values to make their corre-
sponding β satisfying the three scenarios, larger than (RL),
smaller than (RS ), and roughly equivalent (RE) to 1.1. The
control group was selected to show robust soliton distribu-
tions with different properties. For a fair comparison, the
proposed optimization framework was also utilized to min-
imize the error probability of robust soliton distribution for
LT codes. Decision variables in the case are two parame-
ters of robust soliton, δ and c. The optimized robust soliton
distribution is denoted as (RO) and joins the control group.

In the first evaluation method [11], the error probabil-
ity is exactly calculated when a reception overhead was re-
ceived on average. Each degree distribution is compared
by an investigation consisting of a reception ratio sweep.
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Table 1 The best degree distributions discovered in each 30-run experiment.

k=100 k=400 k=700 k=1000
Tags ε = 0.1 ε = 0.1 ε = 0.1 ε = 0.02 ε = 0.05 ε = 0.1 ε = 0.2

1 0.0579 0.0310 0.0225 0.0178 0.0211 0.0244 0.0191
2 0.5368 0.4903 0.5064 0.5014 0.4965 0.4592 0.5483
3 0.0481 0.1692 0.1301 0.1448 0.1419 0.2498 0.0359
5 0.2332 0.1096 0.1868 0.1963 0.1909 0.0212 0.2591
8 0.0009 0.1034 0.0165 0.0000 0.0394 0.1628 0.0120
13 0.0618 0.0000 0.0734 0.0684 0.0092 0.0103 0.0017
21 0.0322 0.0638 0.0104 0.0383 0.0730 0.0032 0.0874
34 0.0094 0.0000 0.0263 0.0040 0.0000 0.0470 0.0000
55 0.0163 0.0152 0.0000 0.0000 0.0000 0.0035 0.0002
89 0.0035 0.0000 0.0204 0.0227 0.0210 0.0000 0.0193
144 0.0162 0.0001 0.0000 0.0003 0.0116 0.0017
233 0.0000 0.0002 0.0000 0.0000 0.0000 0.0092
377 0.0013 0.0069 0.0055 0.0062 0.0058 0.0000
610 0.0000 0.0000 0.0000 0.0002 0.0051
987 0.0000 0.0000 0.0000 0.0000

Error prob. 0.8183 0.6547 0.4836 0.9488 0.8000 0.3456 0.0057

Fig. 8 Error probability of LT codes with the assumption that an average
reception overhead is received.

Figure 8 shows the performance curves of the optimized
distributions for overhead ε = 0.1. The optimized sparse
degree distributions clearly outperform all the robust soli-
ton distributions with different δ and c in both k = 100
and k = 1000. We can find that the performance curves

Fig. 9 Error probability of LT codes with the assumption that an exact
reception overhead is received.

of robust soliton distributions do not match their parame-
ter settings that the decoding error probability δ should be
achieved when ε = β − 1. It can be understood that the
theoretical analysis on robust soliton distributions is based
on the assumption that k = ∞. For this reason, there exists
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a gap between theory and practice for finite input symbols,
and the gap becomes obvious when k decreases. In addition,
the optimized full degree distribution joins the comparison
for k = 100, and a very similar result to that of sparse de-
gree distributions was obtained. Such an evidence supports
the same result in [22] that the functionality of full degree
distributions can be approximated well by sparse ones for
the use of LT codes.

From the viewpoint of the receiver side, to consider
the error probability of LT codes when an exact number of
encoding symbols is received is intuitive. Another evalu-
ation method [10] based on a different assumption is em-
ployed to investigate the degree distributions. The results
are presented in Fig. 9, and sparse degree distributions still
have better performance than robust soliton distributions do.
Even though the results of RO are comparable at a lower re-
ception overhead, RO is unable to provide a certain level of
reliability to ensure a successful decoding process. Finally,
the comparison for k = 100 again confirms that sparse and
full degree distributions have very similar performance.

7. Conclusions

In this work, an optimization framework employing evolu-
tionary algorithms as an optimization engine was proposed
to search for good degree distributions to work with LT
codes. Firstly, several experiments were conducted to ver-
ify the robustness of the proposed framework, and then, the
optimized degree distributions were fully presented. These
degree distributions were compared with control groups of
different robust soliton distributions. It has been shown that
the optimized degree distributions outperform robust soliton
distributions by evaluating them with two different methods.
In summary, the two major contributions are (1) to propose a
flexible optimization framework for the degree distribution
of LT codes and (2) by presenting examples, to demonstrate
the existence of the degree distributions of which the perfor-
mance is better than that of robust soliton distributions.

There is no doubt that LT codes are a very important
implementation of digital fountain codes, and LT codes have
been widely used in many areas. However, there exists a sig-
nificant amount of applications that are limited to adopting
such a technique due to the data size. Good degree distri-
butions are necessary to boost the performance of LT codes
and to support LT codes to be used in these practical ap-
plications in which the number of input symbols is smaller
than ten thousands. An effective and flexible solution for
the issue has been proposed in the present work. The im-
provement makes it possible to utilize LT codes in various
scenarios in the future. Moreover, the adopted evaluation
function is computed with dynamic programming. It is easy
to compute the error probability in the same way for recov-
ery 80%, 90%, or 95% of the input symbols. Thus, the pro-
posed framework can also assist Raptor codes designers to
customize the weakened LT code for the use of different pre-
codes.
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